图形与坐标知识点及习题

合集下载

初中数学知识点精讲精析 图形与坐标

初中数学知识点精讲精析 图形与坐标

23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。

2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。

知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。

现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。

除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。

建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。

平面上的点也可以用一个角度来描述其位置。

2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。

向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。

关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。

关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。

在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。

【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。

2022-2023学年浙教版数学八上期末复习专题 图形与坐标(学生版)

2022-2023学年浙教版数学八上期末复习专题 图形与坐标(学生版)

2022-2023学年浙教版数学八上期末复习专题图形与坐标一、单选题(每题3分,共30分)1.(2021八上·鄞州期末)根据下列表述,能够确定位置的是()A.甲地在乙地的正东方向上B.一只风筝飞到距A处20米处C.某市位于北纬30°,东经120°D.影院座位位于一楼二排2.(2022八上·西安月考)如果把电影票上3排6座记作(3,6),那么(6,5)表示()A.5排6座B.5排5座C.6排5座D.6排6座3.(2022八上·新城月考)2021年9月15日,中华人民共和国第十四届运动会开幕式在西安奥体中心举行,如图,如果将西安钟楼的位置记为直角坐标系的原点,下列哪个点的位置可以表示奥体中心的位置()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 4.(2020八上·历下期中)如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是()A.D7,E6B.D6,E7C.E7,D6D.E6,D75.已知点A的坐标为(a+1,3−a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3 ,则a=±6D.若点A在第四象限,则a的值可以为-26.(2021八上·晋中期末)如图是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”A,B 两点的坐标分别为(-2,-3),(2,-3),则表示蝴蝶身体“尾部”C 点的坐标为()A.(0,-1)B.(1,-1)C.(-1,0)D.(2,-1)7.(2022八上·长清期中)若点P(2−m,5)在y轴上,则m的值等于()A.2B.7C.−2D.−38.(2021八上·扶风期末)已知图形A全部在x轴的上方,如果将图形A上的所有点的纵坐标都乘以-1,横坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称9.(2021八上·川汇期末)点A(2,m)向上平移2个单位后与点B(n,−1)关于y轴对称,则m n=().A.1B.12C.−18D.1 910.(2021八上·瑞安月考)在平面直角坐标系中,将点A(a,1-a)先向左平移3个单位得点A1,再将A1向上平移1个单位得点A2,若点A2落在第三象限,则a的取值范围是() A.2 <a<3B.a <3C.a >2D.a <2或a >3二、填空题(每题4分,共24分)11.(2022八上·城阳期中)如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),目标B 的位置为(4,30°),现有一个目标C的位置为(3,m°),且与目标B的距离为5,则目标C的位置为.12.(2022八上·城阳期中)已知点M(2m−1,−3),点N(5,2),直线MN∥y轴,则m的值为.13.(2022八上·西安月考)点A(m−1,2m−3)在第一、三象限夹角的角平分线上,则m的值为.14.(2021八上·巴彦期末)点P(a,−3)与Q(2,b)关于y轴对称,则a b的值为.15.(2020八上·深圳期中)如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,-1),A6(−√3,-1),A7(0,3),A8(3√32,−32),A9(−3√32,−32)……则点A2010的坐标是16.(2021八上·永吉期末)若(x+2)(x−3)=x2+bx+c,其中b,c为常数,则点P(b,c)关于x 轴的对称点的坐标为.三、解答题(共8题,共66分)17.(2021八上·平远期末)小明和朋友到人民公园游玩,回到家后,利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(1,﹣3),请你帮他画出平面直角坐标系,并写出其他各景点的坐标.18.(2021八上·莲湖期中)已知点A(m﹣2,5)和B(3,n+4),A,B两点关于y轴对称,求m﹣n 的值.19.(2021八上·横县期中)如图,利用关于坐标轴对称的点的坐标的特点,画出与△ABC关于x轴对称的图形.20.(2021八上·海曙期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑴请作出⑴ABC关于y轴对称的⑴A′B′C′;⑴写出点B′的坐标.21.已知点P(3a−15,2−a).(1)若点P位于第四象限,它到x轴的距离是4 ,试求出a的值:(2)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.22.(2022八上·台州月考)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出⑴ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在⑴ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).23.(2021八上·黑山期中)如图回答下列问题:(1)如图①所示,请用有序数对写出棋盘上棋子“帅、黑车、炮”的位置(把列号写在前面,行号写在后面).(2)如图②所示把O点移动到棋子“仕”的位置时,用有序数对写出棋子“仕、相、黑马”的位置(把列号写在前面,行号写在后面)(3)如图②,已知棋子“将”的位置是(2,8),棋子“黑马”的位置是(4,3),规定列在前,行在后,请你在棋盘上确定A(0,0)点的位置,棋子“红马”的位置是什么?24.(2021八上·佛山月考)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请在图中的网格平面内建立平面直角坐标系,并将△ABC画出来.(2)在图中找一点D,使AD=√26,CD=√13,并将点D标记出来.(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.(4)在y轴上是否存在点Q,使得S△AOQ=12S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.答案解析部分1.【答案】C【知识点】用坐标表示地理位置【解析】【解答】解:根据题意可得,A.甲地在乙地的正东方向上,无法确定位置,故答案为:A不合题意;B.一只风筝飞到距A处20米处,无法确定位置,故答案为:B不合题意;C.某市位于北纬30°,东经120°可以确定一点的位置,故答案为:C符合题意;D.影院座位位于一楼二排,无法确定位置,故答案为:D不合题意.故答案为:C.【分析】根据在平面内要确定一个点的位置,必须是一对有序数对,再对各选项逐一判断即可. 2.【答案】C【知识点】有序数对【解析】【解答】解:把3排6号的电影票记作(3,6),那么(6,5)表示的电影票号是:6排5号.故答案为:C.【分析】根据题意可得数对中的第一个数表示排,第二个数表示号,据此解答.3.【答案】B【知识点】用坐标表示地理位置【解析】【解答】解:由题意可得:奥体中心的位置可以为(2,3).故答案为:B.【分析】由于奥体中心在第一象限,而第一象限的坐标符号为正正,据此解答即可.4.【答案】C【知识点】有序数对【解析】【解答】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故答案为:C.【分析】直接利用已知网格得出“故宫”、“颐和园”所在的位置。

