高考物理电磁场和电磁波知识点

合集下载

高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点整理高中物理电磁波电磁场知识点汇总整理物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。

物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。

下面是店铺整理的高中物理电磁波电磁场知识点汇总整理,欢迎大家分享。

1、麦克斯韦的电磁场理论(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。

随时间不均匀变化的磁场产生变化的电场。

随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2、电磁波(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。

下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。

1、电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2、磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。

如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。

高中物理电磁学知识点

高中物理电磁学知识点

高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。

在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。

本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。

一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。

2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。

3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。

二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。

2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。

3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。

三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。

2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。

3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。

四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。

2. 光的电磁波理论:光的本质和电磁波的传播速度。

3. 光的反射和折射:光的反射定律、折射定律和光的全反射。

4. 光的色散和光的衍射:光的色散现象和衍射现象。

五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。

2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。

3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。

结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。

通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。

希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。

高考物理电磁学知识点详解

高考物理电磁学知识点详解

高考物理电磁学知识点详解在高考的物理考试中,电磁学是一个重要的考点,涉及到电荷、电场、电势、电流、电阻、电磁感应、电磁波等多个方面的知识。

本文将从电荷、电场、电势、电流、电阻、电磁感应、电磁波等方面详细解析高考物理的电磁学知识点。

1. 电荷电荷是物质所带的基本属性,它分为正电荷和负电荷。

同性电荷相互排斥,异性电荷相互吸引。

电荷的最小单位是电子的电量,其电量大小为1.6 × 10^-19 库仑。

2. 电场电场是由电荷产生的力场,可以用来描述电荷的相互作用。

电场的强度可以用电场力和电荷之间的比值表示。

电场中任意一点的电势能可以用单位正电荷在该点所受的电场力和位移之积表示。

3. 电势电势是描述电场中单位正电荷所带的电势能。

单位是伏特,简写为V。

在静电场中,电势是标量量。

4. 电流电流是电荷在导体中传导的现象。

电流的大小和方向可以用单位时间内通过导体截面的电荷量表示。

电流的单位是安培,简写为A。

5. 电阻电阻是物体对通过其的电流产生的阻碍作用。

它是一个量度物体阻碍电流的物理量。

电阻的大小取决于物体自身的特性和导体材料的性质。

电阻的单位是欧姆,简写为Ω。

6. 电磁感应电磁感应是由变化的磁场中引起的电场的现象。

它是一个重要的物理现象,应用广泛。

当磁通量发生变化时,会在导体中产生感应电动势,从而产生感应电流。

7. 电磁波电磁波是一种由电场和磁场交替变化而产生的波动现象。

它具有能量传播、频率和波长等特性。

根据波长的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

在高考中,对于电磁学的掌握,学生需要熟悉这些知识点的概念和基本公式,同时还需要能够将理论知识运用到实际问题中,并具备一定的实验操作能力。

以下是一些考查电磁学知识点的典型题目。

1. 若在电容器两板之间加上电压,产生的电场强度E为5V/m,若两平行板间距离为2cm,则该场强的大小是多少?答案:在电场中,电势差与电场强度成正比,于是可以通过电势差的计算得到电场强度:电势差 = 电场强度× 间距电势差= 5V/m × 2m = 10V2. 一根金属导线的电阻为5Ω,当通过该导线的电流为2A时,该导线两端的电压是多少?答案:根据欧姆定律,电压和电流成正比,电阻作为比例常数:电压 = 电流× 电阻电压= 2A × 5Ω = 10V通过以上例题可以看出,在解决物理电磁学问题时,我们需要熟悉并掌握基本公式,合理运用其中的规律,结合实际情境进行判断与求解。

