八年级数学位置与坐标知识点及测验题

合集下载

位置与坐标(常考知识点分类)-八年级数学上册基础知识专项突破讲与练(北师大版)

位置与坐标(常考知识点分类)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题3.13位置与坐标(常考知识点分类专题)一、单选题【考点1】确定位置➼➻➸用有序对表示位置1.在某个电影院里,如果用()2,15表示2排15号,那么5排9号可以表示为()A .()5,5B .()9,9C .()5,9D .()9,52.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A B C ,,的位置如图所示,每相邻两个圆之间距离是1km ,小圆半径是1km .若小艇B 相对于游船的位置可表示为()602,-︒,小艇C 相对于游船的位置可表示为()0,1︒-向东偏为正,向西偏为负,下列关于小艇A 相对于游船的位置表示正确的是()A .小艇()303A ︒,B .小艇()303,A -︒C .小艇()303,A ︒-D .小艇()603,A ︒【考点2】确定位置➼➻➸用有序对表示路线3.从2,3,5三个数中任选两个组成有序数对,一共可以组成有序数对有()A .3对B .4对C .5对D .6对4.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A 表示.某人由点B 出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A .()()()2,22,55,6→→B .()()()2,22,56,5→→C .()()()2,26,26,5→→D .()()()()22236365→→→,,,,【考点3】平面直角坐标系➼➻➸写出点的坐标5.如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为()2,2-,则“炮”所在位置的坐标为().A .()3,1B .()1,3C .()4,1D .()3,26.如图所示,点B 的坐标是()A .()2,1B .()2,1-C .()1,2-D .()2,2-【考点4】平面直角坐标系➼➻➸点到坐标轴的距离7.点(2,3)p -到y 轴的距离等于()A .2-B .3C .2D .18.在平面直角坐标系中,若点()2,6A x x --到x 轴、y 轴的距离相等,则x 的值是()A .2B .6-C .2-D .2或6-【考点5】平面直角坐标系➼➻➸点所在象限9.在平面直角坐标系中,下列点一定在第二象限内的点是在()A .(),1m -B .()2,1-C .()2,m -D .()2,1-10.在平面直角坐标系中,点()211P m +-,一定在()A .第一象限B .第二象限C .第三象限D .第四象限【考点6】平面直角坐标系➼➻➸点所在象限➼➻➸求参数11.若点()2,2A x --在平面直角坐标系中的第二象限,则x 的值可能是()A .0B .2C .4D .4-12.如果(),P a b ab +在第二象限,那么(),Q a b -点在()A .第一象限B .第二象限C .第三象限D .第四象限【考点7】平面直角坐标系➼➻➸描点13.在平面直角坐标系中,对于坐标()3,2P -,下列说法错误的是()A .点P 的纵坐标是2B .它与点()2,3-表示同一个点C .点P 到y 轴的距离是3D .()3,2P -表示这个点在平面内的位置14.在平面直角坐标系的第四象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是()A .()3,4B .()4,3--C .()4,3-D .()3,4-【考点8】平面直角坐标系➼➻➸坐标与图形15.平面直角坐标系中有两点()30A ,和()04B ,,则这两点之间的距离是()A .3B .4C .5D .1216.如图,已知点()()6,0,0,8A B ,点P 在y 轴负半轴上,若将PAB 沿直线AP 折叠,使点B 的对应点恰好落在x 轴正半轴上的点B '处,则点P 的坐标是()A .()0,10-B .()0,12-C .()0,14-D .()0,16-【考点9】平面直角坐标系➼➻➸平面直角坐标系中的规律问题17.如图,在平面直角坐标系中,()11,2A -,()22,0A ,()33,2A ,()44,0A ,…根据这个规律,点2023A 的坐标是()A .()2022,0B .()2023,0C .()2023,2D .()2023,2-18.在平面直角坐标系中,对于平面内任意一点(),x y ,若规定以下两种变换:①()(),,f x y y x =.如()()3,44,3f =;②()(),,g x y y x =--.如()()3,44,3g =--.按照以上变换有:()()()3,43,4f g =--,那么()()4,5g f -等于()A .()5,4-B .()4,5-C .()4,5-D .()5,4-【考点10】轴对称与坐标变化➼➻➸点的平移19.点A 坐标为()23-,,若将点A 向右移动两个单位长度,则点A 的坐标为()A .()2,1-B .()2,5-C .()4,3-D .()03,20.已知在平面直角坐标系中,点A 的坐标为()12,,将点A 向右平移1个单位,向下平移3个单位,平移后得到的对应点B 的坐标为()A .()21-,B .()25,C .()15-,D .()1,1--【考点11】轴对称与坐标变化➼➻➸坐标与图形的变化➼➻➸轴对称21.如图,已知()1,3A ,将线段OA 作关于y 轴对称得到OA ',则OA '的长度是()A B .3C .D .122.在平面直角坐标系中,已知()43A ,,A '与A 关于直线1x =轴对称,则A '的坐标为()A .()43-,B .()41-,C .()23-,D .()43,-【考点12】轴对称与坐标变化➼➻➸坐标与图形的变化➼➻➸轴对称综合题23.如图,在平面直角坐标系中,点(2226())A B -,,,,点P 为x 轴上一点,当PA PB +的值最小时,三角形PAB 的面积为()A .1B .6C .8D .1224.如图,在长方形ABCD 中,2AB CD ==,3BC AD ==,F 是DC 边的中点,E 是BC 边上一动点,则AE EF +的最小值是()A .B .5C .D .4二、填空题【考点1】确定位置➼➻➸用有序对表示位置25.下午1时室外温度为35C ︒,我们记作()13,35,则晚上9时室外温度为26C ︒,应记作.26.某人在车间里工作的时间t 与工作总量y 组成有序数对(),t y ,若他的工作效率是不变的,其中两组数对分别为()4,80,()7,y ,则y =.【考点2】确定位置➼➻➸用有序对表示路线27.我们规定向东和向北方向为正,如向东走4米,向北走走6米,记为(4,6),则向西走5米,向北走3米,记为;28.我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作()4,6,则向西走5米,再向北走3米记作;数对()2,6--表示.【考点3】平面直角坐标系➼➻➸写出点的坐标29.已知点()3,P m 到x 轴的距离为4,则点P 的坐标为.30.点()3,31A a a --+在y 轴上,则=a .【考点4】平面直角坐标系➼➻➸点到坐标轴的距离31.点M 在x 轴上方,距离x 轴3个单位长度,距离y 轴1个单位长度,则点M 的坐标是32.点(),2A a a +在第三象限,到x 轴的距离为5,则点A 的坐标为.【考点5】平面直角坐标系➼➻➸点所在象限33.点A 的坐标()x y ,,满足()220x ++,则点A 的位置在第象限.34.平面直角坐标系内,点()P a b ,在第二象限,则点()1Q b a --,在第象限.【考点6】平面直角坐标系➼➻➸点所在象限➼➻➸求参数35.若点),(37P m m +-是y 轴上的点,则点P 的坐标是.36.在平面直角坐标系中,点()624P m m --,在y 轴上,则m 的值是.【考点7】平面直角坐标系➼➻➸描点37.在平面直角坐标系中,点A 的坐标为()4,3-.若线段AB y ∥轴,且AB 的长为5,则点B 的坐标为.38.已知点()22A ,,()56B ,,()48C ,,那么ABC S = .【考点8】平面直角坐标系➼➻➸坐标与图形39.已知()3,4A -,(),4B n ,若6AB =,则n =.40.(1)若点()3,2P x x --在第二象限,则x 的取值范围是;(2)如图,在长方形ABCD 中,()3,2A -,()3,2B ,()3,1C -,则D 的坐标为.【考点9】平面直角坐标系➼➻➸平面直角坐标系中的规律问题41.如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点()10,1P ,()21,1P ,()31,0P ,()41,1P -,()52,1P -,…,则2022P 的坐标是.42.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A B C D A ----⋯循环爬行,其中A 点坐标为()11-,,B 的坐标为()11--,,C 的坐标为()13-,,D 的坐标为()13,,当蚂蚁爬了2015个单位时,它所处位置的坐标为.【考点10】轴对称与坐标变化➼➻➸点的平移43.已知点()1,2A -,把点A 向右平移3个单位长度后的坐标是.44.将点()3,3A -先向右平移2个单位长度后,再向下平移1个单位长度得到点B ,则点B 的坐标为.【考点11】轴对称与坐标变化➼➻➸坐标与图形的变化➼➻➸轴对称45.已知点(),2021A a 和点()2022,B b 关于y 轴对称,则a b +=.46.在平面直角坐标系中,已知()3,3A -、()5,3B ,在x 轴上有一动点C ,则CA CB +最小值为.【考点12】轴对称与坐标变化➼➻➸坐标与图形的变化➼➻➸轴对称综合题47.如图,已知在等腰三角形ABC 中,D 为BC 的中点,12AD =,5BD =,13AB =,点P 为AD 边上的动点,点E 为AB 边上的动点,则PE PB +的最小值为.48.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,点M ,N 分别是线段BD 、BC 上一动点,AB BD >且10ABC S =△,5AB =,则CM MN +的最小值为.参考答案1.C【分析】根据有序数对表示的意义第一个数表示“第几排”,第二个数表示“第几号”,即可求解.