2019年高考理科数学押题卷及答案

合集下载

2019年高等学校招生全国统一考试押题卷理科数学试卷(一)及解析

2019年高等学校招生全国统一考试押题卷理科数学试卷(一)及解析

绝密 ★ 启用前2019年普通高等学校招生全国统一考试押题卷理科数学(一)本试题卷共14页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4 C .()3,2- D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .2.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店班级 姓名 准考证号 考场号 座位号添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516D .3132【答案】C 【解析】1i =, (1)21,2x x i =-=,(2)()221143,3x x x i =--=-=, (3)()243187,4x x x i =--=-=, (4)()28711615,5x x x i =--=-=, 所以输出16150x -=,得1516x =,故选C . 4.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为( ) A .9 B .10 C .11 D .12【答案】B【解析】设第一天织布1a 尺,从第二天起每天比第一天多织d 尺,由已知得:1111721284715a d a d a d a d +=⎧⎨+++++=⎩,解得11a =,1d =,∴第十日所织尺数为101910a a d =+=,故选B .5.已知0.41.9a =,0.4log 1.9b =, 1.90.4c =,则( )A .a b c >>B .b c a >>C .a c b >>D .c a b >>【答案】C【解析】0.401.9 1.91a =>=,0.40.4log 1.91log 0b =<=, 1.9000.40.41c <=<=,a c b ∴>>,故选C .6.已知函部分图像如图所示,则函数()()cos g x A x ωϕ=+图像的一个对称中心可能为( )A .()2,0-B .()1,0C .()10,0D .()14,0【答案】C【解析】由题意得A =()26282ωωππ=⨯+⇒=,把点(2,-代入方程可得34ϕπ=-()g x 的一个对称中心为()10,0,故选C .7.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113fx x b x a c a c x =+++-+无极值点,则角B 的最大值是( )A B C D 【答案】C【解析】函数()()3222113f x x b x a c a c x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BC.3D.3【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=选A .10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()ABC.19D【答案】B【解析】如图所示,1S=正,23924Sπ⎛⎫=π=⎪⎝⎭圆则油(油滴的大小忽略不计)B.11()()()1g x f x k x=-+在(],1-∞恰有两个不同的零点,则实数k的取值范围是()A.[)1,3B.(]1,3C.[)2,3D.()3,+∞【答案】A【解析】函数()()()1g x f x k x=-+在(],1-∞恰有两个不同的零点,等价于()y f x=与()1y k x=+()1y k x=+的图象是过定点()1,0-斜率为k的直线,当直线()1y k x=+经过点()1,2时,直线与()y f x=的图象恰有两个交点,此时,1k=,当直线经过点()0,3时直线与()y f x=的图象恰有三个交点,直线在旋转过程中与()y f x=的图象恰有两个交点,斜率在[)1,3内变化,所以实数k的取值范围是[)1,3.12.已知椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,O 为原点,点P 是抛物线准线上一动点,点A 4AF =,则PA PO +的最小值为( )A .B .C .D .【答案】A【解析】椭圆2215y x +=,2514c ∴=-=,即2c =,则椭圆的焦点为()0,2±,不妨取焦点()0,2,抛物线2x ay =44a y ⎛⎫= ⎪⎝⎭,∴抛物线的焦点坐标为0,4a ⎛⎫⎪⎝⎭,椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,24a∴=,即8a =,则抛物线方程为28x y =,准线方程为2y =-,4AF =,由抛物线的定义得:A ∴到准线的距离为4,24y +=,即A 点的纵坐标2y =,又点A 在抛物线上,4x ∴=±,不妨取点A 坐标()4,2A ,A 关于准线的对称点的坐标为()4,6B -PA PO PB PO OB +=+≥,即O ,P ,B 三点共线时,有最小值,最小值为OB ====,故选A .第Ⅱ卷本卷包括必考题和选考题两部分。

2019年全国普通高等学校招生统一考试(王后雄终极押题)数学(理)押题卷共3套(有答案)

2019年全国普通高等学校招生统一考试(王后雄终极押题)数学(理)押题卷共3套(有答案)

绝密★启用前普通高等学校招生全国统一考试理科数学(王后雄终级押题卷1)注意事项:1.本试卷分选择题、填空题和解答题三部分,满分150分,考试时间120分钟。

2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应的位置上。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色签字笔在答题卡上书写作答,在试卷上作答,答案无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 满足(z+3)(l + i) = 4 + 3i(i 为虚数单位),则|z| = A. 21 B. 22C.1D. 22.已知集合 A={032|2≤--x x x },B={23|-=x y y },则 =A. [-1,2)B. [-1,3]C. (0,3]D. (2,3]3.随着经济和社会的发展,大气污染危害着生态环境和人类健康,公众对空气质量的要求也越来越高。

AQI 是表示空气质量的指数,AQI 指数值越小,表明空气质量越好。

AQI 指数值与空气质量的对应关系如下表:2018年某市环保部门为了改善空气环境,统计了该市6月1日至12日AQI 指数值,如下图所示:则下列叙述正确的是A.这12天的AQI 指数值的中位数是100B.这12天的AQI 指数值的平均值是100C.这12天中有5天空气质量“优良”D.从6月4日到9日,空气质量越来越好4.已知平面向量b a ,满足1||,1||==b a ,且10)3)(2(=-+b a b a ,则向量a 在b 方向上的投影是A. -1B. 21-C.1D. 215.函数)2<||0,>)(sin()(πϕωϕω+=x A x f 的部分图象如图所示,如果将)(x f y =的图象向左平移4π,则得到A.x y sin 2-=B.x y sin 2=C.x y cos 2=D.x y cos 2-=6.已知函数⎪⎩⎪⎨⎧≥-+=0,20<,2)(22x x x x x x x f 在[-2,3]上随机取一个数a ,则0)()(≤+-a f a f 的概率为 A.52 B. 41 C. 53 D. 547.已知函数21cos )cos(sin 3)(2-++=x x x x f π,则函数)(x f 的一个单调减区间为 A. ],65[ππ B. ]65,3[ππ C. ]6,32[ππ-- D. ]2,2[ππ- 8. 5]12[-x的展开式中,2-x 的系数是 A. 80 B.-80 C. 40 D.-409.某家工厂在室内(正方体内)建造了一个四棱锥形容器 贮藏稻谷,此四棱锥的三视图如右图所示,其中每个小格是边长为1 的正方形,则该四棱锥的体积为 A.2B.34 C. 38D.3210.记][)(x x x f --=,其中][x 表示不大于x 的最大整数,⎪⎩⎪⎨⎧-≥=0<,10,)(x x x kx x g ,若方程)()(x g x f =在[-5,5]上有7个不同的实数根,则实数k 的取值范围是A.5161≤≤k B. 51<61≤k C. 41<k <51 D. 41<k 51≤ 11. 已知双曲线)4<m <1(11422=-+-my m x 4的焦点到渐近线的距离为2,则双曲线的离心率为 A.2 B.3 C. 2D.5 12.若关于x 的不等式0ln 2≥--x x ax >0恒成立,则实数a 的取值范围是 A.(1,+∞)B.[1,+ ∞) C.(e,+∞)D. [e,+∞) 二、填空题:本题共4小题,每小题5分,共20分。

