大学物理第1章质点运动学知识点复习及练习

合集下载

大学物理第1章质点运动学知识点复习及练习

大学物理第1章质点运动学知识点复习及练习

第1章 质点运动学(复习指南)一、基本要求掌握参考系、坐标系、质点、运动方程和轨迹方程的概念,合理选择运动参考系并建立直角坐标系,理解将运动对象视为质点的条件.掌握位矢、位移、速度、加速度的概念;能借助直角坐标系计算质点在平面内运动时的位移、平均速度、速度和加速度.会计算相关物理量的大小和方向.二、基本内容1.位置矢量(位矢)位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段,用r表示.r 的端点表示任意时刻质点的空间位置.r同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标轴的方位.位矢是描述质点运动状态的物理量之一.对r应注意:(1(2(32.位移r∆的路程,.3.速度定义t r d d =v ,在直角坐标系xy o -中j y i x r+=ji j t y i t xy x d d d d v v v +=+=2222d d d d yx t y t x v v v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=v的方向:在直线运动中,0>v 表示沿坐标轴正向运动,0<v 表示沿坐标轴负向运动.在曲线运动中,v沿曲线上各点切线,指向质点前进的一方.对速度应注意:瞬时性,质点在运动中的任一时刻的速度是不同的;矢量性,速度为矢量,具有大小,方向,求解速度应同时求其大小和方向;相对性,运动是绝对的,但运动描述是相对的,所以必须明确参考系,坐标系,在确定的坐标系中求质点的速度;叠加性,因为运动是可叠加的,所以描述运动状态的速度也是可叠加的,要注意区别速度和速率.要注意t r d d 与t rd d ,t rd d 与t r d d 的区别.4a =a 与v 反1-118m .求在这解东m 48.17= 方向=8.98°(东偏北)m /s 35.0==∆∆=t rv ,方向与位移方向相同,均为东偏北8.98°.1-2、有一质点沿x 轴作直线运动,t 时刻的坐标为3225.4t t x -=(SI ).试求: (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内的路程.解:(1)1秒末位置坐标m 5.21=x ,2秒末位置m 22=x ,m /s 5.0/-=∆∆=t x v (2)269d /d t t t x -==v ,m /s 62629(2)2-=⨯-⨯=v(3)质点运动中间速度发生了方向变化,所以路程应累计相加令0692=-=t t v ,得5.1=t ,m 375.3)5.1(=x ,所以m 25.2)5.1()2()1()5.1(=-+-=∆x x x x s1-3、一质点沿x 轴运动,其加速度为t a 4=(SI ),已知0=t 时,质点位于m 10=x 处,初速度00=v .试求其位置和时间的关系式.v成正时的速度0=v v 证⎰vv(((C )变加速直线运动,加速度沿x 轴正方向. (D )变加速直线运动,加速度沿x 轴负方向.1-2、一质点作直线运动,某时刻的瞬时速度m /s 2=v ,瞬时加速度2m /s 2-=a ,则1秒钟后质点的速度(提示:注意加速度和速度的瞬时性)[ ](A )等于零. (B )等于2m/s . (C )等于2m/s . (D )不能确定.1-3、一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(提示:区分以下量的含义)(A )t r d d (B )t r d d (C )t r d d (D )22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ty t x[ ]1-4、下列说法哪一条正确?(A )描述质点运动所选定的参考系一定是不动的,运动的物体不能作为参考系. (B )质点模型只适用质量和体积都很小的研究对象. (C )物体在一段时间内如果位移为零,其路程也必然为零. (D )运动物体速率不变时,其速度可以变化.[ ]1-5一质点的位置矢量为j t i t r 323+=(SI ),该指点任意时刻的速度=v ________,任意时刻的加速度=a____________(提示:根据速度是位矢的一阶导数,加速度是位矢的二阶导数,答案要写单位)1-6、一质点沿x 方向运动,其加速度随时间变化关系为t a 23+=(SI ),如果初始时质点的速度0v 为m/s 5,则当t 为3s 时,质点的速度=v ___________.(提示:根据t a d =v 设定积分限积分)1-7、一质点沿直线运动,其运动学方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为_______,在t 由0到4s 的时间间隔内质点走过的路程为______.(提示:注意该运动速度方向改变的时间点,路程与位移的区别)1-8、一质点沿x 轴作直线运动,它的运动学方程为32653t t t x -++=(SI )则(1)质点在0=t 时刻的速度=0v ___________;(2)加速度为零时,该质点的速度=v _________. (提示:利用速度是位矢的一阶导数,加速度是位矢的二阶导数)1-9、已知质点的运动学方程为j t i t r)32(42++=(SI ),则该质点的轨迹方程为:__________________.(提示:轨迹方程关键是消去时间参数)1-10、一质点在xy o -平面内运动.运动学方程分量式为t x 2=和2219t y -=(SI ),则在第2秒内质点的平均速度大小=v ________,2秒末的瞬时速度大小=2v ______________.(提示:先计算平均速度矢量,再计算大小,而瞬时速度是位矢的一阶导数)。