解: ()2,15表示2排15号,∴第一个数表示“第几排”,第二个数表示“第几号”,∴5排9号可以表示()5,9.故选:C .【点拨】本题考查了有序数对的实际意义,理解有序数对的意义是解题的关键.2.A【分析】根据向东偏为正,向西偏为负,可得横坐标,根据每两个圆环之间距离是1千米,可得答案.解:图中小艇A 相对于游船的位置表示()303︒,,故选:A .【点拨】本题考查了坐标确定位置,利用方向角表示横坐标,利用圆环间的距离表示纵坐标,注意向东偏为正,向西偏为负.3.D【分析】分别从2、3、5三个数字中选出两个组成有序实数对,然后计算出总数目即可.解:可以组成()23,,()25,,()32,,()35,,()52,,()53,共6个有序实数对,故选D .【点拨】本题考查函数的基础知识,熟练掌握有序实数对的意义及组合方法是解题关键.4.A【分析】根据图象一一判断即可解决问题.解:A 选项:由图象可知()()()2,22,55,6→→不能到达点A ,正确.B 选项:由图象可知()()()2,22,56,5→→能到达点A ,与题意不符.C 选项:由图象可知()()()2,26,26,5→→到达点A ,与题意不符.D 选项:由图象可知(()()()()22236365→→→,,,,到达点A 正确,与题意不符.故选:A .【点拨】本题考查坐标确定位置、解题的关键是理解点与有序数对是一一对应关系,属于中考常考题型.5.A【分析】根据已知条件,确定平面直角坐标系原点,最后即可求出答案.解: “車”所在位留的坐标为()2,2-,∴确定点O 即是平面直角坐标系的原点,且每一格的单位长度是1,∴“炮”所在位置的坐标为()3,1.故选:A .【点拨】本题考查了平面直角坐标系,解题的关键在于根据已知条件确定原点.6.B【分析】直接根据点B 的位置写出坐标即可.解:点B 的坐标是()2,1-.故选:B .【点拨】此题考查了点的坐标,解题的关键是掌握平面直角坐标系中点的坐标的定义.7.C【分析】点到y 轴的距离等于点的横坐标的绝对值,据此即可得到答案.解:点(2,3)p -到y 轴的距离为22-=,故选C .【点拨】本题考查了点到坐标轴的距离,掌握点到y 轴的距离是点的横坐标的绝对值是解题关键.8.D【分析】根据点()2,6A x x --到两条坐标轴的距离相等,列出方程求解即可.解:∵点()2,6A x x --到两坐标轴的距离相等,∴26x x -=-,即26x x -=-或26x x -=-,解得2x =或6x =-.故选:D .【点拨】本题考查了坐标与图形的性质,根据点到两坐标轴的距离相等列出方程是解题的关键.9.B【分析】根据第二象限的点的坐标特点即可得到答案.解:根据第二象限的点横坐标为负,纵坐标为正,得:点()2,1-符合题意.故选:B .【点拨】本题考查各个象限内点的横纵坐标的正负特点,熟记各象限的点坐标特点是关键.10.D【分析】先证明2110m +≥>,再根据每个象限内点的坐标特点即可得到答案.解:∵20m ≥,∴2110m +≥>,∴点()211P m +-,一定在第四象限,故选D .【点拨】本题主要考查了判断点所在的象限,熟知每个象限内点的坐标特点是解题的关键:第一象限()++,;第二象限()-+,;第三象限()--,;第四象限()+-,.11.C【分析】根据第二象限点的坐标特征,横坐标为负,纵坐标为正即可列不等式求解.解:∵点()2,2A x --在平面直角坐标系中的第二象限,∴2x ->0,∴x >2∵42>,02<,22=,42-<,∴C 符合题意,A 、B 、D 不符合题意,故选C .【点拨】本题考查了平面直角坐标系,掌握平面直角坐标系各象限的特征是解题的关键.12.D【分析】根据象限的特点,可知,a b 的符号,由此即可求解.解:(),P a b ab +在第二象限,∴00a b ab +,,由0ab >得,,a b 同号,由0a b +<得,0,0a b <<,∴0a ->,∴点(),Q a b -在第四象限,故选:D .【点拨】本题主要考查平面直角坐标系的特点,掌握象限的特点,点坐标中符号的判定是解题的关键.13.B【分析】根据点的坐标特征依次判断即可.解: 点()3,2P -的纵坐标为2,故A 不符合题意;点()3,2-和点()2,3-不是一个点,故B 符合题意;点P 到y 轴的距离为3,故C 不符合题意;()3,2P -表示这个点在平面内的位置,故D 不符合题意,故选:B .【点拨】本题考查了点的坐标,熟练掌握平面直角坐标系内点的坐标特征是解题的关键.14.C【分析】根据点到坐标轴的距离即可得.解: 点M 在第四象限,∴点M 的横坐标大于0、纵坐标小于0,点M 到x 轴的距离为3,到y 轴的距离为4,()4,3M ∴-,故选:C .【点拨】本题考查了点所在的象限、点到坐标轴的距离,熟练掌握点到坐标轴的距离是解题关键.15.C【分析】利用勾股定理进行求解即可.解:∵()30A ,,()04B ,,∴34OA OB ==,,∴5AB ==,故选C .【点拨】本题考查的是坐标与图形,勾股定理的应用,熟练的利用数形结合的方法解题是关键.16.B【分析】根据勾股定理求得AB ,设()0,P t ,0t <,根据折叠的性质得出10AB AB '==,8PB PB t '==-,在Rt POB '△中,勾股定理即可求解.解:∵点()()6,0,0,8A B ,∴6,8OA OB ==,∴10AB ==,∵将PAB 沿直线AP 折叠,使点B 的对应点恰好落在x 轴正半轴上的点B '处,∴10AB AB '==∴10616OB OA AB ''=+=+=,设()0,P t ,0t <,∴8PB PB t'==-在Rt POB '△中,OP t =-,∴()()222168t t -+=-解得:12t =-,∴P 的坐标为()0,12-故选B.【点拨】本题考查了勾股定理与折叠问题,坐标与图形,熟练掌握折叠的性质是解题的关键.17.C【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、⋯、n ,纵坐标依次为2-、0、2、0、⋯,四个一循环,进而求解即可.解:观察图形可知,横坐标依次为1、2、3、4、⋯、n ,纵坐标依次为2-、0、2、0、⋯,四个一循环,∵202345053÷=⋯⋯,∴点2023A 的坐标是()20232,.故选:C【点拨】本题考查了点的坐标规律探究,找到点的坐标变换规律是解本题的关键.18.C【分析】根据题目中的规则进行变换即可得到答案;解:根据题意可得()()4554f -=-,,.∴()()()()455445g f g -=-=-,,,.故选C .【点拨】本题主要考查平面直角坐标系点的变换,读懂题目所给的新规则是解题的关键.19.D【分析】根据点向右平移时,横坐标加上平移的距离,纵坐标不变解答.解:将点(2)A -,3向右移动两个单位长度后得到的点的坐标为(223)-+,,即()03,.故选:D .【点拨】此题考查了点的坐标平移规律:左右平移时,横坐标左减右加;上下平移时,纵坐标上加下减,熟记规律是解题的关键.20.A【分析】让横坐标加1,纵坐标减3即可得到所求点的坐标.解:∵将点()1,2A 向右平移1个单位,向下平移3个单位得到点B ,∴点B 的横坐标为112+=,纵坐标为231-=-.∴点B 的坐标为()21-,.故选:A .【点拨】本题考查了坐标的平移;用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.21.A【分析】根据轴对称的性质可得OA OA '=,然后根据两点间的距离公式求出OA 即可.解:∵将线段OA 作关于y 轴对称得到OA ',∴OA OA '=,∵()1,3A ,∴OA ==∴OA '=故选:A.【点拨】本题考查了轴对称的性质和利用勾股定理求两点间的距离,掌握求解的方法是解题关键.22.C【分析】用平移法将对称轴及点A 的坐标向左移动一个单位,算出此时对称点的坐标,再将对称轴及点A 的坐标向右移动一个单位“复位”,即可求得A '的坐标.解:把A 点和直线1x =,向左移动1个单位得:()33A ',和直线0x =,点()33A ',关于0x =的对称点为()33B -,,把()33B -,再向右平移1个单位得:()23-,,故选:C .【点拨】本题考查轴对称及坐标(系)的平移,解题的关键是把对称轴移到“y 轴”.23.B【分析】如图,作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,连接AP ,此时PA PB +的值最小,进而根据PAB AA B AA P S S S ''=- ,即可求解.解:如图,作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,连接AP ,此时PA PB +的值最小,由图可知,点P 坐标为(-1,0),∵()()())2221(6220A B A P '----,,,,,,,,∴PAB AA B AA P S S S ''=-=114441622⨯⨯-⨯⨯=,故选:B .【点拨】本题考查了轴对称的性质,坐标与图形,掌握轴对称的性质是解题的关键.24.A【分析】作A 关于BC 的对称点A ',连接A E A F '',,过F 作FG AB ⊥于点G ,则AE EF A E EF A F +=+'≥',当A E F '、、三点依次在同直线上时,AE EF A F '+=的值最小,求出此时A F '的值便可.解:作A 关于BC 的对称点A ',连接A E A F '',,过F 作FG AB ⊥于点G ,则321AE A E AD GF AB A B AG DF ''=======,,,,∴A F '=2222'3332A G GF +=+=∵AE EF A E EF A F +=+'≥',∴当A E F '、、三点依次在同直线上时,32AE EF A E EF A F ''+=+==∴AE EF +的最小值为:2故选:A .【点拨】本题考查了轴对称﹣最短路线问题,正确的找出点E A ',的位置是解题的关键.25.()21,26【分析】根据下午1时室外温度为35C ︒,我们记作()13,35,可知时间在前,温度在后.解:因晚上9点时即21点,零下26C ︒为+26C ︒,所以晚上9点时室外温度为零下26C ︒,我们应该记作()21,26.故答案为:()21,26.【点拨】考查类比点的坐标解决实际问题的能力和阅读理解能力.26.140【分析】先根据数对()4,80求出工作效率,然后当7t =时,根据“工效×时间=工作总量”求出y .解:工作效率80420=÷=,当7t =时,工作总量207140y =⨯=,故答案为:140.