图形在坐标系中的平移重难点题型

图形在坐标系中的平移重难点题型

图形在坐标系中的平移-重难点题型【北师大版】【知识点1 点在坐标系中的平移】平面直角坐标内点的平移规律,设a >0,b >0(1)一次平移:P (x ,y ) P '(x +a ,y )P (x ,y ) P '(x ,y -b )(2)二次平移: 【题型1 点在坐标系中的平移】 【例1】(2021春•开福区校级期中)在平面直角坐标系中,将点A (x ,y )向左平移3个单位长度,再向上平移5个单位长度后与点B (﹣3,2)重合,则点A 的坐标是( )A .(2,5)B .(0,﹣3)C .(﹣2,5)D .(5,﹣3) 【变式1-1】(2021春•重庆期中)在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【变式1-2】(2021春•江夏区期末)已知△ABC 内任意一点P (a ,b )经过平移后对应点P 1(a +2,b ﹣6),如果点A 在经过此次平移后对应点A 1(4,﹣3),则A 点坐标为( )A .(6,﹣1)B .(2,﹣6)C .(﹣9,6)D .(2,3)【变式1-3】(2021春•新罗区期末)在平面直角坐标系中,将A (n 2,1)沿着x 的正方向向右平移3+n 2个单位后得到B 点.有四个点M (﹣2n 2,1)、N (3n 2,1)、P (n 2,n 2+4)、Q (n 2+1,1),一定在线段AB 上的是( )A .点MB .点QC .点PD .点N【知识点2 图形在坐标系中的平移】 P (x ,y ) P (x - a ,y +b )向左平移a 个单位 再向上平移b 个单向下平移b 个单位向右平移a 个单位在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)【题型2 图形在坐标系中的平移】【例2】(2021春•深圳校级期中)如图,△ABC经过一定的平移得到△A′B′C′,如果△ABC上的点P的坐标为(a,b),那么这个点在△A′B′C′上的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【变式2-1】(2021•邛崃市模拟)如图,在平面直角坐标系中,已知点M(2,1),N(1,﹣1),平移线段MN,使点M落在点M'(﹣1,2)处,则点N对应的点N'的坐标为()A.(﹣2,0)B.(0,﹣2)C.(﹣1,1)D.(﹣3,﹣1)【变式2-2】(2021春•东湖区期末)如图,点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,A1与B1坐标分别是(m,4)和(3,n),则线段AB在平移过程中扫过的图形面积为()A.18B.20C.28D.36【变式2-3】(2020春•凉州区校级期中)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)【题型3 图形在网格中的平移变换】【例3】(2021春•锦江区校级月考)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)连接BC',直接写出∠CBC'与∠B'C'O之间的数量关系.(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-1】(2020春•江汉区月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-2】(2020春•江岸区校级月考)在如图的直角坐标系中,将△ABC平移后得到△A′B′C′,它们的三个顶点坐标如表所示:△ABC A(a,0)B(5,3)C(2,1)△A′B′C′A′(3,4)B′(7,b)C′(c,d)(1)观察表中各对应点坐标的变化,并填空:△ABC向右平移个单位长度,再向上平移个单位长度可以得到△A′B′C′;a=,b=.(2)求出线段AB在整个平移的过程中在坐标平面上扫过的面积.(3)若点M(m,n)为线段AB上的一点,则m、n满足的关系式是.【变式3-3】(2020春•金乡县期末)在平面直角坐标系中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为3,若存在,请直接写出点P的坐标;若不存在,请说明理由.【题型4 坐标系内的平移变换与角度计算综合】【例4】(2020春•通山县期末)如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.【变式4-1】(2021春•庆阳期末)如图①,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0),(3,0),现同时将点A、B向上平移2个单位长度,再向右平移1个单位长度,得到A、B的对应点C、D,连接AC、BD、CD.(1)直接写出点C、D的坐标;(2)如图②,点P是线段BD上的一个动点,连接PC、PO,当点P在线段BD上运动时,试探究∠OPC、∠PCD、∠POB的数量关系,并证明你的结论.【变式4-2】(2020春•大同期末)综合与实践问题背景如图,在平面直角坐标系中,点A的坐标为(﹣3,5),点B的坐标为(0,1),点C 的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)画出AB平移后的线段CD,直接写出B的对应点D的坐标;探究证明(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;拓展延伸(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.【变式4-3】(2020春•鞍山期末)如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.。