大学物理第1章习题参考答案

大学物理第1章习题参考答案

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)101(3)01(21)01(32ji ⎥⎦⎤⎢⎣⎡-+--=(3) (4) (5) (6) 1-2 =v c t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++=将t =3s 代入证)sm (45)sm (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααx y tg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆(4) 1-41-5 g)(25m/s1047.280.13600101600223≈⨯=⨯⨯==t v a基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---=(2) .对应于t 13.184.122212120-=-="t t v ∆m /s )(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v sh s tl hl l ts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d dd d s v h t l v hl l lt va -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动. 1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωgr n gr1-9 物体A 下降的加速度(如图所示)为222m/s 2.04.022=⨯==h a在1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-=由此得s 59.02.18.95.1220=-⨯=-=ag h t而小球相对地面下落的距离为2021gt t v h +=259.08.92159.06.0⨯⨯+⨯=m 06.2= 1-11风地vb )两图中风地v应是同一矢量.1-12 (1) vLv L t 22==(2) 22212uv vL uv L uv L t t t -=++-=+=1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v L v L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22uv V -='.习题1-12图习题1-11图2221222⎪⎭⎫ ⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V而1212sin sin =⨯=='αβu V船达到BD OB AB 将式(1) (2) 由t =即 c o s α故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min =⨯=⨯=⨯=s u t π(3) 设l OB =,则ααββsin cos 2sin sin 22u uV Vu D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV Vu u D l'⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα0c o s 2s i n s i n 2222=⎥⎦⎤'-+''+αuV Vu a a uV简化后可得01cos cos 222=+'+-'αuVV u a即 01c o s 613c o s 2=+'-'αa解此方程得32cos ='α︒=='-2.4832cos1α将α'AB。

大学物理《力学1·质点运动学》复习题及答案

大学物理《力学1·质点运动学》复习题及答案

[]
6.在相对地面静止的坐标系内, A、B 二船 都以 3ms1 的速率匀速行驶, A 船沿 x 轴正 向, B 船沿 y 轴正向,今在船 A 上设置与静 止坐标系方向相同的坐标系 ( x、y方向单 位矢量i、j用表示 ), 那么在 A 船上的坐标 系中, B 船的速度(以 m·s1 为单位)为
(A) 3i 3 j, (C) 3i 3 j,
(B) 3i 3 j, (D) 3i 3 j,
[]
7.一运动质点在某瞬时位于矢径r (x,y) 的端 点处,其速度大小为
( A ) dr dt
(B) dr dt
dr (C )
dt
(D)

dx dt
2


dy dt
H
H'
的高度
S
A 15 cm
30cm M
o
C
解:先求质点的位置
t 2s,
s 20 2 5 22 60 (m)( 在大圆)
v ds / dt 20 10t ,
v(2) 40 m/s
a
t 2s时
at dv / dt 10m/s
an
an v2 / R
an
160 / 3m/ s2。
解:根据机械能守 恒定律,小球与斜
h
v2
面碰撞时的速度
H
H'

v1 2 gh
S
h 为小球碰撞前自由下落的距离。
因为是完全弹性碰撞,小球弹射的速度大 小为
v2 v1 2 gh
v2的方向是沿水平方向,故小球与斜面碰 撞后作平抛运动,弹出的水平距离为
s v2t 式中t 2(H h ) g