【点拨】本题考查了有序数对,工作效率、工作时间和工作总量之间的关系,牢记“工效×时间=工作总量”是解题的关键.27.(-5,3)解:∵向东走为+,向北走为+,∴向西走为﹣,向南走为﹣,∴向西走5米,再向北走3米,记作(﹣5,3).28.()5,3-;向西走2米,再向南走6米【分析】由规定向东和向北方向为正,可得向西,向南方向为负,同时可得向东与向西写在有序数对的第一个,从而可得答案.解:由题意得:向西走5米,再向北走3米记作:()5,3,-数对()2,6--表示向西走2米,再向南走6米,故答案为:()5,3-;向西走2米,再向南走6米.【点拨】本题考查的是利用有序数对表示行进路线,正确的理解题意是解题的关键.29.()3,4或()3,4-【分析】根据点P 到x 轴的距离,可确定纵坐标为4或4-,从而可得答案.解:∵点()3,P m 到x 轴的距离为4,∴3m =或3-,∴点P 的坐标为()3,4或()3,4-,故答案为:()3,4或()3,4-.【点拨】此题主要考查了点到坐标轴的距离与点的坐标之间的关系,解题的关键是明确到x 轴的距离是纵坐标的绝对值.30.3【分析】根据在y 轴上的点横坐标为0进行求解即可.解:∵点()3,31A a a --+在y 轴上,∴30a -=,∴3a =,故答案为:3.【点拨】本题考查点的坐标特征,熟知在y 轴上的点横坐标为0是解题的关键.31.()1,3或()1,3-【分析】根据各象限内点的坐标特征解答即可.解:∵点M 在x 轴上方,距离x 轴3个单位长度,距离y 轴1个单位长度,∴点M 的横坐标为1或1-,纵坐标为3,∴点M 的坐标为:()1,3或()1,3-.故答案为:()1,3或()1,3-.【点拨】本题考查了各象限内点的坐标的符号特征,以及点的坐标的确定,点到x 轴的距离是其纵坐标的绝对值,到y 轴的距离是其横坐标的绝对值.在y 轴左侧,在x 轴的上侧,即点在第二象限,横坐标为负,纵坐标为正.32.()7,5--【分析】根据题意易得25a +=,然后根据点在第三象限可进行求解.解:∵点(),2A a a +到x 轴的距离为5,∴25a +=,解得:3a =或7a =-,∵点(),2A a a +在第三象限,∴7a =-,∴()7,5A --;故答案为()7,5--.【点拨】本题主要考查点的坐标,熟练掌握点的坐标是解题的关键.33.二【分析】首先根据非负数的性质列方程组求得x 和y 的值,然后即可得到答案.解:根据题意可得:1020y x -=⎧⎨+=⎩,解得:21x y =-⎧⎨=⎩,∴点A 的坐标是()21-,,在第二象限,故答案为:二.【点拨】本题主要考查了位置与坐标以及非负数的性质,几个非负数的和等于零,则每个数都是零,初中范围内的非负数有:数的偶次方、绝对值以及算术平方根.34.三【分析】由点()P a b ,在第二象限可得00a b <>,,从而得到010b a -<-<,,即可得到答案.解: 点()P a b ,在第二象限,00a b ∴<>,,010b a ∴-<-<,,∴则点()1Q b a --,在第三象限,故答案为:三.【点拨】本题主要考查了平面直角坐标系中点的坐标特征,熟练掌握平面直角坐标系中点的坐标特征是解题的关键.35.(010)-,【分析】根据y 轴上点的横坐标为零列方程求出m 的值即可求解.解:∵点),(37P m m +-是y 轴上的点,∴30m +=,∴3m =-,∴(00,1)P -.故答案为:(010)-,.【点拨】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限:(,)++,第二象限:(,)-+,第三象限:(,)--,第四象限:(,)+-,x 轴上的点纵坐标为0,y 轴上的点横坐标为0.36.3【分析】根据y 轴上的点横坐标为0,进行计算即可解答.解:∵点()624P m m --,在y 轴上,∴620m -=,解得3m =.故答案为:3.【点拨】本题考查了点的坐标,熟练掌握y 轴上的点横坐标为0是解题的关键.37.()4,2--或()4,8-/(-4,8)或(-4,-2)【分析】根据平行于y 轴的直线上的点的横坐标相同求出点B 的横坐标,再分点B 在点A 的上方与下方两种情况列式求出点B 的纵坐标,即可得解.解:∵AB ∥y 轴,∴A 、B 两点的横坐标相同为-4,又∵AB =5∴B 点纵坐标为:3+5=8,或3-5=-2,∴B 点的坐标为:(-4,8)或(-4,-2);故答案为:(-4,8)或(-4,-2).【点拨】本题考查了坐标与图形性质,主要利用了平行于y 轴的直线上的点的横坐标相同,难点在于要分情况讨论.38.5【分析】直接利用ABC 所在矩形面积减去周围三角形面积进而得出答案.解:如图,111363426215222ABC S =⨯-⨯-⨯⨯-⨯⨯=△.故答案为:5.【点拨】此题主要考查了平面直角坐标系,三角形面积求法,正确得出对应点位置是解题关键.39.9-或3/3或9-【分析】根据平面直角坐标系中的点的特征求解即可.解:∵()3,4A -,(),4B n ,∴3AB n =--,∵6AB =,∴36n --=,∴36n --=或36n --=-,解得9n =-或3n =,故答案为:9-或3.【点拨】本题主要考查了坐标与图形,利用数形相结合的思想是解题的关键.40.23x <<()3,1--【分析】(1)利用第二象限内点的坐标特征得到30x -<且20x ->,然后解不等式组即可;(2)由()3,2A -,()3,2B ,可知点D 在点()3,1C -左侧6个单位长度,即可求得点D 的坐标.解:(1)∵点()3,2P x x --在第二象限,∴3020x x -<⎧⎨->⎩,解得:23x <<,故答案为:23x <<;(2)∵()3,2A -,()3,2B ,()3,1C -,∴点A 在点B 左侧6个单位长度,∴点D 在点C 左侧6个单位长度,∴()36,1D --,即点D 的坐标为()3,1--,故答案为:()3,1--.【点拨】本题考查图象与坐标,各象限内点的坐标特征,牢记各象限内点的坐标特征是解决问题关键.41.(674,0)【分析】该点按6次一循环的规律移动,用2022除以6,再确定商和余数即可.解:由题意该点按“上→右→下→下→右→上”的方向每6次一循环移动的规律移动,且每移动一个循环向右移动2个单位长度可得,2022÷6=337,∴点P 2022的横坐标为2×336+2=674,点P 2022的纵坐标是0,故答案为:(674,0).【点拨】此题考查了点的坐标方面规律问题的解决能力,关键是能准确理解题意确定出点移动的规律.42.(1,0)【分析】先求出AB BC CD DA +++的长,再用2015除以上述长度,利用余数来确定蚂蚁的位置.解:由图可知242412AB BC CD DA +++=+++=,则20151216711÷=⋯,余数为11,故可判断蚂蚁爬了167个循环后,停在了(1,0)点,故答案为:(1,0).【点拨】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.43.(2,2)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.解:点(1,2)A -向右平移3个单位长度,可得点的坐标(13,2)-+,即(2,2),故答案为:(2,2).【点拨】本题考查坐标与图形的平移,解题的关键是记住横坐标,右移加,左移减;纵坐标,上移加,下移减的规律,利用规律即可解决问题.44.()1,2-【分析】根据平移的法则即可得出平移后所得点的坐标.解:将点()3,3A -先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是()32,31-+-,即()1,2-,故答案为:()1,2-.【点拨】本题考查了坐标与图形变化中的平移,根据平移的法则解答是解题的关键.45.1-【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点(),P x y 关于y 轴的对称点P '的坐标是(),x y -,即可得出a ,b 的值,即可得出答案.解: 点(),2021A a 和点()2022,B b 关于y 轴对称,2022a \=-,2021b =,202220211a b ∴+=-+=-.故答案为:1-.【点拨】此题主要考查了关于y 轴对称点的性质,正确得出a ,b 的值是解题关键.46.10【分析】作点()3,3A -关于x 轴的对称点()3,3D --,连接BD ,交x 轴于点C ,此时CA CB +有最小值,根据勾股定理计算即可.解:如图,作点()3,3A -关于x 轴的对称点()3,3D --,连接BD ,交x 轴于点C ,此时CA CB +有最小值,∵()3,3A -、()5,3B ,∴()()538,336AB AD =--==--=,∴10BD ==,故答案为:10.【点拨】本题考查了对称的坐标计算,线段和的最小值计算,勾股定理,熟练掌握线段和的最小值计算,勾股定理是解题的关键.47.12013【分析】根据勾股定理的逆定理得到∠ADB =90°,得到点B ,点C 关于直线AD 对称,过C 作CE ⊥AB 交AD 于P ,则此时PE +PB =CE 的值最小,根据三角形的面积公式即可得到结论.解:∵AD =12,BD =5,AB =13,∴222AB AD BD +=,∴∠ADB =90°,∵D 为BC 的中点,BD =CD ,∴AD 垂直平分BC ,∴点B ,点C 关于直线AD 对称,过C 作CE ⊥AB 交AD 于P ,则此时PE +PB =CE 的值最小,∵S △ABC 12=AB •CE 12=BC •AD ,∴13•CE =10×12,∴CE 12013=,∴PE +PB 的最小值为12013,故答案为:12013.【点拨】本题考查了轴对称﹣最短路线问题,勾股定理的逆定理,两点这间线段最短,线段垂直平分线的性质,三角形的面积公式,利用两点之间线段最短来解答本题.48.4【分析】根据BD 平分ABC ∠,得出N 关于BD 的对称点在角平分线上,作点N 关于BD 的对称点N ',根据点到直线的距离,垂线段最短,可得当CN AB '⊥时,CN '最短,即CM MN +最小,进而根据三角形面积公式即可求解.解:如图,作点N 关于BD 的对称点N ',∴MN MN '=,∴CM MN +CM MN CN ''=+≥,当,,C M N '三点共线,且CN AB '⊥时,CN '最短,即CM MN +最小,∵10ABC S =△,5AB =,∴24ABC S CN AB'== ,则CM MN +的最小值为4,故答案为:4.【点拨】本题考查了轴对称确定最短路线问题,垂线段最短的性质,熟练掌握轴对称的性质是解题的关键.。