初中数学图形的坐标与变换知识点归纳

初中数学图形的坐标与变换知识点归纳

初中数学图形的坐标与变换知识点归纳初中数学中,图形的坐标与变换是一个重要且基础的知识点。

它涉及到平面直角坐标系、图形的平移、旋转、翻转等概念和运算。

下面,我们将对初中数学中相关的知识点进行归纳,帮助大家更好地理解和掌握这些内容。

1. 平面直角坐标系平面直角坐标系是研究平面上点的位置关系的工具。

它由两条互相垂直的数轴(x轴和y轴)组成,原点为坐标原点,分别与x轴和y轴的正方向上的单位长度为1的线段为坐标轴。

2. 点的坐标表示在平面直角坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。

这种用数对表示点的方法称为点的坐标。

3. 图形的平移平移是指图形在平面上沿着一定的方向移动一定的距离,但形状和大小保持不变。

平移可以用坐标表示,对于平移向量(a, b),图形上的每个点(x, y)移动到新位置(x+a, y+b)。

4. 图形的旋转旋转是指图形绕一个固定点旋转一定的角度。

对于顺时针旋转θ度的情况,图形上的每个点(x, y)绕旋转中心点O旋转θ度后的新位置为(x', y'),通过一定的数学公式可以得到旋转后的新坐标。

5. 图形的翻转翻转是指图形相对于某个轴对称的操作。

包括水平翻转和垂直翻转两种情况。

水平翻转是指图形相对于x轴对称,垂直翻转是指图形相对于y轴对称。

翻转后图形上的每个点(x, y)的新坐标可以通过一定的变换公式得到。

6. 点的对称性在平面直角坐标系中,点的对称性也是一个重要的概念。

对称点是指两个在坐标系中关于某个点对称的点,就是它们关于这个点的连线的中点。

7. 图形的对称性除了点的对称性,图形的对称性也是一种重要的性质。

图形如果存在一个中心对称轴,当图形上的每一个点关于该对称轴与对应的对称点重合时,我们说图形具有中心对称性。

如果一个图形既有中心对称性,又有轴对称性,则称为既有中心对称性又有轴对称性。

通过对初中数学中图形的坐标与变换知识点的归纳,我们可以更好地理解和应用这些知识,解决与图形相关的问题。

初中数学知识点复习专题讲练:用坐标表示旋转(含答案)

初中数学知识点复习专题讲练:用坐标表示旋转(含答案)