大学物理上册第一章 质点运动学 习题及答案

大学物理上册第一章 质点运动学 习题及答案

第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。

2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。

条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。

二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。

大学物理第一章质点运动学习题

大学物理第一章质点运动学习题
n
1 2 间的关系为= v0t − bt ( SI)。 s 2,质点加速度的大小和方向。 求:(1) 任意时刻t,质点加速度的大小和方向。 任意时刻
求:
a
α
r aτ
R
R
τ
dt
r an
4
a = an + aτ =
2 2
(v0 − bt )4 + (− b )2
R2
r (v 0 − bt ) an a 与切向轴的夹角为 α = arctg = arctg (− Rb ) aτ
v v v v dr 解:v = = 2i − 2tj dt v v v v v t = 2 v2 = 2i − 4 j t = 0 v0 = 2i
v2 = 22 + 42 = 4.47m/ s 大小: 大小:
−4 方向: 方向: θ = arctan = −63o26′ 2
θ为 2与 轴的夹角 v x
x = −t 2 (SI)
例5:一质点运动轨迹为抛物线 : 求:x= -4m时(t>0)粒子的 时 粒子的 速度、速率、加速度。 速度、速率、加速度。 解: x= -4m时 t=2s 时
x t =2 dx vx = −4m s vx = = −2t dt t =2 dy 3 vy = −24m s vy = = −4t + 4t dt v v v 2 v = vx + v2 = 4 37 m s v = −4i − 24 j m/ s y 2 dvx d x −2 ax = s = = −2m ay = −12t 2 + 4 = −44(m −2 ) s 2 dt dt v v r a = −2i − 44 j m⋅ s−2
y = −t 4 + 2t 2(SI)

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

大学物理 上册(第五版)重点总结归纳及试题详解 第一章 质点运动学

大学物理 上册(第五版)重点总结归纳及试题详解  第一章  质点运动学

第一章 质点运动学一、 基本要求1. 掌握位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量。

2.能借助于直角坐标系计算质点在平面内运动时的速度和加速度。

3.能计算质点作圆周运动时的角速度和角加速度,切向和法向加速度。

4.理解伽利略坐标变换和速度变换。

二、 基本内容1. 位置矢量(简称位矢)位置矢量,表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段r 表示。

r 的端点表示任意时刻质点的空间位置。

r 同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标系的方位。

位矢是描述质点运动状态的物理量之一。

注意:(1)瞬时性:质点运动时,其位矢是随时间变化的,即()t =r r ;(2)相对性:用r 描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r 表达形式可以是不相同的。

它表示了r 的相对性,也反映了运动描述的相对性;(3)矢量性:r 为矢量,它有大小,有方向,服从几何加法。

在直角坐标系Oxyz 中x y z =++r i j k==r rr z r y r x ===γβαcos ,cos ,cos质点的运动方程为 ()()()()t x t y t z t ==++r r i j k (矢量式)或()()()⎪⎩⎪⎨⎧===t z z t y y t x x (标量式)。

2.位移()(),t t t x y z ∆=+∆-=∆+∆+∆r r r i j k ∆r 的模∆=r注意:(1)∆r 与r ∆的区别:前者表示质点位置变化,是矢量,同时反映位置变化的大小和方位;后者是标量,反映质点位置离开坐标原点的距离的变化。

(2)∆r 与s ∆的区别:s ∆表示t ~t t ∆+时间内质点通过的路程,是标量,只有质点在直线直进时两者的大小相等或当0→∆t 时,s ∆=∆r 。

3. 速度d dt=rv ,是质点位置矢量对时间的变化率。

在直角坐标系中x y z d dx dy dz dt dt dt dt==++=++v v v v r i j k i j kv 的大小:===v vv 的方向:在直线运动中,0>v 表示质点沿坐标轴正向运动,0<v 表示质点沿坐标轴负向运动;在曲线运动中,v 沿曲线上各点切线,指向质点前进的一方。

大学物理质点运动学习题(附答案)

大学物理质点运动学习题(附答案)

第1章 质点运动学 习题及答案1.||与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.r ∆r ∆t d d r dr dt t d d v dv dt解: ||与 不同. ||表示质点运动位移的大小,而则表示质点运动时其径向长度的r ∆r ∆r ∆r ∆增量;和不同. 表示质点运动速度的大小,而则表示质点运动速度的径向分量;t d d r dr dt t d d r dr dtt d d v 和不同. 表示质点运动加速度的大小, 而则表示质点运动加速度的切向分量.dv dt t d d v dv dt2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么?解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为,式中各量均采用国际单位制,求:(1)第二秒2362x t t =-内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。