初二数学位置和坐标练习题

初二数学位置和坐标练习题

初二数学位置和坐标练习题考察知识点:位置和坐标练习一:1. 小明家在一栋高楼的正上方,楼高150米,小明家离地面的高度是100米。

请问小明家的位置坐标是多少?2. 在一个平面直角坐标系中,A点的横坐标是5,纵坐标是-3。

请问A点的位置在第几象限?3. 在一个平面直角坐标系中,有一条线段:起点A (-2, 1),终点B (3, 4)。

请问线段AB的长度是多少?4. 在一个平面直角坐标系中,有一个点P (5, -2)。

请问点P到与x 轴平行的直线的距离是多少?练习二:1. 平面直角坐标系中,有一个点A (4, 3),点B (10, 7)。

请问连接AB的线段的斜率是多少?2. 在一个平面直角坐标系中,有两个点A (2, -3) 和 B (-5, 6)。

请问直线AB的斜率是正数还是负数?为什么?3. 某坐标系中,有一条线段:起点A (1, 2),终点B (-3, 5)。

请问线段AB与x轴的夹角是多少度?4. 平面直角坐标系中,有一条直线L,过点A (3, -1),且与y轴垂直。

请写出直线L的方程。

练习三:1. 在一个平面直角坐标系中,有一个点A (-6, 4),点B (9, -2)。

请问直线AB的中点的坐标是多少?2. 在一个平面直角坐标系中,有一个点C (-2, 5),点D (6, 7)。

请问线段CD的中点的坐标是多少?3. 在坐标系中,有一条直线L,方程为y = 2x + 3。

请问直线L与x轴的交点的坐标是多少?4. 在一个平面直角坐标系中,有三个点A (1, 4),B (5, 8),C (3, -6)。

请问点D在BC中点上,坐标是多少?解答:练习一:1. 小明家的位置坐标是(0, 100)。

2. A点的位置在第二象限。

3. 线段AB的长度可以通过使用勾股定理计算:AB = √[(x₂ - x₁)²+ (y₂ - y₁)²] = √[(3 - (-2))² + (4 - 1)²] = √[5² + 3²] = √34 ≈ 5.83。

(压轴题)初中数学八年级数学上册第三单元《位置与坐标》检测(有答案解析)(2)

(压轴题)初中数学八年级数学上册第三单元《位置与坐标》检测(有答案解析)(2)