用坐标表示旋转考点分析在坐标平面内,某一点绕原点旋转前后坐标的变化规律如下:1. 点A(a,b)绕原点旋转180°得点A'(-a,-b),即点A(a,b)关于原点对称的点的坐标是A'(-a,-b).2. 点A(a,b)绕原点旋转90°所得点A'的坐标是(-b,a).方法归纳:坐标系中的旋转问题通常构造全等三角形加以解决,而且一般是直角三角形.因为图形的旋转问题都可以归结为点的旋转问题,而点的坐标可以表示某点到坐标的距离.所以解决坐标系的旋转问题时经常过图形的顶点向坐标轴作垂线段,构造直角三角形来解决问题.总结:1. 通过具体实例认识直角坐标系中图形的旋转变换,加深理解旋转变换的概念和基本性质,并能按要求作出简单平面图形绕坐标原点旋转90度、180度后的图形.2. 通过多角度地认识旋转图形的形成过程,培养学生的发散思维能力.解题技巧例题1在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC 上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A. (1.4,-1)B. (1.5,2)C. (1.6,1)D. (2.4,1)解析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1的坐标,进而利用中心对称图形的性质得出P2点的坐标.答案:∵A 点坐标为:(2,4),A 1(-2,1),∴点P (2.4,2)平移后的对应点P 1为(-1.6,-1),∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∴P 2点的坐标为(1.6,1).故选C .点拨:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.例题2 在如图所示的直角坐标系中,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1,则线段A 1B 1所在直线l 的函数解析式为( )A. y =32x -2B. y =-32x +2C. y =-32x -2D. y =32x +2解析:根据旋转方向及角度画出旋转后的三角形,求出对应点坐标,设直线的解析式为y =kx +b ,将点的坐标代入,用待定系数法确定其解析式.答案:如图,根据旋转可得A 1(0,-2),B 1(-2,1),设直线的解析式为y =kx +b ,由题意得:⎩⎨⎧-2=b1=-2k +b ,解之得:⎩⎪⎨⎪⎧k =-32b =-2,所以直线的解析式为:y =-32x -2.故选C .点拨:本题考查图形的旋转及一次函数的解析式,关键是能够根据图形的旋转找出点的坐标,然后根据点的坐标来确定直线的解析式,求函数解析式,常用方法是待定系数法,把点的坐标代入解析式,然后组成关于k 与b 的方程组求解.总结提升平面直角坐标系中的旋转问题,若旋转角是180°,则可按中心对称图形问题来解决.有些题目的旋转角为90°,和少量的旋转角为30°,45°,60°,120°,150°等的问题,解答这类问题时除了要构造旋转本身形成的全等三角形外,一般还要通过向坐标轴作垂线来构造含有特殊角的直角三角形,利用特殊角的边角关系和勾股定理求解.例题如图,△ABO中,AB⊥OB,OB=3,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A. (-1,-3)B. (-1,-3)或(-2,0)C. (-3,-1)或(0,-2)D. (-3,-1)解:∵△ABO中,AB⊥OB,OB=3,AB=1,∴OA=2,∴∠AOB=30°.如图1,当△ABO 绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°-∠AOB-∠BOC=150°-30°-90°=30°,则易求A1(-1,-3);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则易求A1(0,-2).综上所述,点A1的坐标为(-1,-3)或(-2,0),故选B.解析:本题考查了坐标与图形的变化——旋转,解题时注意两点,一是未指明旋转方向的问题需分类讨论,以防错解;二是图形中一些特殊角往往和旋转角交织在一起,解题时需正确区分它们.巩固训练一、选择题1. 在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A’B’O,则点A的对应点A’的坐标及AA’的长分别为()A. (2,3),26B. (2,3),6C. (-3,2),26D. (-3,2),6*2. 如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO 'B ',则点B '的坐标是( )A. (3,4)B. (7,3)C. (7,4)D. (4,5)*3. 将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90至△A 'OB '的位置,点B 的横坐标为2,则点A '的坐标为( )xyOAB A'B'A. (1,1)B. (2, 2)C. (-1,1)D. (-2,2)**4. 如图所示,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2012的坐标是( )xy ABCDPA. (2010,2)B. (2010,-2) C . (2012,2) D. (2012,-2)二、填空题5. 如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.6. 如图,在直角坐标系中,△ABC各顶点的坐标分别为A(0,3)、B(-1,0)、C(1,0),若△DEF各顶点的坐标分别为D(3,0),E(0,1),F(0,-1),则△DEF由△ABC 绕O点顺时针旋转__________度得到.7. 如图,在方格纸上建立的平面直角坐标系中,A,B是格点,若△A′B′O与△ABO关于点O成中心对称,则AA′的距离为__________.**8. 如图,矩形ABCD的四个顶点的坐标分别为A(1,0),B(5,0),C(5,3),D(1,3),边CD上有一点E(4,3),过点E的直线与AB交于点F,若直线EF平分矩形的面积,则点F的坐标为__________.三、解答题9. 如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标. *10. 如图,已知A (—3,—3),B (—2,—1),C (—1,—2)是直角坐标平面上的三点.y x-1-2-3-4-55432112345-1-2-3-4-5OAB C(1)请画出ΔABC 关于原点O 对称的ΔA 1B 1C 1,(2)请写出点B 关于y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在ΔA 1B 1C 1内部,指出h 的取值范围.11. 在平面直角坐标系中,四边形ABCD 的位置如图所示,解答下列问题:(1)将四边形ABCD 先向左平移4个单位,再向下平移6个单位,得到四边形A 1B 1C 1D 1,画出平移后的四边形A 1B 1C 1D 1;(2)将四边形A 1B 1C 1D 1绕点A 1逆时针旋转90°,得到四边形A 1B 2C 2D 2,画出旋转后的四边形A 1B 2C 2D 2,并写出点C 2的坐标.*12. △ABC 在平面直角坐标系xOy 中的位置如图所示.y x-1-2-35432112345-1-2O67ABC(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1.(2)将△A 1B 1C 1向右平移5个单位,作出平移后的△A 2B 2C 2.(3)在x 轴上求作一点P ,使P A 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果).参考答案一、选择题1. A 解析:将△ABO 绕点O 按顺时针方向旋转90°得△A ’B ’O ,如下图:所以A ’(2,3),AA ’=52+12=26.*2. B 解析:令y =0,则y =-43x +4=0,解得x =3,即点A 的坐标为(3,0).令x =0,则y =4,即点B 的坐标为(0,4),∴OB =4=O 'B ',OA =3=O 'A ,点B '的横坐标为:3+4=7,纵坐标为3,∴点B '的坐标是(7,3).*3. C 解析:在Rt △AOB 中,OB =2,由勾股定理可得OA =2,所以OA '=2,过A '作A 'C ⊥y 轴于点C ,在Rt △A 'OC 中,∠A 'OC =45°,由勾股定理可得A 'C =1,OC =1,且点A '在第二象限,所以点A '的坐标为(-1,1).**4. C 解析:由题意可知,点P 1(2,0),P 2(2,-2),P 3(-6,0),P 4(4,2),P 5(-2,0),P 6(6,-2),P 7(-10,0),P 8(8,2);….规律如下:像点P 1,P 5,…这样的点横坐标逐个减4,纵坐标都是0;像点P 2、P 6,…这样的点横坐标逐个加4,纵坐标都是-2;像P 3,P 7,…这样的点横坐标逐个减4,纵坐标都是0;像P 4,P 8,…这样的点横坐标逐个加4,纵坐标都是2.因为2012÷4=503,观察P 4(4,2),P 8(8,2),…,得P 2012的坐标是(2012,2),故选C.PP 1P 2P 3P 4xy P 5P 6P 7P 8二、填空题5. (4,2) 解析:可利用旋转的性质,结合全等三角形求解.6. 90 解析:∵△ABC 各个顶点的坐标分别为A (0,3)、B (-1,0)、C (1,0);△DEF 各顶点的坐标分别为D (3,0),E (0,1),F (0,-1),∴旋转对应点为A 和D , B 和E ,C 和F ,∴△DEF 由△ABC 绕O 点顺时针旋转90°得到.7. 210 解析:因为△A ′B ′O 与△ABO 关于点O 成中心对称,所以A ′的坐标为(3,-1),AO =32+12=10,由中心对称图形的特征可知AA ′=210.**8. (2,0) 解析:∵EF 平分矩形ABCD 的面积,∴EF 过矩形ABCD 的对称中心,点E 、F 是对应点,∴CE =AF .∵A (1,0),B (5,0),C (5,3),D (1,3),E (4,3),∴点F 的坐标为(2,0).三、解答题9. 解:(1)如图所示:点A 1的坐标为(2,-4);(2)如图所示,点A 2的坐标为(-2,4).*10. 解:(1)作图如下:(2)点B 2的坐标为(2,-1),h 的取值范围是2<h <3.5.y x-1-2-3-4-55432112345-1-2-3-4-5OAB CA 1B 1C 111. 解:(1)四边形A 1B 1C 1D 1如图所示;(2)四边形A 1B 2C 2D 2如图所示,C 2(1,-2).*12. 解:(1)如图所示:(2)如图所示:(3)如图所示:作出A 1关于x 轴的对称点A ′,连接A ′C 2,交x 轴于点P ,可得P 点坐标为:(3,0).y x-1-2-35432112345-1-2O67ABCA 1B 1C 1A 2B 2C 2A'P。