2019年高等学校招生全国统一考试押题卷理科数学试卷(三)含解析

2019年高等学校招生全国统一考试押题卷理科数学试卷(三)含解析

绝密 ★ 启用前2019年普通高等学校招生全国统一考试押题卷理 科 数 学(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}1,2,3A =,{}34xB x =>,则AB =( )A .{1,2}B .{2,3}C .{1,3}D .{1,2,3}【答案】B【解析】{}1,2,3A =,{}34xB x =>()3log 4,=+∞,{}2,3AB ∴=,选B .2.在ABC △中,“0AB BC ⋅>”是“ABC △是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】若0AB BC ⋅>,则B ∠为钝角,故ABC △为钝角三角形;若ABC △为钝角三角形,则B ∠可能为锐角,此时0AB BC ⋅<,故选A . 3.已知实数a ,b 满足:122ab<<,则( ) A .11a b< B .22log log a b <C>D .cos cos a b >【答案】B【解析】函数2xy =为增函数,故0b a >>.而对数函数2log y x =为增函数,所以22log log a b <,故选B .此卷只装订不密封班级 姓名 准考证号考场号 座位号4.已知函数()()sin f x x ωϕ=+(0ω>,π2ϕ<数()y f x =y 轴对称,那么函数()y f x =的图象( )A BC D 【答案】A【解析】πT ∴=,22T ωπ==,因为函数()y f x =后,得到的图象关于y 轴对称,所以关于y 轴对称,即,2ϕπ<,6ϕπ∴=-,选A .5.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足10n n S S +<⋅的正整数n 的值为( )A .10B .11C .12D .13【答案】C【解析】∵675S S S >>,∴111657654675222a d a d a d ⨯⨯⨯+>+>+,∴70a <,670a a +>,∴()113137131302a a S a +==<,()()112126712602a a S a a +==+>,∴满足10n n S S +<⋅的正整数n 的值为12,故选C . 6.将函数πsin 6y x ⎛⎫=-⎪⎝⎭的图象上所有的点向右平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A .5πsin 212y x ⎛⎫=-⎪⎝⎭B .πsin 212x y ⎛⎫=+⎪⎝⎭ C .5πsin 212x y ⎛⎫=- ⎪⎝⎭D .5πsin 224x y ⎛⎫=-⎪⎝⎭【答案】C【解析】向右平移π4个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5πsin 212x y ⎛⎫=-⎪⎝⎭,故选C . 7.某几何体的三视图如图所示,则该几何体的体积是( )A B C D 【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体B . 8.函数()()22cos x x f x x -=-在区间[]5,5-上的图象大致为( )A .B .C .D .【答案】D【解析】因为当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <;当352x π⎛⎫∈ ⎪⎝⎭,时,()0f x >.所以选D .9.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n =,则p 的值可以是( )(参考数据:sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A .2.6B .3C .3.1D .3.14【答案】C【解析】模拟执行程序,可得:6n =S p ≥,12n =,6sin303S =⨯︒=,不满足条件S p ≥,24n =,12sin15120.2588 3.1056S =⨯︒=⨯=,满足条件S p ≥,退出循环,输出n 的值为24.故 3.1p =.故选C .10.已知点()0,1A -是抛物线22x py =的准线上一点,F 为抛物线的焦点,P 为抛物线上的点,且PF m PA =,若双曲线C 中心在原点,F 是它的一个焦点,且过P 点,当m 取最小值时,双曲线C 的离心率为( )A B C 1 D 1【答案】C【解析】由于A 在抛物线准线上,故2p =,故抛物线方程为24x y =,焦点坐标为()0,1.当直线PA 和抛物线相切时,m 取得最小值,设直线PA 的方程为1y kx =-,代入抛物线方程得2440x kx -+=,判别式216160k ∆=-=,解得1k =±,不妨设1k =,由2440x x -+=,解得2x =,即()2,1P .设双曲线方程为22221y x a b -=,将P 点坐标代入得22141a b-=,即222240b a a b --=,而双曲线1c =,故221a b =+,221b a =-,所以()22221410a a a a ----=,解得1a =,故离心率为1c a ==,故选C . 11.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥,SB BC =,SA AC =,12AB SC =,且三棱锥S ABC -,则该三棱锥的外接球半径是( ) A .1 B .2C .3D .4【答案】C【解析】取SC 中点O ,则OA OB OC OS ===,即O 为三棱锥的外接球球心,设半径为r ,则3r ∴=,选C . 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x xx =∈R ,()2eln h x x =,有下列命题:①()()()F x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增; ②()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;③()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是](40 -,;④()f x 和()h x 之间存在唯一的“隔离直线 其中真命题的个数有( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】①()F x=,x ⎛⎫∈ ⎪⎝⎭,()2120F x x x '∴=+>,()()()F x f x g x ∴=-,在x ⎛⎫∈ ⎪⎝⎭内单调递增,故①正确;②,③设()(),f x g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 成立,即有10∆≤,240k b +≤,又1kx b x≤+对一切0x <成立,则210kx bx +-≤,即20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,40k -≤≤,同理421664b k b ≤≤-,可得40b -≤≤,故②正确,③错误,④函数()f x 和()h x()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k当x ∈R恒成立,令,,当时,()0G x '=;当0x <<时,()'0G x <;当x>()'0G x >;当x =时,()Gx '取到极小值,极小值是0∴函数()f x 和()h x C .第Ⅱ卷本卷包括必考题和选考题两部分。