一、选择题1.在平面直角坐标系中,点(-1,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.点(3, 2)P t t ++在直角坐标系的x 轴上,则P 点坐标为( ) A .()0,2- B .()2,0- C .()1,2 D .()1,0 3.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-54.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.若点P (﹣m ,﹣3)在第四象限,则m 满足( ) A .m >3 B .0<m≤3 C .m <0 D .m <0或m >3 6.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1) 7.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( )A .32B .1-C .32或1-D .32或1 8.在平面直角坐标系中,下列各点在第三象限的是( )A .()1,2B .()2,1-C .()2,1-D .()1,2-- 9.如图,平面直角坐标系中,一蚂蚁从A 点出发,沿着···A B C D A →→→→循环爬行,其中A 点的坐标为()2,2-,B 点的坐标为()2,2--,C 点的坐标为()2,6-,D 点的坐标为()2,6,当蚂蚁爬了2020个单位时,蚂蚁所处位置的坐标为( )A .()2,2--B .()2,2-C .()2,6-D .()0,2- 10.在平面直角坐标系中,点()1,2A -关于x 轴对称的点的坐标为( )A .()1,2B .()1,2-C .()2,1D .()1,2-- 11.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,312.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,,这样依次得到点1A ,2A ,3A ,,n A ,.若点1A 的坐标为(2,4),点2020A 的坐标为( ) A .(-3,3)B .(-2,-2)C .(3,-1)D .(2,4)二、填空题 13.已知点(),3M a ,点()2,N b 关于y 轴对称,则()2021a b +=__________.14.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)15.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应该是________.16.长方形共有_________________条对称轴.17.若点M (a -3,a +4)在y 轴上,则a =___________.18.点M 在第四象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为_____.19.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______. 20.如图,,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)···,根据这个规律,第2020个点的横坐标为______.三、解答题21.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为A (1,3),B (2,1),C (5,1).(1)直接写出点B 关于x 轴对称的对称点1B 的坐标为______,直接写出点B 关于y 轴对称的对称点2B 的坐标为_____,直接写出12AB B 的面积为_______;(2)在y 轴上找一点P 使1PA PB +最小,则点P 坐标为_______;说明理由. 22.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.23.在平面直角坐标系中,()0,A a ,()5,B b ,且a ,b 满足130a b ++=,将线段AB 平移至CD ,其中A ,B 的对应点分别为C ,D .(1)a =______,b =______;(2)若点C 的坐标为()2,4-,如图1,连接OC ,求三角形COD 的面积;(3)设点E 是射线OD (E 不与点D 重合)上一点,①如图2,若点E 在线段OD 上,25DCE ∠=︒,70EAB ∠=︒,求AEC ∠的度数并说明理由;②如图3,点E 在射线OD 上,试探究DCE ∠与EAB ∠和AEC ∠的关系并直接写结论.24.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.25.如图所示,在平面直角坐标系xOy 中,已知AOC △的顶点坐标分别是(2,2)A -,(3,3)C .(1)作出AOC △关于x 轴对称的DOE △,其中点A 的对应点是D ,点C 的对应点是E ,并直接写出D 和E 的坐标;(2)若点P 为x 轴上的一点,若OP OA =,求点P 的坐标.26.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,ABC 的三个顶点都在格点上.(1)AB =______;AC =______;BC =______.(2)画出ABC 关于EF 成轴对称的111A B C △;(3)在直线MN 上找一点P ,使PAB △的周长最小,请用画图的方法确定点P 的位置,并直接写出PAB △周长的最小值为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据点的横纵坐标的符号可确定所在象限.【详解】解:∵该点的横坐标为负数,纵坐标为正数,∴所在象限为第二象限,故选:B .【点睛】本题考查了象限内点的坐标特征;用到的知识点为:第二象限点的符号特点为(−,+). 2.D解析:D【分析】x 轴上点的纵坐标是0,由此列得t+2=0,求出t 代回即可得到点P 的坐标.【详解】∵点(3, 2)P t t ++在直角坐标系的x 轴上,∴t+2=0,解得t=-2,∴点P 的坐标为(1,0),故选:D .【点睛】此题考查坐标轴上点的坐标特点:x 轴上点的纵坐标是0,y 轴上点的横坐标是0. 3.B解析:B【分析】先根据第二象限点坐标符号特点可得0,0x y <>,再化简绝对值可得x 、y 的值,然后代入即可得.【详解】点(,)P x y 在第二象限,0,0x y ∴<>, 又2,3x y ==,2,3x y ∴=-=,231x y ∴+=-+=,故选:B .【点睛】本题考查了第二象限点坐标符号特点、化简绝对值,熟练掌握第二象限点坐标符号特点是解题关键.4.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).5.C解析:C【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.【详解】解:根据第四象限的点的横坐标是正数,可得﹣m >0,解得m <0.故选:C .【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.6.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】 本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.7.D解析:D【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.【详解】2-x=3x-4或2-x+(3x-4)=0,解2-x=3x-4得x=32,解2-x+(3x-4)=0得x=1,x的值为32或1,故选D.【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.8.D解析:D【分析】根据各象限内点的坐标特征解答对各选项分析判断后利用排除法求解即可.【详解】解:A、(1,2)在第一象限,故本选项不符合题意;B、(-2,1)在第二象限,故本选项不符合题意;C、(2,-1)在第四象限,故本选项不符合题意;D、(-1,-2)在第三象限,故本选项符合题意.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.A解析:A【分析】根据蚂蚁的爬行规律找到蚂蚁爬行一循环的长度是24,∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A左边4个单位长度处,即可解题.【详解】解:∵A点坐标为(2,﹣2),B点坐标为(﹣2,﹣2),C点坐标为(﹣2,6),∴AB=2﹣(﹣2)=4,BC=6﹣(﹣2)=8,∴从A→B→C→D→A一圈的长度为2(AB+BC)=24.∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A左边4个单位长度处,即(-2,﹣2).故选:A本题考查了点的运动规律问题,属于简单题,确定蚂蚁爬行的循环规律是解题关键.10.A解析:A【分析】根据关于x轴对称的点,其横坐标相等,纵坐标互为相反数进而得出答案.【详解】解:点A(1,-2)关于x轴对称的点的坐标为:(1,2).故选:A.【点睛】本题考查关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.11.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.12.C解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A 2020的坐标即可.【详解】∵A 1的坐标为(2,4),∴A 2(-3,3),A 3(-2,-2),A 4(3,-1),A 5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(3,-1).故选:C【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题13.【分析】根据两点关于y 轴对称纵坐标不变横坐标互为相反数确定ab 的值后代入计算即可【详解】∵点点关于y 轴对称∴a=-2b=3∴a+b=1∴1【点睛】本题考查了点的对称问题熟记点对称的规律指数的奇偶性与解析:【分析】根据两点关于y 轴对称,纵坐标不变,横坐标互为相反数,确定a,b 的值,后代入计算即可.【详解】∵点(),3M a ,点()2,N b 关于y 轴对称,∴a= -2,b=3,∴a+b=1,∴()2021a b +=1.【点睛】本题考查了点的对称问题,熟记点对称的规律,指数的奇偶性与符号的关系是解题的关键. 14.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC ∥BD ∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC ∥BD ,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.15.21:05【分析】根据镜子中的成像与实际物体是相反的原理可利用轴对称性质作出图像向左或向右的对称【详解】因为镜子中的成像与实际物体是相反的利用轴对称性质作出图像向右的对称图故填:21:05【点睛】本解析:21:05【分析】根据镜子中的成像与实际物体是相反的原理,可利用轴对称性质作出图像向左或向右的对称.【详解】因为镜子中的成像与实际物体是相反的,利用轴对称性质作出图像向右的对称图故填:21:05.【点睛】本题主要考查轴对称图形在实际生活中的问题,解题的关键是要知道:在镜子中的像与现实中的像恰好是左右颠倒.16.【分析】依据轴对称图形的概念即在平面内如果一个图形沿一条直线折叠直线两旁的部分能够完全重合这样的图形叫做轴对称图形据此即可进行判断【详解】如下图长方形有2条对称轴故答案为2【点睛】解答此题的主要依据解析:2【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【详解】如下图长方形有2条对称轴,故答案为2.【点睛】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.17.3【分析】在y轴上的点横坐标为零即a-3=0即可解答【详解】解:∵点M (a-3a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征第一象限内点的坐标特征为(解析:3【分析】在y轴上的点横坐标为零,即a-3=0,即可解答【详解】解:∵点M(a-3,a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.18.(3﹣5)【分析】首先根据点到xy轴的距离求出M点的横纵坐标然后根据第四象限内点的坐标的特点可确定M点的坐标【详解】∵点M在第四象限距离x轴5个单位长度距离y轴3个单位长度∴点M的纵坐标为﹣5横坐解析:(3,﹣5).【分析】首先根据点到x,y轴的距离求出M点的横纵坐标,然后根据第四象限内点的坐标的特点可确定M点的坐标.【详解】∵点M在第四象限,距离x轴5个单位长度,距离y轴3个单位长度,∴点M的纵坐标为﹣5,横坐标为3,即点P的坐标为(3,﹣5),故答案为:(3,﹣5).【点睛】本题主要考查点到x,y轴的距离及每个象限内点的坐标的特点,掌握每个象限内点的坐标的特点是解题的关键.19.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键. 20.45【分析】观察图形可知以最外边的矩形边长上的点为准点的总个数等于x 轴上右下角的点的横坐标的平方并且右下角的点的横坐标是奇数时最后以横坐标为该数纵坐标为0结束当右下角的点横坐标是偶数时以横坐标为1纵 解析:45【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),则第2020个(45,5).∴第2020个点的横坐标为45,故答案为:45.【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题21.(1)(2,1)-,(2,1)-,7;(2)50,3⎛⎫ ⎪⎝⎭;理由见解析.【分析】(1)根据关于x 轴、y 轴对称的点的坐标特征即可得到B 1、B 2坐标,利用分割法即可求得△AB 1B 2面积;(2)根据轴对称的性质得到B 3(﹣2,﹣1),求得直线B 3A 解析式继而令0x =时即可求解.【详解】(1)(2,1)B 关于x 轴对称点B , 1B ∴坐标为(2,1)-(2,1)B 关于y 轴对称点2B2B ∴坐标为(2,1)-∴S △AB 1B 2面积=11144231424222⨯-⨯⨯-⨯⨯-⨯⨯ 16324=---7=故12AB B 的面积为7,(2)点P 坐标为50,3⎛⎫ ⎪⎝⎭,理由如下:∵B 1(2,﹣1)关于y 轴对称点B 3(﹣2,﹣1),连接B 3A 交于y 轴于P 则P 为所求,设直线B 3A 表达式为(0)y kx b k =+≠,把B 3(﹣2,﹣1),A (1,3)代入得123k b k b -=-+⎧⎨=+⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩ 4533y x ∴=+ 当0x =时53y =50,3P ⎛⎫∴ ⎪⎝⎭【点睛】本题考查轴对称有关知识,解题的关键是熟练掌握关于x 轴、y 轴对称的点的坐标特征及轴对称的性质.22.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.23.(1)﹣1,﹣3;(2)8;(3)①∠AEC=95°,理由见解析;②当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【分析】(1)根据非负数的性质解答即可;(2)先根据平移的性质求出点D 的坐标,然后过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,如图1,再根据S △COD =S 梯形CMND -S △COM -S △DON 代入数据计算即可;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG ,然后根据平行线的性质可得∠DCE=∠CEG ,∠BAE=∠GEA ,再根据角的和差即可求出结果; ②分两种情况:当点E 在线段OD 上时,如图2,此时由①的推导可直接得出结论;当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,根据平行线的性质和三角形的外角性质解答即可.【详解】解:(1)∵130a b +++=,∴a+1=0,b+3=0,解得:a=﹣1,b=﹣3,故答案为:﹣1,﹣3;(2)∵a=﹣1,b=﹣3,∴A (0,﹣1),B (5,﹣3),∵将线段AB 平移至CD ,A ,B 的对应点分别为C (﹣2,4),D ,∴点D (3,2)如图1,过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,则CM=4,DN=2,MN=2+3=5,∴S △COD =S 梯形CMND -S △COM -S △DON =()11124524328222⨯+⨯-⨯⨯-⨯⨯=;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG , ∴∠DCE=∠CEG ,∠BAE=∠GEA ,∵25DCE ∠=︒,70EAB ∠=︒,∴∠AEC=∠CEG+∠AEG=∠DCE+∠BAE=25°+70°=95°;②当点E 在线段OD 上时,如图2,此时由①的结论可得:DCE ∠+EAB ∠=AEC ∠; 当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,∵AB ∥CD ,∴∠EPQ=∠EAB ,∵∠EPQ=∠DCE+∠AEC ,∴∠BAE=∠DCE+∠AEC ;综上,当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【点睛】本题考查了非负数的性质、平移的性质、坐标系中三角形面积的计算、平行线的性质、平行公理的推论以及三角形的外角性质等知识,涉及的知识点多,但难度不大,熟练掌握上述知识是解题的关键.24.(1)45°;(2)()5,8D ;(3)见解析.【分析】(1)根据点A,点B 的坐标,得OA=OB,从而得到等腰直角三角形OAB 依此计算即可;(2) 过点D 作DE y ⊥轴,垂足为E ,证明DEC COA △△≌即可;(3)通过证明CDB CAB ∠=∠,实现DCN ACM △△≌的目标,问题得证.【详解】(1)∵()3,0A ,()0,3B ,∴OA=OB ,∴△AOB 是等腰直角三角形,∴∠OBA=45°,故填45°.(2)∵()0,5C ,∴5OC =.如图,过点D 作DE y ⊥轴,垂足为E ,∴90DEC AOC ∠=∠=︒.∵90DCA ∠=︒,AC CD =,∴90ECD BCA ECD EDC ∠+∠=∠+∠=︒,∴BCA EDC ∠=∠,∴()AAS DEC COA ≌△△, ∴5DE OC ==,3EC OA ==,∴8OE OC EC =+=,∴()5,8D .(3)证明:∵835BE OE OB =-=-=,∴BE DE =,∴DBE 是等腰直角三角形,∴45DBE ∠=︒. ∵45OBA ∠=︒,∴90DBA ∠=︒,∴90BAN ANB ∠+∠=︒.∵90DCA ∠=︒,∴90CDN DNC ∠+∠=︒.∵DNC ANB ∠=∠,∴CDB CAB ∠=∠.∵90DCA ∠=︒,∴90ACM DCN ∠=∠=︒.∵AC CD =,∴()ASA DCN ACM ≌△△, ∴AM DN =.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关键.25.(1)作图见解析,D ()2,2--,E ()3,3-;(2) ()()1222,022,0P P -,.【分析】(1)根据已知三角形AOC △,得到点A 和点C 关于x 轴的对称点分别为点D 和点E ,再首位顺次连接,即可作出DOE ;(2)先根据点A 和点O 的坐标,求出OA 的长度,因为OP OA =,即可求出P 点坐标.【详解】(1)如图所示:∵AOC △和DOE △关于 x 轴对称,()2,2A -,()3,3C -,∴D ()2,2--,E ()3,3-,连接OD ,DE ,EO ,即为所作DOE .(2)∵()2,2A -,()0,0O ,∴[]220(2)(02)22OA =--+-=∵P 在x 轴上,OP OA =, ∴()122,0P -,()222,0P .【点睛】本题考查作图-轴对称,点的坐标,线段长度等知识,熟练掌握轴对称图形的性质以及作法是解题的关键.26.(1)21317;(2)见解析;(3)图见解析,2225【分析】(1) 根据勾股定理结合每一格点都是1个单位分别计算即可;(2) 根据根据轴对称的意义找到对称轴作图即可;△(3)作A点关于直线MN的对称点A′,连接A′B与MN交于点P,此时A′B的长即为PAB 周长的最小值.【详解】(1)根据勾股定理可得:22AB=+=,222222AC=+=,231322BC=+=;1417故答案为:22,13,17;(2)如图:(3)如图:作A点关于直线MN的对称点A′,连接A′B与MN交于点P,△APB的周长为AP+BP+AB,∵A′P=AP,∴△APB的周长为AP+BP+AB= A′P+BP+AB=A′B+AB,由勾股定理得:22A B'=+=2425∴△APB的周长为2225【点睛】此题考查坐标系中关于轴对称的坐标点的变化,最小值作对称图形根据关于轴对称的线段相等的性质解题即可.。