(完整)位置及坐标知识点总结及经典题型归纳,推荐文档

(完整)位置及坐标知识点总结及经典题型归纳,推荐文档

位置与坐标知识点一确定位置1.平面内确定一个物体的位置需要2个数据。

2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。

(2)方位角距离定位法:方位角和距离。

(3)经纬定位法:它也需要两个数据:经度和纬度。

(4)区域定位法:只描述某点所在的大致位置。

如“解放路22号”。

知识点二平面直角坐标系1.定义在平面内,两条互相_____且具有公共_____的数轴组成平面直角坐标系.其中水平方向的数轴叫____ 或______,向__ 为正方向;竖直方向的数轴叫_______或______,向____为正方向;两条数轴交点叫平面直角坐标系的_____.2.平面内点的坐标对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的___ _坐标,y轴上的垂足对应的数b叫P的_______坐标。

有序数对(a,b),叫点P的坐标。

若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系内点的坐标特征:(1)坐标轴把平面分隔成四个象限。

根据点所在位置填表点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点______坐标为0;②在y轴上的点______坐标为0 .(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征①点P(a,b)关于x轴对称点P1_____________;②点 P(a,b)关于y轴对称点P2_____________;③点P(a,b)关于原点对称点P3____________.4.平行于x轴的直线上的点______坐标相同;平行于y轴的直线上的点_______坐标相同.知识点三轴对称与坐标变化(1)若两个图形关于x轴对称.则对应各点横坐标________,纵坐标互为___________.(2)若两个图形关于y轴对称,则对应各点纵坐标________,横坐标互为___________.(3)将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标____,纵坐标加上(或减去)n个单位.(4)将一个图形向右(或向左)平移n(n>O)个单位,则图形上各点纵坐标____,横坐标加上(或减去)n个单位.(5)纵坐标不变,横坐标分别变为原来的a倍,则图形为原来横向伸长的a倍(a>1)或图形横向缩短为原来的a倍(0<a<1)。

初一数学图形与坐标试题答案及解析

初一数学图形与坐标试题答案及解析

初一数学图形与坐标试题答案及解析1.点P(-2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.【考点】点的坐标2.已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a= 。