2019届高考理科数学百校联盟押题卷3套(含解析)

2019届高考理科数学百校联盟押题卷3套(含解析)

2019届高考全国统一试卷押题卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =>-,{}1B x x =≥,则A B =( )A .{}2x x >-B .{}21x x -<≤C .{}2x x ≤-D .{}1x x ≥【答案】A【解析】∵{}2A x x =>-,{}1B x x =≥,∴根据集合并集的定义可得{}2A B x x =>-, 故选A . 2.复数2iiz +=(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】∵()()22i i 2i 12i i i z +-+===--, ∴复数2iiz +=在复平面内对应的点的坐标为()1,2-,位于第四象限,故选D . 3.一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A .4B .8C .16D .24【答案】B【解析】由三视图知三棱锥的侧棱AO 与底OCB 垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,∴6OA =, ∴棱锥的体积11246832V =⨯⨯⨯⨯=,故选B .4.设实数x ,y 满足约束条件121010x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =+的最小值为( )A .1B .2C .3D .6【答案】A【解析】作出实数x ,y 满足约束条件121010x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩表示的平面区域(如图所示:阴影部分),由21010x y x y -+=⎧⎨+-=⎩得()0,1A ,由3z x y =+得3y x z =-+,平移3y x z =-+,直线3y x z =-+过点A 时,直线在y 轴上截距最小,∴min 3011z =⨯+=,故选A .此卷只装订不密封班级 姓名 准考证号 考场号 座位号5.执行如图所示的程序框图,则输出的n 值是( )A .5B .7C .9D .11【答案】C【解析】执行程序框图,1n =时,11133S ==⨯;3n =时,11213355S =+=⨯⨯; 5n =时,11131335577S =++=⨯⨯⨯;7n =时,11114133557799S =+++=⨯⨯⨯⨯, 9n =,满足循环终止条件,退出循环,输出的n 值是9,故选C .6.设n S 为等差数列{}n a 的前n 项和,且5632a a a +=+,则7S =( ) A .28 B .14 C .7 D .2【答案】B【解析】∵563542a a a a a +=+=+,∴42a =,177477142a a S a +=⨯==,故选B . 7.下列判断正确的是( )A .“2x <-”是“()ln 30x +<”的充分不必要条件B .函数()f x =的最小值为2C .当α,β∈R 时,命题“若αβ=,则sin sin αβ=”的逆否命题为真命题D .命题“0x ∀>,201920190x +>”的否定是“00x ∃≤,020*******x +≤”【答案】C【解析】当4x =-时,2x <-成立,()ln 30x +<不成立,∴A 不正确; 对()2f x =≥1=时等号成立,3,∴()2f x =>,的最小值不为2,∴B 不正确;由三角函数的性质得 “若αβ=,则sin sin αβ=”正确,故其逆否命题为真命题,∴C 正确; 命题“0x ∀>,201920190x +>”的否定是“00x ∃>,020*******x +≤”,∴D 不正确,故选C . 8.已知函数()32cos f x x x =+,若(a f =,()2b f =,()2log 7c f =,则a ,b ,c 的大小关系是( ) A .a b c << B .c a b << C .b a c << D .b c a <<【答案】D【解析】∵函数()32cos f x x x =+,∴导数函数()32sin f x x '=-,可得()32sin 0f x x '=->在R 上恒成立,∴()f x 在R 上为增函数,又∵222log 4log 73=<<<b c a <<,故选D .9.在各棱长均相等的直三棱柱111ABC A B C -中,已知M 是棱1BB 的中点,N 是棱AC 的中点, 则异面直线1A M 与NB 所成角的正切值为( ) AB .1CD【答案】C【解析】各棱长均相等的直三棱柱111ABC A B C -中,棱长为2, 以A 为原点,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()10,0,2A,)M,)B,()0,1,0N ,()13,1,1A M=-,()BN =,设异面直线1A M 与BN 所成角为θ,则11cos 5A MBN A M BNθ⋅===⋅,∴tan θ=.∴异面直线1A M 与BN C .10.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( ) A .49B .59C .23D .79【答案】C【解析】设齐王上等、中等、下等马分別为A ,B ,C ,田忌上等、中等、下等马分别为a ,b ,c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有(),A a ,(),A b ,(),A c ,(),B b ,(),B c ,(),C c ,共6种, ∴齐王的马获胜的概率为6293P ==,故选C . 11.已知定义在R 上的函数()f x 的图像关于直线()0x a a =>对称,且当x a ≥时,()2e x a f x -=. 若A ,B 是函数()f x 图像上的两个动点,点(),0P a ,则当PA PB ⋅的最小值为0时,函数()f x 的最小值为( ) A .12e- B .1e -C .32e-D .2e -【答案】B【解析】如图,显然PA PB ⋅的模不为0,故当PA PB ⋅最小值为0时,只能是图中的情况,此时,PA PB ⊥,且PA ,PB 与函数图象相切,根据对称性,易得45BPD ∠=︒, 设()00,B x y ,当x a ≥时,()2e x a f x -'=,∴()020e 1x a f x -'==,∴02x a =, ∵(),0P a ,∴PD a =,∴BD a =,即()2,B a a ,∴22e a a a -=,∴1a =,∴当1x ≥时,()2e x f x -=,递增,故其最小值为1e -,根据对称性可知, 函数()f x 在R 上最小值为1e -.故选B .12.设椭圆()2222:10x y C a b a b+=>>的左,右顶点为A ,B .P 是椭圆上不同于A ,B 的一点,设直线AP ,BP 的斜率分别为m ,n ,则当()2233ln ln 3a m n b mn mn⎛⎫-+++ ⎪⎝⎭取得最小值时,椭圆C 的离心率为( ) A .15BC .45D【答案】D【解析】(),0A a -,(),0B a ,设()00,P x y ,则()2220202b a x y a -=,则00y m x a =+,00y n x a =-,∴2202220y b mn x a a==--, ∴()3222222222233ln ln 36ln 236ln 333a a b a a a b m n b bb mn mn b a b b b a a a ⎛⎫⎪⎛⎫⎛⎫⎛⎫⎛⎫-+++=-++=-++ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪--⎪⎝⎭, 令1a t b=>,则()322236ln 3f t t t t t =-+-.()()()2322232436t t t t t f t t t -+-+-'==,∴当2t =时,函数()f t 取得最小值()2f .∴2a b =,∴e =,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知双曲线22:1C x y -=的右焦点为F ,则点F 到双曲线C 的一条渐近线的距离为_____. 【答案】1【解析】双曲线22:1C x y -=的1a b ==,∴c)F,设双曲线的一条渐近线方程为y x =,则F到渐近线的距离为1d ==,故答案为1.14.412x x ⎛⎫- ⎪⎝⎭展开式中的常数项是_______.【答案】24【解析】()()4124144C 2C 2rrrr r r r T x x x ---+==,∴240r -=,∴2r =,∴22214C 224T +==.15.设n S 为数列{}n a 的前n 项和,且14a =,1n n a S +=,*n ∈N ,则5a =_____.【答案】32【解析】n S 为数列{}n a 的前n 项和,且14a =,1n n a S +=,*n ∈N ,①则当2n ≥时,1n n a S -=,② -①②得1n n n a a a +-=,∴12n na a += (常数), 则数列{}n a 是从第二项起,公比2的等比数列,求得214a S ==,∴()2224n n a n -=⋅≥,故()()241 422n n n a n -=⎧⎪=⎨⋅≥⎪⎩,当5n =时,54832a =⨯=,故答案为32. 