位置与坐标知识点分类训练专题八年级数学(北师大版)

位置与坐标知识点分类训练专题八年级数学(北师大版)

位置与坐标知识点分类训练专题(专项练习)一、单选题知识点一、有序数对1.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(12)--,.“馬”位于点(22)-,,则“兵”位于点()A .(11)-,B .(21)--,C .(31)-,D .(1)2-,2.在平面直角坐标系中,对于平面内任一点P (a ,b )若规定以下两种变换:①f (a ,b )=(﹣a ,﹣b ),如f (1,2)=(﹣1,﹣2);②g (a ,b )=(b ,a ),如g (1,3)=(3,1)按照以上变换,那么f (g (a ,b ))等于()A .(﹣b ,﹣a )B .(a ,b )C .(b ,a )D .(﹣a ,﹣b )3.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A .南偏西30°方向B .南偏西60°方向C .南偏东30°方向D .南偏东60°方向4.如图,在平面直角坐标系中,△ABC 是等边三角形,BC ∥x 轴,AB=4,AC 的中点D在x 轴上,且D ,0),则点A 的坐标为()A .(2B 1CD 1知识点二、点的坐标5.已知点()5,1P a a +-在第四象限,且到x 轴的距离为2,则点P 的坐标为()A .()4,2-B .()8,7C .()2,8--D .()2,4-6.点P 的坐标为(3a -2,8-2a ),若点P 到两坐标轴的距离相等,则a 的值是()A .23或4B .-2或6C .23-或-4D .2或-67.在平面直角坐标系中,O 为坐标原点,已知点A ,B 的坐标分别是(2,0),(4,2),若在x 轴下方有一点P ,使以O ,A ,P 为顶点的三角形与△OAB 全等,则满足条件的P 点的坐标是()A .(4,﹣2)B .(﹣4,﹣2)C .(4,﹣2)或(﹣2,﹣2)D .(4,﹣2)或(﹣4,﹣2)8.ABC 是网格中的格点三角形(三角形的各顶点都在网格的交叉点上),如图建立直角坐标系,将该三角形先向下平移2个单位,然后再将平移后的图形沿y 轴翻折180︒,得到A B C '''V ,则点B 对应点B '的坐标为()知识点三、点所在像限A .(4,3)-B .(3,2)--C .(2,5)-D .(4,3)--9.如果点(),A a b 在第三象限,点()1,35a b B -+-关于原点的对称点在().A .第一象限B .第二象限C .第三象限D .第四象限10.在平面直角坐标系中,点(),1a a -不可能在().A .第一象限B .第二象限C .第三象限D .第四象限11.在平面直角坐标系中,若点23,43x x ⎛⎫-+ ⎪⎝⎭在第二象限,则x 的取值范围是()A .3x >B .6x >-C .63x -<<D .36x <<12.已知点()3,2A m m --在第三象限,则m 的取值范围在数轴上表示正确的是()A .B .C .D .知识点四、坐标系中描点13.如图所示,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m),则点E 的坐标是()A .(2,-3)B .(2,3)C .(3,2)D .(3,-2)14.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在().A .第一象限B .第二象限C .第三象限D .第四象限15.下列说法中,正确的是()A .点()2,3P 到y 轴的距离是3B .在平面直角坐标系中,点()2,3-和点()2,3-表示同一个点C .若0x =,则点(),M x y 在y 轴上D .在平面直角坐标系中,第三象限内的点的横坐标与纵坐标异号16.已知点A (2x -4,x +2)在坐标轴上,则x 的值等于()A .2B .-2C .2或-2D .非上述答案知识点五、坐标与图形17.如图,在平面直角坐标系xOy 中,点A ,C ,F 在坐标轴上,E 是OA 的中点,四边形AOCB 是矩形,四边形BDEF 是正方形.若点C 的坐标为()6,0,则点D 的坐标为()A .()2,4B .()2,6C .(2,D .(2,2+18.如图,点A 在y 轴上,点B 、C 在x 轴上,()4,0B ,()2,0D ,DB 与EC 关于y 轴对称,60CAB ∠=︒,点P 、Q 分别是边AB 、AC 上的动点,则DP PQ EQ ++的最小值是()A .6B .8C .10D .1219.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且()2,0A -,()2,B b ,则正方形ABCD 的面积是()A .34B .25C .16D .2020.在平面直角坐标系xOy 中,点()4,0A ,点()0,3B -,点C 在坐标轴上,若ABC 的面积为12,则符合题意的点C 有()A .1个B .2个C .3个D .4个知识点六、点坐标规律探索21.如图所示,平面直角坐标系中,x 轴负半轴上有一点()1,0A -.点A 第一次向上平移1个单位至点()11,1A -,接着又向右平移1个单位至点()20,1A ,然后再向上平移1个单位至点()30,2A ,向右平移1个单位至点()41,2A ,…,照此规律平移下去,点A 平移至点A 2021时,点的坐标是()A .()1008,1010B .()1009,1010C .()1009,1011D .()1008,101122.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O 、正方形2221A B C C ,L 、正方形1n n n n A B C C -,使得点123,,,A A A 在直线l 上,点123,,,C C C 在y 轴正半轴上,则点2021B 的坐标为()A .()201920202,21-B .()202020202,2C .()202020212,21-D .()201920202,21+23.已知点()3129,5079A --,将点A 作如下平移:第1次将A 向右平移1个单位,向上平移2个单位得到1A ;第2次将1A 向右平移2个单位,向上平移3个单位得到2A ,L ,第n 次将点1n A -向右平移n 个单位,向上平移1n +个单位得到n A ,则100A 的坐标为()A .()2021,71B .()2021,723C .()1921,71D .()1921,72324.如图,长方形BCDE 的各边分别平行于x 轴、y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是()A .()1,1--B .()2,0C .()1,1-D .()1,1-知识点七、点坐标的应用25.如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误..的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l26.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)27.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)28.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A .景仁宫(4,2)B .养心殿(-2,3)C .保和殿(1,0)D .武英殿(-3.5,-4)二、填空题知识点一、有序数对29.教室5排2号可用有序数对(5,2)表示,则2排5号用数对可表示为__.30.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.31.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.32.平面直角坐标系下有序数对(2x ﹣y ,x+y )表示的点为(5,4),则x=___,y=___.知识点二、点的坐标33.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b …时,Q 点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.34.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.35.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.36.若点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为2,则点A 的坐标为_____.知识点三、点所在像限37.对于平面坐标系中任意两点()11,A x y 、()22,B x y 定义一种新运算“*”为:()()()11221221,,,x y x y x y x y *=,根据这个规则,若()11,A x y 在第三象限,()22,B x y 在第四象限,则A B *在第________象限.38.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(a +2b ,a +1),则a +b =________.39.在平面直角坐标系中,若点()3,1P a a -+在第二象限,则a 的取值范围为_______.40.若点P (1-m ,-2m -4)在第四象限,且m 为整数,则m 的值为______.知识点四、坐标系中描点41.如图甲,对于平面上不大于90°的∠MON ,我们给出如下定义:如果点P 在∠MON 的内部,作PE ⊥OM ,PF ⊥ON ,垂足分别为点E 、F ,那么称PE+PF 的值为点P 相对于∠MON 的“点角距离”,记为d (P ,∠MON ).如图乙,在平面直角坐标系xOy 中,点P 在坐标平面内,且点P 的横坐标比纵坐标大2,对于∠xOy ,满足d (P ,∠xOy )=10,点P 的坐标是_____.42.在平面直角坐标系中,已知点A(0,2),B(3,0),点C 在x 轴上,且在点B 的左侧,若 ABC 是等腰三角形,则点C 的坐标为_____.43.在平面直角坐标系内,以点P (1,1y 轴的交点坐标是___________________________.44.在平面直角坐标系中,(0,1)A 、(0,2)B 、(2,3)C ,则ABC ∆的面积为______.知识点五、坐标与图形45.定义:对于线段MN 和点P ,当PM PN =,且120MPN ∠≤︒时,称点P 为线段MN 的“等距点”.特别地,当PM PN =,且120MPN ∠=︒时,称点P 为线段MN 的“强等距点”.在平面直角坐标系xOy 中,点A 的坐标为();若点B 是线段OA 的“强等距点”,且在第一象限,则点B 的坐标为___.46.如图,直线AB 分别交x 轴、y 轴于()4,0A 、()0,3B 两点,若点C 、D 、E 分别在线段AB 、OA 、OB 上,且AD AC =,BE BC =.过点D 作DF CD ⊥交CE 的延长线于点F ,若点(),F m m -,则点C 的坐标是________.47.如图,在平面直角坐标系中,已知()1,0A ,以线段OA 为边在第四象限内作等边AOB ,点C 为x 正半轴上一动点(1OC >),连接BC ,以线段BC 为边在第四象限内作等边CBD ,连结DA 并延长,交y 轴于点E .则OEA ∠=__________︒;当以A ,E ,C 为顶点的三角形是等腰三角形时,点C 的坐标为___________.48.如图,将一矩形OBAC 放在平面直角坐标系中,O 为原点,点B ,C 分别在x 轴、y 轴上,点A 为(8,6),点D 为线段OC 上一动点.将△BOD 沿BD 翻折,点O 落在点E 处,连接CE .当CE 的长最小时,点D 的坐标为_____________.知识点六、点坐标规律探索49.如图,在平面直角坐标系中,等腰直角三角形①沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点()10,2A 变换到点()26,0A ,得到等腰直角三角形②;第二次滚动后点2A 变换到点()36,0A ,得到等腰直角三角形③;第三次滚动后点3A 变换到点(4A ,得到等腰直角三角形④;第四次滚动后点4A 变换到点()510A +,得到等腰直角三角形⑤;依此规律…,则第2021个等腰直角三角形的面积是_____.50.如图,在平面直角坐标系中,已知点(1,1),(1,1),(1,2),(1,2)A B C D ----,动点P 从点A 出发,以每秒2个单位长度的速度按逆时针方向沿四边形ABCD 的边做环绕运动;另一动点Q 从点C 出发,以每秒3个单位长度的速度按顺时针方向沿四边形CBAD 的边做环绕运动,则第2020次相遇点的坐标是_____.51.如图,过点1(1,0)A 作x 轴的垂线,交直线y =3x 于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线y =3x 于点2B :点3A 与点O 关于直线22A B 对称;过点3(4,0)A 作x 轴的垂线,交直线y =3x 于点3B ;…,按此规律作下去,则下列点的坐标为:(1)3B _____(2)6B ______(3)n B ______52.如图,边长为1的正方形OAPB 的顶点P 在第一象限,以OP 长为边长所作的正方形111OA PB 的顶点1P 在第二象限,以1OP 长为边长所作的正方形222OA P B 的顶点2P 在第三象限,以2OP 长为边长所作的正方形333OA P B 的顶点3P 在第四象限.按此方式依次作下去,则点2021P 的坐标是______.知识点七、点坐标的应用53.如图,某天然气公司的主输气管道从A 市的北偏东60°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市北偏东30°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向.当在主输气管道AC 上寻找支管道连接点N ,使到该小区M 铺设的管道最短时,AN 的长为______.54.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.55.如图,某小区有古树3棵,分别记作为, , ,M N P 若建立平面直角坐标系,将古树, M N 用坐标分别表示为()1, 1和() 2, 4,则古树P 用坐标表示为_____________56.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km.甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B 处的坐标是___.三、解答题57.在平面直角坐标系中,O 为原点,点A (3,0),点B (0,4),把△ABO 绕点B 逆时针旋转,得△A 'BO ′.点A ,O 旋转后的对应点为A ',O ',记旋转角为α.(1)如图①,若α=90°,求AA '的长;(2)如图②.若α=45°,求点O '的坐标;(3)若M 为AB 边上的一动点,在OB 上取一点N (0,1),将△ABO 绕点B 逆时针旋转一周,求MN 的取值范围(直接写出结果即可).58.如图,在平面直角坐标系xOy 中,点()0,8A ,点()6,8B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到,A B 两点的距离相等;②点P 到两条坐标轴的距离相等.(2)写出(1)中作出的点P 的坐标.59.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.。

(压轴题)初中数学八年级数学上册第三单元《位置与坐标》检测题(有答案解析)(3)

(压轴题)初中数学八年级数学上册第三单元《位置与坐标》检测题(有答案解析)(3)
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)在x轴上画出一点D,使DA+DB最小,保留作图痕迹.
22.如图,在平面直角坐标系中,已知△ABC的三个顶点A(﹣3,1),B(﹣2,3),C(2,1),直线l上各点的横坐标都为1.
(1)画出△ABC关于直线l对称的△A′B′C′;
(2)请直接写出点A′、B′、C′的坐标;
(3)若点M在△ABC内部,直接写出点M(a,b)关于直线l对称点M′的坐标.
23.如图1,在平面内取一个定点O,自O引一条射线Ox,设M是平面内一点,点O与点M的距离为m(m>0),以射线Ox为始边,射线OM为终边的∠xOM的度数为x°(x≥0).那么我们规定用有序数对(m,x°)表示点M在平面内的位置,并记为M(m,x°).
18.在平面直角坐标系中, 、 、 ,则 的面积为______.
19.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为_____.
20.在平面直角坐标系中,线段AB平行于x轴,且AB=4,若点A坐标为(-1,2),点B的坐标为(a,b),则a+b=_______
三、解答题
21.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).
24.如图,在网格中按要求完成作图:
(1)作出 (三角形的顶点都在格点上)关于 轴对称的图形;
(2)写出 、 、 的对应点 、 、 的坐标;
(3)在 轴上画出点 ,并写出点 的坐标,使 的周长最小.
25.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC关于x轴成轴对称的图形△A1B1C1,并写出A1、B1、C1的坐标;

八年级数学期中复习之位置与坐标(含答案)

八年级数学期中复习之位置与坐标(含答案)

期中复习之位置与坐标一、单选题(共10道,每道10分)1.下列各点中,在第四象限的点是( )A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:C解题思路:试题难度:三颗星知识点:坐标的象限特征2.若a>0,b<0,则点(a,b-1)在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:D解题思路:试题难度:三颗星知识点:坐标的象限特征3.若点A(n-3,2m+1)在x轴上,点B(n+1,m-4)在y轴上,则点C(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C解题思路:试题难度:三颗星知识点:坐标轴上的坐标特征4.已知点A(a-1,5)和点B(2,b-1)关于x轴对称,则(a+b)2018的值为( )A.1B.-1C.0D.-2018答案:A解题思路:试题难度:三颗星知识点:坐标的对称5.如图中的一张脸,小明用(0,2)表示左眼,(2,2)表示右眼,那么嘴的位置可以表示成( )A.(2,1)B.(1,0)C.(0,1)D.(1,-1)答案:B解题思路:试题难度:三颗星知识点:建坐标系求坐标6.若点A(x,y)与点B(6,-5)在同一条平行于y轴的直线上,且点A到x轴的距离等于7,则点A的坐标是( )A.(6,-7)或(-6,-7)B.(-6,7)或(-6,-7)C.(6,7)或(6,-7)D.(6,7)或(-6,-7)答案:C解题思路:试题难度:三颗星知识点:平行于坐标轴的坐标特征7.已知点A(4,0),点B在y轴上,若AB与坐标轴围成的三角形的面积是2,则点B的坐标为( )A.(1,0)B.(1,0)或(-1,0)C.(-1,0)D.(0,1)或(0,-1)答案:D解题思路:试题难度:三颗星知识点:三角形面积公式8.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )A.(,1)B.(-1,)C.(,1)D.(,-1)答案:A解题思路:试题难度:三颗星知识点:坐标与线段长的相互转化9.长方形OABC在平面直角坐标系内的位置如图所示,将长方形沿BO折叠,使点C落在点D处,DO与AB交于点E,BC=4cm,BA=8cm,则点E的坐标为( )A.(-4,4)B.(-3.5,4)C.(-3,4)D.(-3.7,4)答案:C解题思路:试题难度:三颗星知识点:坐标线段长互相转化10.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)…根据这个规律,探究可得点A2018的坐标是( )A.(2017,2)B.(2018,0)C.(2019,-2)D.(2020,0)答案:B解题思路:试题难度:三颗星知识点:直角坐标系中的规律探究。