【答案】-5【解析】根据第四象限内点的纵坐标是负数解答即可.【考点】坐标与图形性质3.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.【答案】(1)图形见解析;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).【解析】(1)以火车站向左2个单位,向下1个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系写出体育场、市场、超市的坐标即可.试题解析:(1)建立平面直角坐标系如图所示;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).【考点】坐标确定位置.4.点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,-8)B.(1,-2 )C.(-6,-1 )D.( 0 ,-1)【答案】C.【解析】点A(-3,-5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(-3-3,-5+4);则点B的坐标为(-6,-1).故选C.【考点】坐标与图形变化——平移.5.下列各点中,在第二象限的点是()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)【答案】C.【解析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故符合此条件的只有(-2,3).故选C.【考点】平面直角坐标系中各象限点的特征.6.已知点P ()在轴上,则P点的坐标为.【答案】(3,.0).【解析】∵点P ()在轴上,∴.∴.∴P点的坐标为(3,.0).【考点】轴上点的特征.7.在平面直角坐标系中,点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵点(-1,m2+1)它的横坐标-1<0,纵坐标m2+1>0,.∴符合点在第二象限的条件,故点(-1,m2+1)一定在第二象限.故选B.【考点】点的坐标.8.某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.8【答案】D【解析】如图,可选择的不同路线条数有:A→C→D→G→H→B;A→C→D→G→N→B;A→C→F→G→H→B;A→C→F→G→N→B;A→C→F→M→N→B;A→E→F→G→H→B;A→E→F→G→N→B;A→E→F→M→N→B.共有8条不同路线.9.丽丽家的坐标为(﹣2,﹣1),红红家的坐标为(1,2),则红红家在丽丽家的()A.东南方向B.东北方向C.西南方向D.西北方向【答案】B【解析】根据已知点坐标得出所在直线解析式,进而根据图象与坐标轴交点坐标得出两家的位置关系.解:∵丽丽家的坐标为(﹣2,﹣1),红红家的坐标为(1,2),∴设过这两点的直线解析式为:y=ax+b,则,解得:,∴直线解析式为:y=x+1,∴图象过(0,1),(﹣1,0)点,则红红家在丽丽家的东北方向.故选:B.点评:此题主要考查了坐标确定位置,根据已知得出两点与坐标轴交点坐标是解题关键.10.已知点A(1,2a+2)到x轴的距离是到y轴距离的2倍,则a的值为.【答案】0或﹣2【解析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出方程,然后求解即可.解:∵点A(1,2a+2)到x轴的距离是到y轴距离的2倍,∴|2a+2|=2×1,∴2a+2=2或2a+2=﹣2,解得a=0或a=﹣2.故答案为:0或﹣2.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度并列出绝对值方程是解题的关键.11.如图,“马”所处的位置为(2,3),其中“马”走的规则是沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是.(2)写出“马”下一步可以到达的所有位置的坐标.【答案】(1)(5,3)(2)【解析】(1)根据象在马的左边3个单位,结合图形写出即可;(2)根据网格结构找出与马现在的位置成“日”字的点,然后写出即可.解:(1)(5,3);(2)如图,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).点评:本题考查了坐标确定位置,熟练掌握网格结构,类比点的坐标的确定方法求解是解题的关键.12.点P(3-a,a-1)在y轴上,则点Q(2-a,a-6)在第______象限。

