矩阵的秩与行列式的几何意义
矩阵和行列式的几何意义及其应用

矩阵和行列式的几何意义及其应用矩阵和行列式是数学中重要的概念,它们不仅在代数和线性代数中有着重要的应用,而且在几何中也有着深远的意义和广泛的应用。
本文将从几何角度探讨矩阵和行列式的几何意义以及它们在几何中的应用。
1.1 点、向量和坐标在几何中,我们常常需要描述空间中的点和向量,而矩阵和行列式是描述点和向量的重要数学工具。
在二维空间中,我们可以用一个二维向量来描述点的位置,如(3, 4)表示一个距离原点3个单位向右,4个单位向上的点。
将这个向量表示成一个列向量:```| 3 || 4 |```这个列向量就是一个2×1的矩阵。
同样的,我们也可以用一个2×2的矩阵表示一个二维的旋转或缩放变换。
1.2 点和线性变换在几何中,我们经常需要对空间中的点进行变换,如旋转、缩放、平移等。
这些变换可以用矩阵来表示。
设有一个二维点p(x, y),我们可以用一个2×2的矩阵A来表示一个线性变换,对点p进行变换得到新的点p':p' = Ap1.3 向量和矩阵的运算在几何中,我们经常需要对向量进行加法、数乘等运算,这些运算可以用矩阵来表示。
设有向量v和w,其坐标分别为v=(x1, y1, z1)和w=(x2, y2, z2),则向量的加法和数乘运算可以表示为:v + w = (x1+x2, y1+y2, z1+z2)kv = (kx1, ky1, kz1)这些运算可以用矩阵加法和数乘来表示,即向量(矩阵)的加法和数乘等运算可以用矩阵来表示。
二、矩阵和行列式在几何中的应用2.1 点的映射2.2 向量的投影v' = nv2.3 坐标变换同样的,对于三维空间中的点,我们可以用一个3×3的矩阵来表示一个坐标变换。
这些坐标变换可以表示从一个坐标系变换到另一个坐标系。
三、结语矩阵和行列式不仅在代数和线性代数中有着重要的应用,而且在几何中也有着深远的意义和广泛的应用。
矩阵可以用来描述点、向量和坐标的几何意义,可以用来表示点和线性变换、向量投影和坐标变换等几何应用。
矩阵的秩与行列式的意义

这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)?1 关于面积:一种映射大家会说,面积,不就是长乘以宽么,其实不然。
我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。
平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。
然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。
注意到以下事实:面积是一个标量,它来自于(构成其相邻边)两个矢量。
因此,我们可以将面积看成一个映射:其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。
下面我们将说明这个映射是一个线性映射。
从最简单的例子出发。
如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。
因此有:如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。
如果同时缩放,很显然,面积将会变成原面积的ab倍。
这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下:最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。
因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。
这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。
显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0):假定面积映射是一个关于矢量加法的线性映射,那么我们有:注意计算过程中用到了上面的结论。
这说明:也就是说,交换相互垂直操作数矢量的顺序,面积映射取负。
孰正孰负取决于认为的定义。
一般,我们把X轴单位矢量在前,Y轴单位矢量在后,从X轴到Y轴张成的一个平行四边形的面积,取做正号。
1.1 右手定则由此我们引入右手定则。
矩阵的秩与行列式

矩阵的秩与行列式矩阵是数学中的一个重要概念,它通过行与列组成的矩形区域来表示一组数。
在矩阵运算中,矩阵的秩与行列式是两个基本概念,它们在解决线性方程组、计算逆矩阵等问题中具有重要的作用。
本文将从理论和实际应用两个方面探讨矩阵的秩与行列式的关系。
一、矩阵的秩的定义与性质秩是矩阵的一个重要指标,用来描述矩阵线性无关的程度。
对于一个m×n的矩阵A,它的秩记作r(A),满足以下几个性质:1. 秩的定义:矩阵A的秩是指矩阵A的非零行数与非零列数中的较小值。
即r(A) = min{m, n}。
2. 行、列等价性:对于任意的矩阵A,它的行秩和列秩是相等的,即r(A) = r(A的转置)。
3. 矩阵的秩与行列式:矩阵的秩与其行列式之间存在一定的联系。
二、矩阵的行列式的定义与性质行列式是矩阵的一个标量值,在线性代数的课程中得到广泛的应用。
对于一个n阶方阵A,它的行列式记作det(A),行列式具有如下性质:1. 行列式的定义:对于n阶方阵A,行列式det(A)等于矩阵A所有元素的代数余子式按照特定规则组成的代数和。
2. 行、列互换:如果交换矩阵的两行或两列,它的行列式的值将变为相反数。
3. 行列式的性质:行列式具有多个性质,包括行列式与矩阵的行列互换、某一行或一列元素乘以一个常数、两行或两列相等等,行列式的值也将发生相应的变化。
三、矩阵秩与行列式的关系矩阵的秩与行列式在一定程度上存在一些关联关系,这一关系体现在以下两个方面:1. 矩阵的秩与行列式的关系:对于一个m×n的矩阵A,其秩r(A)等于它的行列式det(A)不等于零的最大阶数。
即r(A) = k,当且仅当A的k阶子式不等于零,而A的所有比k阶更大的子式均等于零。
2. 行列式的性质对秩的影响:若一个n阶矩阵A的行列式det(A)不等于零,那么该矩阵的秩r(A)等于其阶数n;若矩阵A的行列式det(A)等于零,那么该矩阵的秩r(A)小于n。
这是因为矩阵的秩与其行列式的零空间相关联,若行列式不为零,则矩阵的零空间只有零向量,从而秩等于阶数;若行列式为零,则矩阵的零空间存在非零向量,从而秩小于阶数。
矩阵和行列式的几何意义及其应用