(必考题)初中数学八年级数学上册第三单元《位置与坐标》检测卷(有答案解析)(4)

(必考题)初中数学八年级数学上册第三单元《位置与坐标》检测卷(有答案解析)(4)

一、选择题1.已知点(,2)A m 和(3,)B n 关于y 轴对称,则2021()m n +的值为( )A .0B .1C .1-D .2020(5)-2.平面直角坐标系中,一个图案上各个点的横坐标都乘以1-,纵坐标不变,得到一个图案,下列结论正确的是( ) A .新图案是原图案向下平移了1个单位 B .新图案是原图案向左平移了1个单位 C .新图案与原图案关于x 轴对称D .新图案与原图案形状和大小完全相同3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021-4.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,…,按这样的运动规律,第2021次运动后,动点2021P 的纵坐标是( )A .1B .2C .2-D .05.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 6.已知A ,B 两点关于x 轴对称,若点A 坐标为(2,-3),则点B 的坐标是( ) A .(2,-3)B .(-2,3)C .(-2,-3)D .(2,3)7.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( ) A .32B .1-C .32或1- D .32或1 8.如图,一个点在第一、四象限及x 轴上运动,第1次,它从原点运动到点1,P 第次2运动到点2P ,再按图中箭头所示方向运动,即点的坐标变化是()()()()0,01,12,03,1→-→→→······,那么点2020P 所在的位置的坐标是( )A .()2020,1-B .()2020,1C .()2019,0D .()2020,0 9.在平面直角坐标系中,下列各点在第三象限的是( )A .()1,2B .()2,1-C .()2,1-D .()1,2--10.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( ) A .第一象限B .第二象限C .第三象限D .第四象限11.如图,平面直角坐标系中,一蚂蚁从A 点出发,沿着···A B C D A →→→→循环爬行,其中A 点的坐标为()2,2-,B 点的坐标为()2,2--,C 点的坐标为()2,6-,D 点的坐标为()2,6,当蚂蚁爬了2020个单位时,蚂蚁所处位置的坐标为( )A .()2,2--B .()2,2-C .()2,6-D .()0,2-12.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,3二、填空题13.写一个第三象限的点坐标,这个点坐标是_______________.14.如图,在锐角三角形ABC 中,AB =10,S △ABC =30,∠ABC 的平分线BD 交AC 于点D ,点M 、N 分别是BD 和BC 上的动点,则CM +MN 的最小值是_____.15.已知平面直角坐标系内不同的两点A (3a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为_____.16.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.17.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______. 18.在平面直角坐标系中,已知点(,0)A a 和点(0,4)B ,且直线AB 与坐标轴围成的三角形的面积等于12,则a 的值是________.19.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,0)和(3,2)-,那么“卒”的坐标为__________.20.已知点P 的坐标为(﹣2,3).则它关于y 轴对称的点P '的坐标是_____.三、解答题21.如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)请直接写出点A 关于y 轴对称的点的坐标;(2)在这个坐标系内画出△1A 1B 1C ,使△1A 1B 1C ,与△ABC 关于y 轴对称. 22.已知在平面直角坐标系中(1)画出△ABC 关于x 轴成轴对称图形的三角形A ′B ′C ′; (2)写出A ′,B ′,C ′的坐标.23.如图,在平面直角坐标系中,每个小方格的边长都是1个单位长度. (1)画出ABC 关于y 轴对称的A B C '''; (2)写出点A '、B '、C '的坐标; (3)求出ABC 的面积.24.如图,在平面直角坐标系中,△ABC 的位置如图所示(每个方格的边长均为1个单位长度).(1)写出下列点的坐标:A ( , ),B ( , ) C ( , )(2)若△ABC 各顶点的纵坐标不变,横坐标都乘﹣1,请在同一直角坐标系中找出对应的点A′,B′,C′,并依次连接这三个点,从图象可知△ABC 与△A′B′C′有怎样的位置关系?25.在平面直角坐标系中,O 为坐标原点,点(445)A a --,位于第二象限,点(4,1)B a ---位于第三象限,且a 为整数.(1)求点A 和点B 的坐标.(2)若点(,0)C m 为x 轴上一点,且ABC 是以BC 为底的等腰三角形,求m 的值. 26.如图,已知五边形 ABCDE 各顶点坐标分别为A (-1,-1),B (3,-1),C (3,1),D (1,3),E (-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F ,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据平面直角坐标系中点的对称的知识点可得到m 、n 的值,代入求值即可. 【详解】∵点(,2)A m 与点(3,)B n 关于y 轴对称, ∴32m n =-⎧⎨=⎩, ∴()()202120213+21m n +=-=-,故选择:C .【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.2.D解析:D 【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答. 【详解】解:∵图案上各个顶点的横坐标都乘以−1,纵坐标不变, ∴原图形各点的纵坐标相同,横坐标互为相反数, ∴新图案与原图案形状和大小完全相同. 故选:D .本题考查坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件.3.A解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B解析:B 【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,进而可得经过第2021次运动后,动点P 的坐标. 【详解】观察点的坐标变化可知: 第1次从原点运动到点(1,1), 第2次接着运动到点(2,0), 第3次接着运动到点(3,-2), 第4次接着运动到点(4,0), 第5次接着运动到点(5,2), 第6次接着运动到点(6,0), 第7次接着运动到点(7,1), …,按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环, 所以2021÷6=336…5, 所以经过第2021次运动后, 动点P 的坐标是(2021,2). 故选:B .本题考查了规律型-点的坐标,解决本题的关键是观察点的坐标变化寻找规律.5.B解析:B【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.D解析:D【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.【详解】∵A,B两点关于x轴对称,点A坐标为(2,-3),∴点B坐标为(2,3),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.7.D解析:D【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.【详解】由题意,得2-x=3x-4或2-x+(3x-4)=0,解2-x=3x-4得x=32,解2-x+(3x-4)=0得x=1,x的值为32或1,故选D.【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.8.D【分析】先根据运动图得出426,,P P P 的坐标,再归纳类推出一般规律,由此即可得出答案. 【详解】由运动图得:点2P 的坐标为(2,0), 点4P 的坐标为(4,0), 点6P 的坐标为(6,0),归纳类推得:点n P 的坐标为(,0)n (其中2n ≥,且为偶数), 因为20202>,且为偶数,所以点2020P 所在的位置的坐标是(2020,0), 故选:D . 【点睛】本题考查了点坐标规律探索,依据运动图,正确归纳类推出一般规律是解题关键.9.D解析:D 【分析】根据各象限内点的坐标特征解答对各选项分析判断后利用排除法求解即可. 【详解】解:A 、(1,2)在第一象限,故本选项不符合题意; B 、(-2,1)在第二象限,故本选项不符合题意; C 、(2,-1)在第四象限,故本选项不符合题意; D 、(-1,-2)在第三象限,故本选项符合题意. 故选:D . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.B解析:B 【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答. 【详解】 ∵m 2≥0, ∴−m 2−1<0,∴点P (−m 2−1,2)在第二象限. 故选:B . 【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.11.A解析:A【分析】根据蚂蚁的爬行规律找到蚂蚁爬行一循环的长度是24,∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A左边4个单位长度处,即可解题.【详解】解:∵A点坐标为(2,﹣2),B点坐标为(﹣2,﹣2),C点坐标为(﹣2,6),∴AB=2﹣(﹣2)=4,BC=6﹣(﹣2)=8,∴从A→B→C→D→A一圈的长度为2(AB+BC)=24.∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A左边4个单位长度处,即(-2,﹣2).故选:A【点睛】本题考查了点的运动规律问题,属于简单题,确定蚂蚁爬行的循环规律是解题关键.12.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.二、填空题13.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1).故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.14.6【分析】过点C作CE⊥AB于点E交BD于点M′过点M′作M′N′⊥BC于N′则CE即为CM+MN的最小值再根据三角形的面积公式求出CE的长即为CM+MN 的最小值【详解】解:过点C作CE⊥AB于点E解析:6【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴1×10×CE=30,2∴CE=6.即CM+MN的最小值为6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.15.1或-3【分析】由AB两点到x轴的距离相等即可得出关于a的含绝对值符号的一元一次方程解之即可得出结论【详解】∵平面直角坐标系内不同的两点A(3a+24)和B(32a+2)到x轴的距离相等∴|2a+2解析:1或-3.【分析】由A、B两点到x轴的距离相等,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】∵平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,∴|2a+2|=4,解得:a1=1,a2=-3.故答案为1或-3.【点睛】本题考查了两点间的距离公式以及解含绝对值符号的一元一次方程.由A、B两点到x轴的距离相等找出关于a的含绝对值符号的一元一次方程是解题的关键.16.(20)【分析】根据x轴上点的坐标的特点y=0计算出m的值从而得出点P坐标【详解】解:∵点P(2m+43m+3)在x轴上∴3m+3=0∴m=﹣1∴2m+4=2∴点P的坐标为(20)故答案为(20)解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).17.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键. 18.【分析】由点AB 的坐标可得出OAOB 的长结合△OAB 的面积为12即可得出关于a 的含绝对值符号的一元一次方程解之即可得出结论【详解】解:∵点A 的坐标为(a0)点B 的坐标为(04)∴OA=|a|OB=4解析:6±【分析】由点A ,B 的坐标可得出OA ,OB 的长,结合△OAB 的面积为12,即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:∵点A 的坐标为(a ,0),点B 的坐标为(0,4),∴OA=|a|,OB=4.又∵S △OAB =12, ∴12×4×|a|=12, 解得:a=6±.故答案为:6±.【点睛】本题考查了坐标与图形性质、三角形的面积以及解含绝对值符号的一元一次方程,利用三角形的面积公式,找出关于a 的含绝对值符号的一元一次方程是解题的关键. 19.【分析】根据平面直角坐标系确定坐标原点和xy 轴的位置进而解答即可【详解】解:如图所示:卒的坐标为(-2-1)故答案为:(-2-1)【点睛】此题考查坐标确定位置解题的关键就是确定坐标原点和xy轴的位置--解析:(2,1)【分析】根据平面直角坐标系确定坐标原点和x,y轴的位置,进而解答即可.【详解】解:如图所示:“卒”的坐标为(-2,-1),故答案为:(-2,-1).【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.20.(23)【分析】根据纵坐标不变横坐标变为相反数求解即可【详解】∵点P的坐标为(﹣23)关于y轴对称的点P的坐标是(23)故答案为:(23)【点睛】本题考查了坐标系中点的对称熟记对称变换中点的坐标的变解析:(2,3).【分析】根据纵坐标不变,横坐标变为相反数求解即可.【详解】∵点P的坐标为(﹣2,3)关于y轴对称的点P'的坐标是(2,3),故答案为:(2,3).【点睛】本题考查了坐标系中点的对称,熟记对称变换中点的坐标的变换规律是解题的关键.三、解答题21.(1)(2,3);(2)见解析.【分析】(1)根据纵坐标不变,横坐标变为相反数计算即可;(2)先逐一确定三角形的顶点关于y轴对称的对称点的坐标,然后顺次连接即可.【详解】解:(1)点A关于y轴对称的点的坐标为(2,3).(2)如图,△1A1B1C即为所求作.【点睛】本题考查了坐标系中两点关于y 轴对称的问题,熟记两个点关于y 轴对称时,坐标的变化规律是解题的关键.22.(1)作图见解析,(2)A ′(3,﹣4),B ′(1,﹣2),C ′(5,﹣1).【分析】(1)根据轴对称的性质,找出△ABC 各顶点关于x 轴对称的对应点,然后顺次连接各顶点即可;(2)根据所画图形可直接写出A ′,B ′,C ′的坐标.【详解】解:(1)所画图形如下所示,其中△A ′B ′C ′即为所求;(2)A ′、B ′、C ′的坐标分别为:A ′(3,﹣4),B ′(1,﹣2),C ′(5,﹣1).【点睛】本题考查了轴对称变换作图的知识,注意:做轴对称的关键是找到图形各顶点的对称点. 23.(1)答案见解析;(2)()3,2A '、()4,3B '-、()1,1C '-;(3)132. 【分析】(1)首先根据关于y 轴对称的点的特点找到相应的,,A B C ''',然后顺次连接,,A B C '''即可;(2)直接根据A B C '''在坐标系中的位置即可写出各标点的坐标;(3)用所在ABC 的长方形的面积减去三个小三角形的面积即可.【详解】解:(1)如图所示,A B C '''即为所求;(2)由图可知,()3,2A '、()4,3B '-、()1,1C '-.(3)A B C '''的面积为11113352323152222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查作图能力,掌握轴对称图形的作法是解题的关键.24.(1)A (3,4),B (1,2)C (5,1);(2)△ABC 与△A′B′C′关于y 轴对称;见解析【分析】(1)根据直角坐标系即可依次写出坐标;(2)根据△ABC 各顶点的纵坐标不变,横坐标都乘﹣1,得到对应点的坐标,再顺次连接,根据对称性即可判断.【详解】(1)点的坐标为:A (3,4),B (1,2)C (5,1);故答案为:(3,4),(1,2),(5,1);(2)△A′B′C′即为所求,△ABC 与△A′B′C′关于y 轴对称.【点睛】此题主要考查了作图−−轴对称变换,关键是掌握几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也就是要确定一些特殊的对称点,然后再连接即可. 25.(1)(4,4),(4,1)A B ---;(2)7m =-或1-【分析】(1)根据点A 位于第二象限,点B 位于第三象限, 可得到45010a a ->⎧⎨--<⎩,再根据a 为整数,求解即可;(2)根据题干可知AB x ⊥,设垂足为D ,利用勾股定理可求得CD ,进而可求出m 的值.【详解】解:(1)由题意得45010a a ->⎧⎨--<⎩, 解得415a -<<, ∵a 为整数,∴0a =,∴()()4,4,4,1A B ---;(2)由题意知,AB x ⊥轴,假设点C(m ,0)位置如图,AB x ⊥交x 轴于点D ,∴D(-4,0),∵△ABC 是以BC 为底的等腰三角形,∴54AC AB AD ===,,∴223CD AC AD =-=,∴34CD m ==+,∴7m =-或1-.【点睛】本题考查坐标与图形的性质、勾股定理、等腰三角形的性质及绝对值的性质,解题的关键是综合运用相关知识解题.26.(1)14;(2)F 是CD 中点,F (2,2)【分析】(1)延长ED 和BC ,交于点G ,根据各点坐标,利用四边形ABGE 的面积减去△DCG 的面积即可;(2)柑橘题意可得四边形ABGE 是正方形,再由ED=BC ,得到F 是CD 中点,再由点C 和点D的坐标得到点F的坐标.【详解】解:(1)延长ED和BC,交于点G,∵A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3),可得:EG∥AB,AE∥BG,∴点G的坐标为(3,3),∴五边形ABCDE的面积=4×4-2×2÷2=14;(2)由题意可得:四边形ABGE是正方形,ED=BC=2,∴当点F是CD中点时,根据轴对称性可得AF平分五边形 ABCDE 的面积,此时点F(2,2).【点睛】本题考查了点的坐标,线段中点,正方形和三角形的面积,解题的关键是根据坐标得到相应线段的长度.。