16.已知G 为ABC △的重心,过点G 的直线与边AB ,AC 分别相交于点P ,Q .若AP AB λ=,则当ABC △与APQ △的面积之比为209时,实数λ的值为________. 【答案】34或35【解析】设AQ xAC =,∵P ,G ,Q 三点共线,∴可设()1AG AP AQ μμ=+-,∴()1AG AB xAC λμμ=+-, ∵G 为ABC △的重心,∴()13AG AB AC =+,∴()11133AB AC AB xAC λμμ+=+-,∴()13113xλμμ⎧=⎪⎪⎨⎪=-⎪⎩,两式相乘得()119x λμμ=-①,∵1sin 21sin 2ABC APQAB AC AS S AP AQ A =△△,920x λ=②,②代入①即()20181μμ=-解得49μ=或59,即35λ=或34,故答案为34或35.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,内角A ,B,C 所对的边分别为a ,b ,c ,已知π3A =,222b c a +=.(1)求a的值;(2)若1b =,求ABC △的面积. 【答案】(1(2 【解析】(1)由题意,得222b c a +=-.∵2222cos b c a bc A +-=.∴2cos bcA =, ∵π3A =,∴a A == (2)∵a sin sin a b A B =,可得1sin 2B =. ∵a b >,∴π6B=,∴ππ2C A B =--=,∴1sin 2ABC S ab C ==△.18.(12分)如图,四棱锥P ABCD -的底面ABCD是边长为2的菱形,π3ABC ∠=,PA ⊥平面ABCD ,点M 是棱PC 的中点.(1)证明:PA ∥平面BMD ;(2)当PA =AM 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2. 【解析】(1)证明:如图,连接AC 交BD 于点O ,连接MO .∵M ,O 分别为PC ,AC 中点,∴PA MO ∥.∵PA ⊄平面BMD ,MO ⊂平面BMD ,∴PA ∥平面BMD .(2)如图,取线段BC 的中点H ,连结AH .∵ABCD 为菱形,π3ABC ∠=,∴AH AD ⊥.分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系A xyz -, ∴()0,0,0A,)1,0B-,)C,(P,12M ⎝⎭.∴312AM ⎛= ⎝⎭,()0,2,0BC =,(3,1,PC =.设平面PBC 的法向量为(),,x y z =m .由0BC PC⎧⋅=⎪⎨⋅=⎪⎩m m ,得200y y =⎧⎪+=.取1z =,∴()1,0,1=m .设直线AM 与平面PBC 所成角为θ.∴32sin cos ,AM AM AMθ⋅====⋅m m m ∴直线AM 与平面PBC . 19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据:(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,求y 关于x 的线性回归方程(系数精确到0.1);(2)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X ,求X 的分布列及数学期望.参考公式:对一组数据()11,x y ,()22,x y ,(),n n x y ⋯⋯,其回归直线y bx a =+的斜率和截距最小二乘估计分别为:1221ˆni i i n ii x y nx y b xnx==-⋅=-∑∑,a y bx =-.参考数据:618440i i i x y ==∑,62125564i i x ==∑.【答案】(1)0.2.9ˆ8y x =+;(2)分布列见解析,1.【解析】(1)由题意,得384858687888636x +++++==,16.818.820.822.82425.821.56y +++++==,616221684406632150.225564663636ˆi i i xy x y b x x ==-⋅-⨯⨯==≈-⨯⨯-∑∑.,21.50ˆˆ.2638.9a y bx =-=-⨯=. 故所求线性回归方程为0.2.9ˆ8yx =+. (2)由题意,知X 的所有可能取值为0,1,2.∵()023326C C 10C 5P X ===,()113326C C 31C 5P X ===,()203326C C 12C 5P X ===,∴X 的分布列为∴()1310121555E X =⨯+⨯+⨯=.20.(12分)已知长度为4的线段的两个端点A ,B 分别在x 轴和y 轴上运动,动点P 满足3BP PA =,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点()0,1H 的直线2y x t =+与曲线C 相交于两点M ,N .若直线HM 与HN 的斜率之和为1,求实数t 的值.【答案】(1)2219x y +=;(2)3.【解析】(1)设(),P x y ,(),0A m ,()0,B n .∵3BP PA =,∴()()(),3,33,3x y n m x y m x y -=--=--,即333x m x y n y =-⎧⎨-=-⎩,∴434m x n y⎧=⎪⎨⎪=⎩,又4AB =,∴2216m n +=.从而221616169x y +=.∴曲线C 的方程为2219x y +=.(2)设()11,M x y ,()22,N x y .联立22219y x t x y =+⎧⎪⎨+=⎪⎩,消去y ,得()223736910x tx t ++-=. 由()()2236437910t t ∆=-⨯⨯->,可得t <又直线2y x t =+不经过点()0,1H ,且直线HM 与HN 的斜率存在, ∴1t ≠±,∴t 1t ≠±.∴123637tx x +=-,2129937t x x -=.∵()()12121212124111HM HNx x t x x y y k k x x x x +-+--+=+=, ∴()()121212414411x x t x x tx x t +-+=-=+.解得3t =,∴t 的值为3. 21.(12分)已知函数()ln xe f x a x ax x=--+,a ∈R .(1)当0a <时,讨论函数()f x 的单调性;(2)当1a =时,若关于x 的不等式()1e 1x f x x bx x ⎛⎫++-≥ ⎪⎝⎭恒成立,求实数b 的取值范围.【答案】(1)函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;(2)(],2-∞.【解析】(1)由题意,知()()()22e 1e e xx xax x a x f x a x x x ---=--='+. ∵当0a <,0x >时,有e 0x ax -<.∴当1x >时,()0f x '<;当01x <<时,()0f x '>. ∴函数()f x 在()0,1上单调递增,在()1,+∞上单调递减.(2)由题意,当1a =时,不等式()1e 1x f x x bx x ⎛⎫++-≥ ⎪⎝⎭恒成立.即()e ln 11x x x b x -+-≥恒成立,即ln 11e x x b x x-≤--恒成立. 设()ln 1e xx g x x x =--.则()22221ln 1e ln e x xx x x g x x x x -+=-+='. 设()2e ln x h x x x =+,则()()212e x h x x x x'=++.∵当0x >时,有()0h x '>.∴()h x 在()0,+∞上单调递增,且()1e 0h =>,1ln 202h ⎛⎫=< ⎪⎝⎭. ∵函数()h x 有唯一的零点0x ,且0112x <<. ∴当()00,x x ∈时,()0h x <,()0g x '<,()g x 单调递减; 当()0,x x ∈+∞时,()0h x >,()0g x '>,()g x 单调递增. 即()0g x 为()g x 在定义域内的最小值,∴0000ln 11e x x b x x -≤--. ∵()00h x =,得0000ln e x x x x =-,()011*2x <<, 令()e x k x x =,112x <<.∴方程()*等价于()()ln k x k x =-,112x <<. 而()()1e x k x x +'=在()0,+∞上恒大于零,∴()k x 在()0,+∞上单调递增. 故()()ln k x k x =-等价于ln x x =-,112x <<. 设函数()ln m x x x =+,112x <<.易知()m x 单调递增. 又11ln 2022m ⎛⎫=-< ⎪⎝⎭,()110m =>,∴0x 是函数的唯一零点.即00ln x x =-,001e x x =.故()g x 的最小值()()000000000ln 111e 1x x x g x x x x x x -=--=--=. ∴实数b 的取值范围为(],2-∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,已知直线错误!未找到引用源。