解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==-所以:(1)第二秒内的平均速度:1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=- (3)第一秒末的加速度:2(1)121210()a ms -=-⨯= (4)物体运动的类型为变速直线运动。

5.一质点运动方程的表达式为,式中的分别以为单位,试求;(1)质点2105(t t t =+r i j ),t r m,s 的速度和加速度;(2)质点的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理第1章质点运动学知识点复习及练

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第1章 质点运动学(复习指南)
一、基本要求
掌握参考系、坐标系、质点、运动方程和轨迹方程的概念,合理选择运动参考系并建立直角坐标系,理解将运动对象视为质点的条件.
掌握位矢、位移、速度、加速度的概念;能借助直角坐标系计算质点在平面内运动时的位移、平均速度、速度和加速度.会计算相关物理量的大小和方向.
二、基本内容
1.位置矢量(位矢)
位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段,用r
表示.r 的端点表示任意时刻质点的空间位置.r
同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标轴的方位.位矢是描述质点运动状态的物理量之一.对r
应注意:
(1)瞬时性:质点运动时,其位矢是随时间变化的,即)(t r r
=.此式即矢量形式的质点运动方程.
(2)相对性:用r 描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r
可以是不相同的.它表示了r
的相对性,也反映了运动描述的相对性.
(3)矢量性:r
为矢量,它有大小,有方向,服从几何加法.在平面直角坐标系xy o -系中
j y i x r
+=
22y x r r +==
位矢与x 轴夹角正切值
x y /tan =θ
质点做平面运动的运动方程分量式:)(t x x =,)(t y y =.
平面运动轨迹方程是将运动方程中的时间参数消去,只含有坐标的运动方程)(x f y =.
2.位移
j y i x t r t t r r
∆+∆=-∆+=∆)()(
r
∆的大小
()()22y x r ∆+∆=
∆ .
注意区分:(1)r
∆与r ∆,前者表示质点位置变化,r
∆是矢量,同时反映位置变化的大小和方
位.后者是标量,反映从质点位置到坐标原点的距离的变化.(2)r
∆与s ∆,s ∆表示t t t ∆+→时间内
质点通过的路程,s ∆是标量.只有当质点沿直线某一方向前进时两者大小相同,或0→∆t 时,s r ∆=∆

3.速度
定义t r d d =v ,在直角坐标系xy o -中
j y i x r
+=
j i j t
y i t x
y x d d d d v v v +=+=
22
2
2d d d d y x t y t x v v v +=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=
v
的方向:在直线运动中,0>v 表示沿坐标轴正向运动,0<v 表示沿坐标轴负向运动.
在曲线运动中,v
沿曲线上各点切线,指向质点前进的一方.
对速度应注意:瞬时性,质点在运动中的任一时刻的速度是不同的;矢量性,速度为矢量,具有大小,方向,求解速度应同时求其大小和方向;相对性,运动是绝对的,但运动描述是相对的,所以必须明确参考系,坐标系,在确定的坐标系中求质点的速度;叠加性,因为运动是可叠加的,所以描述运动状态的速度也是可叠加的,要注意区别速度和速率.要注
意t r d d 与t r d d
,t
r
d d 与t r d d 的区别.
4.加速度
t
a d d v
=,描述质点速度矢量随时间的变化,其中包括速度的大小和方向随时间的变化.不论速度的大小变化,或者是速度方向的变化,都会产生加速度.加速度为矢量.
在直角坐标系xy o -中,j a i a a
y x +=,其中
22x x d d d d t x
t a ==v ,22y y d d d d t y t a ==v
2
y
2x a a a a +== .
加速度的方向与速度方向无直接关系.在直线运动中,若a 与v
同向,则质点作加速运动,
a 与v 反向,则质点作减速运动.在曲线运动中,a
方向总是指向曲线凹的一侧.加速度的大小与速度的大小也没有直接关系,只与速度大小的变化量有关.
三、例题详解
1-1、一人自坐标原点出发,25s 内向东走30m ,后10s 内向南走10m ,再后的15s 内向正西北走18m .求在这50s 内,平均速度的大小和方向.
解:
j i j i j i BC
AB OA OC
73.227.17)45sin 45cos (181030+=︒+︒-++=++=
m 48.17= 方向=8.98°(东偏北)
m/s 35.0==∆∆=t r
v ,方向与位移方向相同,均为东偏北8.98°
. 1-2、有一质点沿x 轴作直线运动,t 时刻的坐标为3225.4t t x -=(SI ).试求: (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内的路程.
解:(1)1秒末位置坐标m 5.21=x ,2秒末位置m 22=x ,m/s 5.0/-=∆∆=t x v (2)269d /d t t t x -==v ,m/s 62629(2)2-=⨯-⨯=v (3)质点运动中间速度发生了方向变化,所以路程应累计相加
令0692=-=t t v ,得5.1=t ,m 375.3)5.1(=x ,所以m 25.2)5.1()2()1()5.1(=-+-=∆x x x x s
1-3、一质点沿x 轴运动,其加速度为t a 4=(SI ),已知0=t 时,质点位于m 10=x 处,初速度00=v .试求其位置和时间的关系式.
解:t t
a 4d d ==
v
,t t d 4d =v ,⎰⎰=t t t 00d 4d v v 22t =⇒v 2
2d d t t
x ==v ,103
2
32d 2d 303020+=+=⇒=