八年级数学上册第三章位置与坐标课时练习题及答案

八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章位置与坐标一、知识要点一、平面直角坐标系(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

1在空间内要确定一个点的位置,一般需要________个数据. 2、在平面直角坐标系内,下列说法错误的是()A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0 点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0 例1 点P 在x 轴上对应的实数是3 ,则点P 的坐标是,若点Q 在y 轴上 对应的实数是31,则点Q 的坐标是, 例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是。

学生自测1、点P(m+2,m-1)在y 轴上,则点P 的坐标是.2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为。

3、 已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是.4.平行于x 轴的直线上的点的纵坐标一定( )A .大于0B .小于0C .相等D .互为相反数(3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a=.(3)已知点P (x 2-3,1)在一、三象限夹角平分线上,则x=.5.过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为( ).A .(0,2)B .(2,0)C .(0,-3)D .(-3,0)6.如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( ).A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等知识点三:点符号特征。

点在第一象限时,横、纵坐标都为,点在第二象限时,横坐标为,纵坐标为,点有第三象限时,横、纵坐标都为,点在第四象限时,横坐标为,纵坐标为;y 轴上的点的横坐标为,x 轴上的点的纵坐标为。

例1 .如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.例2、如果xy <0,那么点P (x ,y )在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 学生自测1.点P的坐标是(2,-3),则点P在第象限.2、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是。

3.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;4. 若点P(x ,y )的坐标满足xy ﹥0,则点P在第象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第象限.若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第象限;5.若点P(m -1,m )在第二象限,则下列关系正确的是 ( )A.10<<mB.0<mC.0>mD.1>m6.点(x ,1-x )不可能在 ( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( )A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤38.(本小题12分)设点P 的坐标(x ,y ),根据下列条件判定点P 在坐标平面内的位置:(1)0xy =;(2)0xy >;(3)0x y +=.(2)点A(1-π,2)在第象限.(3)横坐标为负,纵坐标为零的点在( )(A)第一象限 (B)第二象限 (C)X 轴的负半轴 (D)Y 轴的负半轴(4)如果a-b <0,且ab <0,那么点(a ,b)在( )(A)第一象限, (B)第二象限 (C)第三象限, (D)第四象限.(5)已知点A (m ,n )在第四象限,那么点B (n ,m )在第象限(6)若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a=知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。

过点作x 轴的线,垂足所代表的是这点的横坐标;过点作y 轴的垂线,垂足所代表的实数,是这点的。

点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第个位置,中间用隔开。

例1、X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )A(2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)学生自测1、点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。

2.若点A的坐标是(-3,5),则它到x轴的距离是,到y轴的距离是.3.点P到x轴、y轴的距离分别是2、1,则点P的坐标可能为。

4.已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为().A.(3,2) B.(-3,-2) C.(3,-2)D.(2,3),(2,-3),(-2,3),(-2,-3)5.若点P(a,b)到x轴的距离是2,到y轴的距离是3,则这样的点P有()A.1个B.2个C.3个D.4个6.已知直角三角形ABC的顶点A(2 ,0),B(2 ,3).A是直角顶点,斜边长为5,求顶点C的坐标.7. 直角坐标系中,正三角形的一个顶点的坐标是(0,3),另两个顶点B、C都在x轴上,求B,C的坐标.9.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.10.直角坐标系中,一长方形的宽与长分别是6,8,对角线的交点在原点,两组对边分别与坐标轴平行,求它各顶点的坐标.11.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.14.已知等边△ABC的两个顶点坐标为A(-4,0),B(2,0),求:(1)点C的坐标;(2)•△ABC的面积知识点五:对称点的坐标特征。

关于x对称的点,横坐标不,纵坐标互为;关于y轴对称的点,坐标不变,坐标互为相反数;关于原点对称的点,横坐标,纵坐标。

例1.已知A(-3,5),则该点关于x轴对称的点的坐标为_________;关于y轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。

,则所得三角形与三角形ABC的关系例2. 将三角形ABC的各顶点的横坐标都乘以1()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将三角形ABC向左平移了一个单位学生自测1在第一象限到x 轴距离为4,到y 轴距离为7的点的坐标是______________;在第四象限到x 轴距离为5,到y 轴距离为2的点的坐标是________________;3.点A(-1,-3)关于x 轴对称点的坐标是 .关于原点对称的点坐标是。

4.若点A(m,-2),B(1,n)关于原点对称,则m=,n= .5.已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m ;6.点P(1-,2)关于x 轴的对称点的坐标是,关于y 轴的对称点的坐标是,关于原点的对称点的坐标是;7.若 ),()与,(13-m n N m M 关于原点对称 ,则 __________,==n m ; 9.直角坐标系中,将某一图形的各顶点的横坐标都乘以1-,纵坐标保持不变,得到的图形与原图形关于________轴对称;将某一图形的各顶点的纵坐标都乘以1-,横坐标保持不变,得到的图形与原图形关于________轴对称.10.点A(3-,4)关于x 轴对称的点的坐标是 ( )A.(3,4-)B. (3-,4-) C . (3,4) D. (4-,3-)11.点P(1-,2)关于原点的对称点的坐标是( ) A.(1,2-) B (1-,2-) C (1,2) D. (2,1-)12.在直角坐标系中,点P(2-,3)关于y 轴对称的点P 1的坐标是 ( )A (2,3) B. (2,3-) C. (2-,3) D. (2-,3-)(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______.13.若一个点的横坐标与纵坐标互为相反数,则此点一定在( )A .原点B .x 轴上C .两坐标轴第一、三象限夹角的平分线上D .两坐标轴第二、四象限夹角的平分线上知识点六:利用直角坐标系描述实际点的位置。

需要根据具体情况建立适当的平面直角坐标系,找出对应点的坐标。

学生自测:1.课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)知识点七:平移、旋转的坐标特点。

图形向左平移m 个单位,纵坐标不变,横坐标m 个单位;图形向右平移m 个单位,纵坐标不变,横坐标m 个单位;图形向上平移个单位,横坐标,纵坐标增加n 个单位;向下平移n 个单位,不变,减小n 个单位。

相关文档
最新文档