2019年高考数学(理)原创终极押题卷(新课标Ⅱ卷)(解析版)

2019年高考数学(理)原创终极押题卷(新课标Ⅱ卷)(解析版)

秘密★启用前2019年全国普通高等学校招生考试终极押题卷(全国新课标Ⅱ)理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合,则A B ⋂=( )A. {}1,0-B. {}0,1C. {}1,0,1-D. {}1,2- 【答案】B 【解析】,,则,故选B.2.已知i 为虚数单位,复数1z i =+,则1z z-的实部与虚部之差为( )A . 1B .0C1 D【答案】D 【解析】:复数1z i =+,∴111111,,--1222i z z i z i z+==-∴-=-,虚部,实部虚部 【点睛】:该小题几乎考查了复数部分的所有概念,是一道优秀试题。

3.下图为国家统计局发布的2018年上半年全国居民消费价格指数(CPI )数据折线图,(注:同比是今年第n 个月与去年第n 个月之比,环比是现在的统计周期和上一个统计周期之比)下列说法错误的是( )A. 2018年6月CPI 环比下降0.1%,同比上涨1.9%B. 2018年3月CPI 环比下降1.1%,同比上涨2.1%C. 2018年2月CPI 环比上涨0.6%,同比上涨1.4%D. 2018年6月CPI 同比涨幅比上月略微扩大0.1个百分点 【答案】C【分析】对照表中数据逐项检验即可.【详解】观察表中数据知A,B,D 正确,对选项C ,2018年2月CPI 环比上涨2.9%,同比上涨1.2%,故C 错误,故选:C【点睛】本题考查折线图,准确识图读图理解题意是关键,是基础题.4. 我国古代数学名著《算法统宗》中有如下问题:“诸葛亮领八员将,每将又分八个营,每营里面排八阵,每阵先锋有八人,每人旗头俱八个,每个旗头八队成,每队更该八个甲,每个甲头八个兵.”则该问题中将官、先锋、旗头、队长、甲头、士兵共有( ) A .()71887-人 B .()91887-人 C .()718887+-人D .()9418887+-人 【答案】D【解析】由题意可得将官、营、阵、先锋、旗头、队长、甲头、士兵依次成等比数列,且首项为8,公比也是8,所以将官、先锋、旗头、队长、甲头、士兵共有:()()45456789481818888888888187-+++++=+=+--,故选D .5.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用()1,2,,10i A i =⋅⋅⋅表示第i 个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是( )A .iB B A =+B .2i B B A =+C .()2i B B A A =+- D .22i B B A =+【答案】B 【解析】由()()()222122n x x x x x x sn-+-+⋅⋅⋅+-=()222212122n n x x x x x x x nx n ++⋅⋅⋅+-++⋅⋅⋅++=22222222212122n n x x x nx nx x x x x n n ++⋅⋅⋅+-+++⋅⋅⋅+==- 循环退出时11i =,知221A x i ⎛⎫= ⎪-⎝⎭.∴2221210B A A A =++⋅⋅⋅+,故程序框图①中要补充的语句是2i B B A =+.故选B . 6.函数()2sin 2xf x x x x=+-的大致图象为( ) A .B .C .D .【答案】D【解析】()1sin112sin110f =+-=-<,排除B ,C ,当0x =时,4π,则2π时,4π3,π,排除A ,故选D . 7.已知函数()f x 是定义在R 上的偶函数,且在()0,+∞上单调递增,则( )A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C【解析】根据题意,函数()f x 是定义在R 上的偶函数,则()()33f f -=,()()33log 13log 13f f -=,有0.63322log 13log 273<<<=,又由()f x 在()0,+∞上单调递增,则有()()()0.632log 133f f f <-<-,故选C .8. 如图网格纸的最小正方形边长为1,粗线是某几何体的三视图,这个几何体的体积为( )A .32B .643C .323D . 8【答案】B【解析】由题意,根据给定的三视图可知,该几何体表示底面是边长为4的正方形,高为4的四棱锥,∴该四棱锥的体积为16444433⨯⨯⨯=,故选B .9. 设点1F , 2F 分别为椭圆22:195x y C +=的左、右焦点,点P 是椭圆C 上任意一点,若使得12PF PF m ⋅=成立的点恰好是4个,则实数m 的值可以是( ) A .12B .3C .5D .8【答案】B【解析】∵点1F ,2F 分别为椭圆22:195x y C +=的左、右焦点;即()12,0F -,()22,0F ,29a =,25b =,24c =,2c =,设()00,P x y ,()100,2PF x y =---,()200,2PF x y =--, 由12PF PF m ⋅=可得22004x y m +=+,又∵P 在椭圆上,即2200195x y +=,∴20994m x -=, 要使得12PF PF m ⋅=成立的点恰好是4个,则99094m -<<,解得15m <<,∴m 的值可以是3.故选B .10.若1x 是方程1x xe =的解,2x 是方程ln 1x x =的解,则12x x =( )A .1B .1-C .eD .1e【答案】A【解析】:11x xxe e x =⇔=,1ln 1ln x x x x =⇔=,设1y x=与ln x y e y x ==和分别交于121211(,),(,)A x B x x x ,由对称性得211212211111ABx x k x x x x x x -==-=-⇔=-,故选A 11. 某人5次上班图中所花的时间(单位:分钟)分别为,,9,10,11x y ,已知这组数据的平均数为10,方差为2,则x y -=( ) A .1 B .2 C .3D .4【答案】D【解析】:这是一道最新数学素养考题的体现,据题意有2220(10)(10)8x y x y +=⎧⎨-+-=⎩,按一般同学的常规思路解出,x y ,导致运算量大而出错,其实由点到直线的距离公式知:x y -=20x y +=与圆22(10)(10)8x y -+-=的交点到直线0x y -=x y -242x y -==,故选D 。