第3章 图形与坐标1(解析版)初中数学

第3章 图形与坐标1(解析版)初中数学

《阳光测评》2020-2021学年下学期八年级数学单元基础卷【湘教版】第3章图形与坐标(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列所给出的点中,在第二象限的是()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【答案】D【解答】解:A、(3,2)在第一象限,故本选项不合题意;B、(3,﹣2)在第四象限,故本选项不合题意;C、(﹣3,﹣2)在第三象限,故本选项不合题意;D、(﹣3,2)在第二象限,故本选项符合题意.故选:D.【知识点】点的坐标2.过点A(﹣3,2)和B(﹣3,5)作直线,则直线AB()A.与x轴平行B.与y轴平行C.与y轴相交D.与x轴,y轴均相交【答案】B【解答】解:∵A(﹣3,2)、B(﹣3,5),∴横坐标相等,纵坐标不相等,则过A,B两点所在直线平行于y轴,故选:B.【知识点】坐标与图形性质3.若点A(m,﹣2)与点B(3,n)关于原点对称,则m+n=()A.﹣1B.1C.﹣5D.5【答案】A【解答】解:∵点A(m,﹣2)与点B(3,n)关于原点对称,∴m=﹣3,n=2,∴m+n=﹣3+2=﹣1,故选:A.【知识点】关于原点对称的点的坐标4.已知点P(2021,﹣2021),则点P关于x轴对称的点的坐标是()A.(﹣2021,2021)B.(﹣2021,﹣2021)C.(2021,2021)D.(2021,﹣2021)【答案】C【解答】解:∵点P(2021,﹣2021),∴点P关于x轴对称的点的坐标是(2021,2021).故选:C.【知识点】关于x轴、y轴对称的点的坐标5.将点P(﹣6,﹣9)向右平移1个单位,再向下平移2个单位后得到P′,则P′坐标为()A.(﹣6,﹣8)B.(﹣6,﹣11)C.(﹣5,﹣9)D.(﹣5,﹣11)【答案】D【解答】解:点P(﹣6,﹣9)向右平移1个单位,再向下平移2个单位后得到P′,则P′坐标为(﹣6+1,﹣9﹣2),即(﹣5,﹣11),故选:D.【知识点】坐标与图形变化-平移6.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【答案】C【解答】解:因为点A(4,3)经过某种图形变化后得到点B(﹣3,4),所以点A绕原点逆时针旋转90°得到点B,故选:C.【知识点】坐标与图形变化-旋转、关于x轴、y轴对称的点的坐标7.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)【答案】D【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选:D.【知识点】坐标与图形变化-对称8.2020年9月16日,云南省瑞丽市共诊断2例新冠肺炎确诊病例,均为缅甸输入.下列表述,能确定瑞丽位置的是()A.云南西部B.云南与缅甸交界处C.东经97.85°D.东经97.85°,北纬24.01°【答案】D【解答】解:A、云南西部,位置不确定,故本选项错误;B、云南与缅甸交界处,位置不确定,故本选项错误;C、东经97.85°,位置不明确,故本选项错误;D、东经97.85°,北纬24.01°,有序数对,位置明确,故本选项正确.故选:D.【知识点】坐标确定位置9.下列说法中:①点(1,a)一定在第四象限;②坐标轴上的点不属于任一象限;③横坐标为零的点在y轴上,纵坐标为零的点在x轴上;④直角坐标系中,在y轴上的点到原点的距离为5的点的坐标是(0,5),正确的有()A.1个B.2个C.3个D.4个【答案】B【解答】解:①中,a>0时点就不在第四象限,故说法错误;②坐标轴上的点不属于任一象限,说法正确;③横坐标为零的点在y轴上,纵坐标为零的点在x轴上,说法正确;④在y轴上的点到原点的距离为5的点的坐标是(0,5)也可以是(0,﹣5),所以说法错误.②③两种说法正确.故选:B.【知识点】两点间的距离公式10.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0.0),A9(5.0),依据图形所反映的规律,则A102的坐标为()A.(2,25)B.(2,26)C.(,﹣)D.(,﹣)【答案】B【解答】解:根据题意可得,A2的坐标(2,1),A6的坐标(2,2),A10的坐标(2,3),…,∵102=25×4+2,∴A102的纵坐标为(102+2)÷4=26∴A102的坐标(2,26).故选:B.【知识点】规律型:点的坐标二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.已知点A(﹣3,1),点B在y轴正半轴上,且AB=5,则点B的坐标为:.【答案】(0,5)【解答】解:∵点B在y轴正半轴上,设点B的坐标为(0,x),AB=5,∴=5,解得x=5或﹣3,∵点B在y轴正半轴上,∴x=5.故答案为(0,5).【知识点】两点间的距离公式12.若点P(2x,x﹣3)到两坐标轴的距离之和为5,则x的值为.【解答】解:当点P在第一象限,x﹣3>0,解得:x>3,且2x+x﹣3=5,解得:x=<3,不合题意;当点P在第二象限,,不等式组无解,不合题意;当点P在第三象限,,不等式组的解集为:x<0,则﹣2x﹣x+3=5,解得:x=﹣;当点P在第四象限,则,不等式组的解集为:0<x<3,故2x﹣(x﹣3)=5,解得:x=2,当点P在x轴上,则x﹣3=0,解得:x=3,此时2x=6,不合题意;当点P在y轴上,则2x=0,解得:x=0,此时|x﹣3|=3,不合题意;综上所述:x=﹣或x=2.【知识点】点的坐标13.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为.【答案】(2013,2012)【解答】解:设A n(x,y),∵当n=1时,A1(1,0),即x=n=1,y=1﹣1=0,当n=2时,A2(2,3),即x=n=2,y=2+1=3;当n=3时,A3(3,2),即x=n=3,y=3﹣1=2;当n=4时,A4(4,5),即x=n=4,y=4+1=5;…∴当点的位置在奇数位置横坐标与下标相等,纵坐标减1,当点的位置在偶数位置横坐标与下标相等,纵坐标加1,∴A2013(x,y)的坐标是(n,n﹣1)∴点A2013的坐标为(2013,2012).故答案为:(2013,2012).【知识点】规律型:点的坐标14.已知A、E两点的坐标分别是(2,﹣3)和(2,3),则下面结论:(1)A、E两点关于x轴对称;(2)A、E两点关于y轴对称;(3)A、E两点关于原点对称,其中正确的是(填序号)【答案】(1)【解答】解:由A、E两点的坐标分别是(2,﹣3)和(2,3),得A、E两点关于x轴对称,故答案为:(1).【知识点】关于原点对称的点的坐标、关于x轴、y轴对称的点的坐标15.如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为.【解答】解:∵点D的坐标为(1,),∴AD==2,∵四边形ABCD为菱形,∴CD=AD=2,CD∥AB,∴C点坐标为(3,).故答案为(3,).【知识点】坐标与图形性质、菱形的性质16.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为.【答案】(8,3)【解答】解:由图知A点的坐标为(3,6),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′的坐标为(8,3).【知识点】坐标与图形变化-旋转三、解答题(本大题共7小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P在第一象限,且到两坐标轴的距离相等,求P点的坐标.【解答】解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P在第一象限,且到两坐标轴的距离相等,∴8﹣2m=m﹣1,解得:m=3,∴P(2,2).【知识点】点的坐标18.(1)A(1,﹣2)、B(﹣2,2)两点间的距离为;(2)C(﹣5,0)、D(3,0)两点间的距离为;(3)E(0,3)、F(0,9)两点间的距离为.【答案】【第1空】5【第2空】8【第3空】6【解答】解:(1)AB==5.故答案是:5;(2)CD=|﹣5﹣3|=8;故答案是:8;(3)EF=|3﹣9|=6.故答案是:6.【知识点】两点间的距离公式19.已知点A(2,m),B(n,﹣5),根据下列条件求m,n的值.(1)A,B两点关于y轴对称;(2)AB∥y轴.【解答】解:(1)根据轴对称的性质,得m=﹣5,n=﹣2;(2)根据平行线的性质,得m≠﹣5,n=2.【知识点】关于x轴、y轴对称的点的坐标20.已知四边形ABCD各顶点的坐标分别是A(0,0)、B(1,2)、C(5,4)、D(7,0).(1)建立平面直角坐标系,并画出四边形ABCD;(2)求四边形ABCD的面积.【解答】解:(1)如图所示,四边形ABCD即为所求;(2)如图所示,过B作BE⊥AD于E,作CF⊥AD于F,则四边形ABCD的面积=×1×2+×(2+4)×4+×2×4=17.【知识点】坐标与图形性质21.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.【答案】【第1空】0【第2空】1【第3空】1【第4空】0【第5空】6【第6空】0【解答】解:(1)由图可知,∴A1(0,1),A3(1,0),A12(6,0);故答案为:0,1;1,0;6,0;(2)∵n是4的倍数,∴根据(1)OA n=n÷2=,∴点A n的坐标(,0),∴A n﹣1(﹣1,0),A n+1(,0),A n+2(+1,1);(3)∵100÷4=25,∴100是4的倍数,∴A100(50,0),∵101÷4=25…1,∴A101与A100横坐标相同,∴A101(50,1),∴从点A100到点A101的移动方向与从点O到A1的方向一致,为从下向上.【知识点】规律型:点的坐标22.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,求平移后三个顶点的坐标.【解答】解:由题意可知此题平移规律是:(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).【知识点】坐标与图形变化-平移23.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)请你具体说明△DEF是△ABC经过如何变换得到的图形;(3)若点P(2a﹣12,﹣3a)与点Q(3b,2b+5)也是通过上述变换得到的一对对应点,求a、b的值.【解答】解:(1)A(2,3),D(﹣2,﹣3);B(1,2),E(﹣1,﹣2);C(3,1),F(﹣3,﹣1),这三组对应点的横纵坐标都互为相反数;(2)△DEF是由△ABC绕原点O旋转180°得到;(3)根据题意得2a﹣12+3b=0,﹣3a+2b+5=0,解得a=3,b=2.【知识点】坐标与图形变化-旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形与坐标
1.若点A的坐标是(-3,5),则它到
x 轴的距离是_______,到y 轴的距离是______
2.若点B在x 轴下方,y 轴左侧,并且到
x 轴、y 轴距离分别是2、4个单位长度,
则点B的坐标是_________
3.点P到x 轴、y 轴的距离分别是2、1,
则点P的坐标可能为______________________ 4.小明位与广场的北偏西30°方向上,距离广场3 千米,则广场的位置是在小明的_______________________
5.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为
6.点(3,-2)在第_____象限;点(-1.5,-1)
在第_______象限;点(0,3)在____轴上;
7.点A 在x 轴上,距离原点4个单位长度,则A 点的坐标是 _______________。