理工类专业课复习资料-电磁场与电磁波公式总结

理工类专业课复习资料-电磁场与电磁波公式总结

电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++=面积元:⎪⎩⎪⎨⎧===dxdy dS dxdzdS dydzdS zyx ,体积元:dxdydzd =τ(2)柱坐标系长度元:⎪⎩⎪⎨⎧===dz dl rd dl drdl z r ϕϕ,面积元⎪⎩⎪⎨⎧======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ϕϕϕϕ,体积元:dzrdrd d ϕτ=(3)球坐标系长度元:⎪⎩⎪⎨⎧===ϕθθϕθd r dl rd dl drdl r sin ,面积元:⎪⎩⎪⎨⎧======θϕθϕθθθϕϕθθϕrdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:ϕθθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系⎪⎪⎩⎪⎪⎨⎧==+=⎪⎩⎪⎨⎧===z z x y yx r zz r y r x arctan,sin cos 22ϕϕϕ(2)直角坐标系与球坐标系的关系⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=⎪⎩⎪⎨⎧===z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222222ϕθθϕθϕθ(3)柱坐标系与球坐标系的关系⎪⎪⎩⎪⎪⎨⎧=+=+=⎪⎩⎪⎨⎧===ϕϕθθϕϕθ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x∂∂+∂∂+∂∂=∇=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r∂∂+∂∂+∂∂=∇=→→→μϕμμμμϕ1(3)球坐标系中:ϕμθθμμμμϕθ∂∂+∂∂+∂∂=∇=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:zA y A x A A div zy X ∂∂+∂∂+∂∂=→(2)柱坐标系中:z A A r rA r r A div zr ∂∂+∂∂+∂∂=→ϕϕ1)(1(3)球坐标系中:ϕθθθθϕθ∂∂+∂∂+∂∂=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、高斯散度定理:⎰⎰⎰→→→→=⋅∇=⋅ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

电磁场与电磁波-知识点总结

电磁场与电磁波-知识点总结

已经将文本间距加为24磅,第18章:电磁场与电磁波一、知识网络二、重、难点知识归纳1.振荡电流和振荡电路(1)大小和方向都随时间做周期性变化的电流叫振荡电流。

能够产生振荡电流的电路叫振荡电路。

自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。

在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。

(2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小(3) LC 电路中能量的转化 :a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,LC 回路中电磁振荡过程中电荷、电场。

电路电流与磁场的变化规律、电场能与磁场能相互变化。

分类:阻尼振动和无阻尼振动。

振荡周期:LC T π2=。

改变L 或C 就可以改变T 。

电磁振荡 麦克斯韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3.0×108m/s 电磁波 电磁场与电磁波 发射接收 应用:电视、雷达。

目的:传递信息 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。

原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。

接收电路:接收天线、调谐电路和检波电路电流变小时,磁场能转化为电场能。

b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大.c 、理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。

回路中电流越大时,L 中的磁场能越大。

极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。

电磁场与电磁波复习重点

电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。

:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。

散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。

斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。

3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理电磁场和电磁波知识点
人类自古以来就生活在磁场、电场、电磁波之中。

地球有磁场、大气层中有雷电、太阳和其它一些星球也有磁场,有的星球还发出电磁波。

这些天然的电磁场、电磁波对人体危害不大,人们早就习以为常,甚至还产生了某些依存性。

以下是小编为大家精心准备的:高考物理电磁场和电磁波知识点总结,欢迎参考阅读!
高考物理电磁场和电磁波知识点如下: 1.麦克斯韦的电磁场理论
(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。

随时间不均匀变化的磁场产生变化的电场。

随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2.电磁波
(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中
的光速c=3。

00108m/s。

高考物理第二轮备考磁场重点知识点: 1.磁场
(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。

永磁体和电流都能在空间产生磁场。

变化的电场也能产生磁场。

(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。

(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。

(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。

(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。

2.磁感线
(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。

(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。

(3)几种典型磁场的磁感线的分布:
①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀
强磁场,管外是非匀强磁场。

③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。

④匀强磁场:磁感应强度的大小处处相等、方向处处相同。

匀强磁场中的磁感线是分布均匀、方向相同的平行直线。

3.磁感应强度
(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。

单位T,1T=1N/(Am)。

(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。

(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:
(1)地磁场的N极在地球南极附近,S极在地球北极附近。

(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。

(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

★5.安培力
(1)安培力大小F=BIL。

式中F、B、I要两两垂直,L是有效长度。

若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L 指弯曲导线中始端指向末端的直线长度。

(2)安培力的方向由左手定则判定。

(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。

★6.洛伦兹力
(1)洛伦兹力的大小f=qvB,条件:vB。

当v∥B时,f=0。

(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。

(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。

所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。

(4)在磁场中静止的电荷不受洛伦兹力作用。

★★★7.带电粒子在磁场中的运动规律
在带电粒子只受洛伦兹力作用的条件下(电子、质子、粒子等微观粒子的重力通常忽略不计),
(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动。

(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。

①轨道半径公式:r=mv/qB②周期公式:T=2m/qB
8.带电粒子在复合场中运动
(1)带电粒子在复合场中做直线运动
①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。

②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。

(2)带电粒子在复合场中做曲线运动
①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。

处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。

②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程
求解。

③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中最大、最高至少等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。

相关文档
最新文档