2019年高考数学(理)原创终极押题卷(新课标Ⅰ卷)(参考答案)

2019年高考数学(理)原创终极押题卷(新课标Ⅰ卷)(参考答案)

秘密★启用前2019年普通高等学校统一招生考试终极押题卷(全国新课标Ⅰ)理科数学参考答案第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13. 1 14.2 15. 13x x ⎧⎫>-⎨⎬⎩⎭16.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。

) (一)必考题:共60分。

17.(本小题满分12分)已知数列{}n a 是等差数列,23a =,56a =,数列{}n b 的前n 项和为n S ,且22n n b S -=. (Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)记21n n n n n a c a a b ++=⋅⋅,若数列{}n c 的前n 项和为n T ,证明:12n T <.【答案】:见解析【解析】:(1)由已知得11346a d a d +=⎧⎨+=⎩,解得12,1a d ==,所以1n a n =+…………………………2分当1n =时,1122b b -=,12b ∴= (1)…………………………………………3分 1122222n n n n b S n b S ---=⎧⎨≥-=⎩当时,,当2n ≥时,12n n b b -= (2)………………………5分由(1),(2)得2n n b =…………………………………………………………………………6分(Ⅱ)由(Ⅰ)知,所以32(1)(2)n n n c n n +=⋅+⋅+……………………………………………………8分1112(1)2(2)n n nc n n -⇒=-⋅+⋅+……………………………………………………………10分 01122311111111111()()()()2223232424252(1)2(2)22(2)n nn n n T T n n n -⇒=-+-+-+⋅⋅⋅-⇒=-⋅⋅⋅⋅⋅⋅⋅+⋅+⋅+……………………………………………………………………………………………………11分12n T ⇒<…………………………………………………………………………………………12分 【点评】:本题主要考查等差数列、等比数列概念、通项公式、判定,一般数列的前n 项和nS 与n a 的关系等基础知识.同时考查裂项相消法求数列的前n 项和的探究方法及整体思想,运算求解能力等. 18.(本小题满分12分)正方体1111ABCD A B C D -的棱长为1,E 是边11D C 的中点,点F 在正方体内部或正方体的面上,且满足://EF 面11A BC 。

2019年普通高等学校招生全国统一考试(押题卷)理科数学(二)

2019年普通高等学校招生全国统一考试(押题卷)理科数学(二)

2019年普通高等学校招生全国统一考试(押题卷)理科数学(二)第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则A B 的真子集的个数为( ) A .3B .4C .7D .82.设复数1z =-(i 是虚数单位),则z z z ⋅+的值为( ) A.B.C.D.3.“p q ∧为假”是“p q ∨为假”的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要4.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )盏. A .2B .3C .26D .275.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则5x z y -=的取值范围为( )A .24,33⎡⎤-⎢⎥⎣⎦B .42,33⎡⎤-⎢⎥⎣⎦C .33,,24⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭D .33,,42⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( ) A .910a ≤<B .910a <≤C .1011a <≤D .89a <≤7.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( ) A .2BC.D .48.过抛物线()20y mx m =>的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =( ) A .4B .6C .8D .109.一排12个座位坐了4个小组的成员,每个小组都是3人,若每个小组的成员全坐在一起,则不同的坐法种数为( ) A .()33434A AB .()44343A AC .121233A AD .121244A A10.设函数1()2f x =对于任意[11] x ∈-,,都有()0f x ≤成立,则a =( ) A .4 B .3 CD .111.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174πB .214πC .4πD .5π12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则( )A .至少存在两个点P 使得1k =-B .对于任意点P 都有0k <C .对于任意点P 都有1k <D .存在点P 使得1k ≥ 第Ⅱ卷本卷包括必考题和选考题两部分。