8.点 M (- 8,12)到 x 轴的距离是_________,
到 y 轴的距离是________.
9.若点P 在第三象限且到x 轴的距离为 2 ,
到y 轴的距离为1.5,则点P 的坐标是________。

10.点A (1-a ,5),B (3 ,b )关于y 轴对称,
则a=___,b=____。

1.△ABC 三个顶点A 、B 、C 的坐标分别为
A (2,-1),
B (1,-3),
C (4,-5)
(1)在直角坐标系中画出△ ABC ;
2)求三角形的三边长,判断三角形形状;
(3)把 向右平移4个单位,再向下平移3个单位,恰好得到△ ABC ,试写出△ A 1B 1C 1三个顶点的坐标,并在直角坐标系中描出这些点;
4)求出△ A 1B 1C 1的面积。

2.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.
(1)填写下列各点的坐标:A 1(____,_____),
A 3(____,_____),A 12(____,____);
111A B C
(2)写出点An的坐标(n是正整数);
(3)指出蚂蚁从点A100到A101的移动方向.
分析:(1)由图形可直接写出A4、A8、A12坐标;(2)由(1)的结论不难确定点A4n的坐标(n是正整数);(3)由(2)的规律可得点A100到A101的移动方向是向上的.
解:⑴A1(0,1) A3(1,0) A12(6,0) ;⑵A4n(2n,0);⑶由(2)的规律可知:点A100于属A4n(2n,0)类中的点,从这些点移动到下一点都是向上的,所以点A100到A101的移动方向是向上的.
点评:本题是在平面直角坐标系中以点的有规律的(平行)移动为情境,探究点的坐标变化规律来解决问题.问题设计的起点比较直观,完成的要求具有梯度性、上升性,符合一般的认知特点.难度中等.
3.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求P点的坐标。

分析:由题意可知点P在BC上运动,所以P点纵坐标是4,横坐标等于CP的长度。

OP=5时易求出CP=3,所以P(3,4),DP=5时易求出CP=2或8,所以P(2,4)或(8,4)
解:P(3,4)或(2,4)或(8,4)
点评:本题主要考查等腰三角形的存在性问题,涉及到等腰三角形、矩形、勾股定理等知识,此题的关键在于分情况讨论,同时要注意“△ODP是腰长为5的等腰三角形”这一条件。

难度中等。

1、已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为。

2、把以(-3,7),(-3,-2)为端点的线段向左平移5个单位,所得像上任意一点的坐标可表示为
3、把平行与X轴的直线(x,-3)向上移动2个单位得到
4、已知长方形在平面直角坐标系中三个顶点坐标是(-3,-3),(-3,6),(5,6),求第四个顶点的坐标__________
5.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 ,
则点P的位置在____________。

6.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()
(A)平行于x轴(B)平行于y轴
(C)经过原点(D)以上都不对
7.若点(a,b-1)在第二象限,则a的取值范围是_____,b的取值范围8.实数x,y满足(x-1)2+ |y| = 0,则点P(x,y)在()
(A)原点(B)x轴正半轴
(C)第一象限(D)任意位置。

相关文档
最新文档