⎰t x t x t t x t
x x (SI )
1-4、一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v/K t -=,式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度)exp(0Kx -=v v 其中0v 是发动机关闭时的速度.
证:
2d d d d d d d d v v v v v K x
t x x t -==⋅= ∴ x K d d -=v v

Kx x K x -=⇒-=⎰

)ln(d d 000v v
v v v
v ∴ )exp(0Kx -=v v
四、习题精选
1-1、某质点作直线运动的运动学方程为6533+-=t t x (SI ),则该质点作(提示:求二阶导数,算出加速度表达式,再分析)
[ ]
(A )匀加速直线运动,加速度沿x 轴正方向. (B )匀加速直线运动,加速度沿x 轴负方向. (C )变加速直线运动,加速度沿x 轴正方向. (D )变加速直线运动,加速度沿x 轴负方向.
1-2、一质点作直线运动,某时刻的瞬时速度m/s 2=v ,瞬时加速度2m/s 2-=a ,则1秒钟后质点的速度(提示:注意加速度和速度的瞬时性)
[ ]
(A )等于零. (B )等于2m/s . (C )等于2m/s . (D )不能确定.
1-3、一运动质点在某瞬时位于矢径),(y x r
的端点处,其速度大小为(提示:区分以下量的含义) (A )t r d d (B )t r d d (C )t r d d (D )22d d d d ⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛t y t x
[ ]
1-4、下列说法哪一条正确?
(A )描述质点运动所选定的参考系一定是不动的,运动的物体不能作为参考系. (B )质点模型只适用质量和体积都很小的研究对象. (C )物体在一段时间内如果位移为零,其路程也必然为零. (D )运动物体速率不变时,其速度可以变化.
[ ]
1-5一质点的位置矢量为j t i t r
323+=(SI ),该指点任意时刻的速度=v ________,任意时刻的加速
度=a
____________(提示:根据速度是位矢的一阶导数,加速度是位矢的二阶导数,答案要写单位)
1-6、一质点沿x 方向运动,其加速度随时间变化关系为t a 23+=(SI ),如果初始时质点的速度0
v 为m/s 5,则当t 为3s 时,质点的速度=v ___________.(提示:根据t a d =v 设定积分限积分)
1-7、一质点沿直线运动,其运动学方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为_______,在t 由0到4s 的时间间隔内质点走过的路程为______.(提示:注意该运动速度方向改变的时间点,路程与位移的区别)
1-8、一质点沿x 轴作直线运动,它的运动学方程为32653t t t x -++=(SI )则 (1)质点在0=t 时刻的速度=0v ___________;(2)加速度为零时,该质点的速度
=v _________.
(提示:利用速度是位矢的一阶导数,加速度是位矢的二阶导数)
1-9、已知质点的运动学方程为j t i t r )32(42
++=(SI ),则该质点的轨迹方程为: __________________.(提示:轨迹方程关键是消去时间参数)
1-10、一质点在xy o -平面内运动.运动学方程分量式为t x 2=和2219t y -=(SI ),则在第2秒内质点的平均速度大小=v ________,2秒末的瞬时速度大小=2v ______________.(提示:先计算平均速度矢量,再计算大小,而瞬时速度是位矢的一阶导数)。

相关文档
最新文档