2019年全国高中数学高三模拟考试押题卷及答案理科7套

2019年全国高中数学高三模拟考试押题卷及答案理科7套

数数学学理理科科 模拟试卷一一、选择题1. 设集合M={1,2}, N={2,3},则满足P (M ∪N)的集合P 的个数是:( ) (A) 6个 (B) 7个(C) 8个 (D) 9个2. 有一分币3枚,两角币6张,十元币4张,可组成不同的币值( ) (A) 139种 (B)72种(C) 444种 (D)1080种3. 设α,β都是第二象限角,若sin α>sin β, 则:( )(A) tg α>tg β (B) ctg α<ctg β(C) cos α>cos β (D) sec α>sec β4. 已知 (1-2x)n 的展开式中,奇数项的二项式系数之和为32,则该二项式展 开式的中间项为:( )(A) -160x 3 (B) 160x 3(C) 240x 4 (D) -160x 3与240x 45. 直线t x 511-= t y 521+-= (t 是参数)的倾角为( )(A) π-arctg2 (B) arctg(-2)(C) π-arctg 21 (D) arctg(-21) 6. 函数 x x x f 223)(2-=(x <0) ( ) (A) 有最小值3 (B) 有最小值3923 (C) 有最大值3 (D) 有最大值3923 7. 平移坐标系,将坐标原点平移到曲线x 2-3y 2-4x-6y-2=0的中心,则在新坐标系中, 点(1,2)在原坐标系中的坐标为:( )(A) (-1,3) (B) (-1,5)(C) (3,1) (D) (3,-4)(A) 30° (B) 45°(C) 60° (D) 90°9. 设在甲、乙、丙三个宿舍中,每个宿舍住3个同学,现从这9个中选出3名代表, 其中甲宿舍至少选1人,则一共有多少种不同的选法? ( )(A) C 13·C 26(B) C 13·C 28(C) C 13·C 13·C 13(D) C 13·C 26+C 23·C 16+C 2310. 设在抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k, -2)与F 点的距 离为4,则k 等于:( )(A) 4 (B) 4或-4(C) -2 (D) 2或-211. 设 z 1,z 2非零复数,则条件“||||122z z z ·z 1i ” 是“复数z 1、z 2所对应的向 量互相垂直”的( )(A) 充分但不必要条件(B) 必要但不充分条件(C) 充分必要条件(D) 既不充分也不必要条件12. 在空间四边形的4条边所在的直线中,互相垂直的直线对最多可以有( ) (A) 2对 (B) 3对(C) 4对 (D) 5对13. 设等差数列的前4项之和为26,其末4项之和是110,又这个数列的所有的项 之和为187,则这个数列共有多少项? ( )(A) 11项 (B) 22项(C) 8项 (D) 项数不能确定8. 设正四棱锥S-ABCD 的侧棱之长为2,底面边长为3,E 是SA 的中点,则异面直线 BE 与SC 所成的角等于( )14. 设一个圆锥与一个圆柱的底面半径及高都对应相等,它们的侧面积分别为S 1、S 2, 则必有:( )(A) S 1<S 2 (B) S 1=S 2(C) S 1>S 2 (D) 以上三种情况均有可能成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学押题卷与答案第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数1226,2z i z i =+=-.若12,z z 在复平面内对应的点分别为,A B ,线段AB 的中点C 对应的复数为z ,则z =( )A .5B .5C .25D .217 2. 已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4.已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5. 设实数x ,y 满足约束条件,则当z=ax+by (a >0,b >0)取得最小值2时,则的最小值是( ) A .B .C .D .26. 已知一个三棱锥的三视图如图所示,则该三棱锥的表面积为( ) A .22514++ B .16214+ C .8214+ D .814+7. 已知函数()()2sin sin 3f x x x ϕ=+是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,则函数()()sin 22g x x ϕ=+的图象 ( )A.可由()f x 的图象向左平移6π个单位而得到 B.可由()f x 的图象向右平移6π个单位而得到 C.可由()f x 的图象向左平移3π个单位而得到D.可由()f x 的图象向右平移3π个单位而得到 8. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳 县)人,他在所著的《数书九章》中提出的多项式求值 的秦九韶算法,至今仍是比较先进的算法,如图所示 程序框图给出了利用秦九韶算法求某多项式值的一个 实例,若输入x 的值为2,则输出v 的值为( ) A.1021- B.102 C. 1031- D. 1039. 一点,则直线OP 与直线AM 所成的角为( )A.45B.60C.90D.与点P 的位置有关10.已知变量,x y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩,若目标函数2z x y =+取到最大值a ,则122ax ⎛⎫+- ⎪⎝⎭的展开式中2x 的系数为( )A .-144B .-120C .-80D .-6011.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为12,e e ,则12e e ⋅的取值范围是( )A .10,5⎛⎫ ⎪⎝⎭ B .11,53⎛⎫ ⎪⎝⎭ C .1,3⎛⎫+∞ ⎪⎝⎭ D .1,5⎛⎫+∞ ⎪⎝⎭12.已知函数()1,()ln ,x f x e ax g x x ax a =--=-+若存在0(1,2)x ∈,使得00()()0f x g x <,则实数a 的取值范围为( )A .21(ln 2,)2e - B .(ln 2,1)e -C .[)1,1e -D . 211,2e ⎡⎫-⎪⎢⎣⎭第Ⅱ卷(共90分)二、填空题(每小题5分,满分20分)13. 已知正实数x ,y 满足2x +y =2,则2x +1y的最小值为_________。

14. 设34log ,32log ,21log 33131===c b a ,则c b a ,,大小关系是_______________。

15. 若525nx dx -=⎰,则()21nx -的二项展开式中2x 的系数为 。

16. 已知()11,A x y ,()22,B x y 是以坐标原点O 为圆心的单位圆上的两点,劣弧AB 所对的圆心角为α,若 7sin cos 17αα+=,则1212x x y y +=_______________.三、解答题 (本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b 。

(Ⅰ)求角A 的大小;(Ⅱ)若c =2,角B 的平分线BD =3,求a 。

18.(本小题满分12分)为备战2018年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得3分,负者得0分,在每一场比赛中,甲胜乙的概率为35,丙胜甲的概率为34,乙胜丙的概率为p ,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为110。

(Ⅰ)求p 的值;(Ⅱ)设在该次对抗比赛中,丙得分为X ,求X 的分布列和数学期望。

19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,底面ABC ∆是边长为2的等比三角形,过1A C 作平面1A CD 平行于1BC ,交AB 于D 点。

(1)求证:CD AB ⊥;(2)若四边形11BCC B 是正方形,且15A D =,求二面角11D A C B --的余弦值。

20.(本小题满分12分)已知椭圆C :22221(0)y x a b a b+=>>的上下两个焦点分别为1F ,2F ,过点1F 与y 轴垂直的直线交椭圆C 于M 、N 两点,2MNF ∆的面积为3,椭圆C 的离心率为32。

(Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知O 为坐标原点,直线l :y kx m =+与y 轴交于点P (P 不与原点O 重合),与椭圆C交于A ,B 两个不同的点,使得3AP PB =,求m 的取值范围。

21.(本小题满分12分)己知函数2(),()sin 2x xf x ae xg x bx π=+=+,直线l 与曲线()y f x =切于点(0,(0))f 且与曲线y=g (x )切于点(1,g(1))。

(I)求a ,b 的值和直线l 的方程。

(II)证明:()()f x g x >请考生在22、23两题中任选一题作答。

注意:只能做所选定的题目。

如果多做,则按所做第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑。

22.(本小题满分10分)选修4—5:不等式选讲 设函数()235f x x x =-+-。

(1)求不等式()4f x ≥的解集;(2)若()f x a <的解集不是空集,求实数a 的取值范围。

23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 过点(2,3)P 且倾斜角为α,以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为4cos()3πρθ=-,直线l 与曲线C 相交于,A B 两点;(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若||13AB =l 的倾斜角α的值.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.C3.B4.A5.D6.C7.A8.D9.C 10.B 11.C 12.A 二、填空题(每小题5分,满分20分)13. 9 2 14. a >b >c 15.180 16.817-;三、解答题 (本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)解:(Ⅰ)2a cos C -c =2b ,由正弦定理得 2sin A cos C -sin C =2sin B , …2分2sin A cos C -sin C =2sin(A +C ) =2sin A cos C +2cos A sin C , ∴-sin C =2cos A sinC ,∵sin C ≠0,∴cos A =- 12,而A ∈(0, π),∴A =2π3. …6分(Ⅱ)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A∴ sin ∠ADB =AB sin A BD = 22,∴ ∠ADB =π4, …9分∴∠ABC =π6,∠ACB =π6,AC =AB = 2由余弦定理, BC =AB 2+AC22AB ACcosA = 6. …12分18.(本小题满分12分)(Ⅰ)由已知,甲获第一名且乙获第三名的概率为110. 即甲胜乙、甲胜丙且丙胜乙概率为110, …………2分 ∴311(1)5410p ⨯⨯-=, ∴13p =. …………6分 (Ⅱ)依题意丙得分X 可以为0,3,6,丙胜甲的概率为34,丙胜乙的概率为23…………7分111(0)4312P X ==⨯=,31125(3)434312P X ==⨯+⨯=,326(6)4312P X ==⨯= …………10分P 0 3 6 X112 512612∴15617()0361212124E X =⨯+⨯+⨯=. …………12分19.(本小题满分12分) (1)证明见解析;(2)10535. (1)证:连结1AC ,设1AC 与1A C 相交于点E , 连接DE ,则E 为1AC 中点,∵1//BC 平面1A CD ,DE =平面1A CD 平面1ABC ,∴1//DE BC ,∴D 为AB 的中点, 又∵ABC ∆是等边三角形,∴CD AB ⊥,(2)因为222115AD A A A D +==,所以1A A AD ⊥,又1B B BC ⊥,11//B B A A ,所以1A A BC ⊥,又AD BC B =,所以1A A ⊥平面ABC ,设BC 的中点为O ,11B C 的中点为1O ,以O 为原点,OB 所在的直线为x 轴,1OO 所在的直线为y 轴,OA 所在的直线为z 轴,建立空间直角坐标系O xyz -.则1113(1,0,0),(0,3),((1,2,0)2C A D B -, 即1133(,0,),(1,2,3),(2,2,0)2CD CA CB ===, 设平面1DA C 的法向量为1111(,,)n x y z =,由11100n CD n CA ⎧⋅=⎪⎨⋅=⎪⎩,得111113302230x z x y z ⎧=⎪⎨⎪++=⎩,令11x =,得1(1,1,3)n =-, 设平面11A CB 的法向量为2222(,,)n x y z =,由212100n CA n CB ⎧⋅=⎪⎨⋅=⎪⎩,得22222230220x y z x y ⎧+=⎪⎨+=⎪⎩,令21x =,得23(1,1,3n =-,∴121212105cos ,||||753n n n n n n ⋅<>===⨯,10520.(本小题满分12分)解:(Ⅰ)根据已知椭圆C 的焦距为2c ,当y c =时,2122||||b MN x x a =-=,由题意2MNF ∆的面积为21212||||||32b cF F MN c MN a===由已知得3c a =21b =,∴24a =,∴椭圆C 的标准方程为2214y x +=.-------------4分(Ⅱ)设11(,)A x y ,22(,)B x y ,由22,440,y kx m x y =+⎧⎨+-=⎩得222(4)240k x mkx m +++-=,∴12224kmx x k -+=+,212244m x x k -=+, -----------6分 由已知得222244(4)(4)0m k k m ∆=-+->,即2240k m -+>,由3AP PB =,得123x x -=,即123x x =-,∴212123()40x x x x ++=,------------8分∴222222124(4)0(4)4k m m k k -+=++,即222240m k m k +--=. 当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,------------10分∵2240k m -+>,∴2224401m m m --+>-,即222(4)01m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{}|2112m m m -<<-<<或-------------12分 21.(本小题满分12分) 解:(Ⅰ)f(x )=a e x+2x ,g(x )=2cosx2+b ,f (0)=a ,f (0)=a ,g (1)=1+b ,g (1)=b ,曲线y =f (x )在点(0,f (0))处的切线为y =ax +a , 曲线y =g (x )在点(1,g (1))处的切线为y =b (x -1)+1+b ,即y =bx +1.依题意,有a =b =1,直线l 方程为y =x +1. …4分 (Ⅱ)由(Ⅰ)知f (x )=e x +x 2,g (x )=sin x2+x .…5分设F (x )=f (x )-(x +1)=e x+x 2-x -1,则F (x )=e x+2x -1,当x ∈(-∞,0)时,F (x )<F (0)=0; 当x ∈(0,+∞)时,F(x )>F(0)=0.F (x )在(-∞,0)单调递减,在(0,+∞)单调递增,故F (x )≥F (0)=0.…8分设G (x )=x +1-g (x )=1-sinx2,则G (x )≥0,当且仅当x =4k +1(k ∈Z )时等号成立.…10分由上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此f (x )>g (x ). …12分请考生在22、23两题中任选一题作答。

相关文档
最新文档