矩阵和行列式的几何意义及其应用矩阵和行列式是线性代数中非常重要的概念,它们不仅在数学理论中有着重要的地位,而且在实际应用中也有着广泛的应用。
本文将介绍矩阵和行列式的几何意义及其应用。
一、矩阵的几何意义矩阵可以被看作是一个数字数组,它由行和列组成。
在几何上,矩阵可以表示一系列的几何变换,比如平移、旋转、缩放等。
1. 平移对于二维平面上的向量来说,一个平移矩阵可以表示向量在平面上的平移。
对于一个向量v=(x, y),如果我们希望将它在x方向上平移b个单位,在y方向上平移c个单位,那么相应的平移矩阵为:T = | 1 0 || b c |当我们将向量v乘以平移矩阵T时,得到的结果就是平移后的向量。
通过以上例子,我们可以看到,矩阵在几何中有着非常重要的意义,它可以表示各种几何变换,从而帮助我们对几何问题进行分析和计算。
除了在几何中的应用,矩阵在计算机图形学、物理学、工程学等领域也有着广泛的应用。
二、行列式的几何意义行列式是一个非常重要的概念,它可以表示矩阵的“形状”,从而帮助我们理解线性变换的性质。
在几何中,行列式可以理解为表示线性变换对空间的“拉伸”或“压缩”程度。
对于一个二维矩阵A,它可以表示一个线性变换T。
如果我们用矩阵A对一个向量v=(x, y)进行变换,得到的结果就是Av。
对于这个变换,它会使得原来的面积发生改变,而这种改变的程度可以通过A的行列式det(A)来表示。
行列式大于1表示面积被“拉伸”,小于1表示面积被“压缩”,等于1表示面积保持不变。
举个例子来说,如果我们有一个二维矩阵A,它的行列式为2,那么这个矩阵对应的线性变换会使得平面上的面积变为原来的两倍。
而如果行列式为0,表示这个线性变换会把整个平面变为一条线,面积被“压缩”为0。
行列式的几何意义帮助我们理解线性变换对空间的影响,它可以帮助我们分析和理解各种几何问题。
在实际应用中,行列式常常用来判断线性方程组的解的情况,或者用来解决几何问题,比如计算面积、体积等。
一文读懂矩阵的秩和行列式的意义

一文读懂矩阵的秩和行列式的意义雷锋网按:张量是神经网络模型中最基本的运算单元,模型内部绝大部分的数据处理都需要依靠张量为载体,进行一系列的数学运算,然后得到结果。
就像张量是矩阵在高维度下的推广一样,本文将深入探讨秩和行列式这些在矩阵论中最基础的知识点在高维度下的推广和实际意义。
本文作者夏洪进,原载于作者的个人博客,雷锋网经授权发布。
作为一个工科的学生,我们长期以来会使用比如像是矩阵以及行列式这些在线性代数上的知识,在这篇文章中,我想来聊一聊这些问题,即什么是面积,以及什么是面积的高纬度的推广.1 什么是面积?对于什么是面积,大家可能首先就会想到我们生活中常用的长*宽么?真的是这样么,其实在这里我们所谈论的面积,其实是欧几里得空间几何面积的基本的单位:平行四边形的面积.关于平行四边形的面积的定义,几何上所说的就是相邻两边边长乘以他们之间的夹角的正弦.但是当我们面对到一些更一般的情形和更高维度的数理问题的时候,我们就有必要把这个面积的定义推广开来.首先我们应当要注意的是.面积是作为一个标量,他是来自于相邻的两个边的两个矢量相乘的结果,因此来时,我们需要把面积看作为一种映射的关系.这里的V可以看做一个适量,V*V代表的是两个适量的有序对,那么f自然而然就是所求的面积.现在我们将来证明这个映射是一个线性的映射,请坐稳扶好:现在我们举一个最简单的例子,现在我们假设第一个矢量是(1.0),第二个矢量是(0,1),也就是说两个矢量分别是X轴和Y轴上的单位为正的单位向量,那么由这两个矢量构成的四边形,这个四边形其实就是一个正方形,根据面积的定义,其实就是*宽=1*1=1因此我们可以得到:现在假设把第一个矢量缩放a倍,这个四边形的面积也会变为相对应的a倍,这样的面积也将会变为原来的a倍,把第二个矢量缩放为b倍,这样的面积也会变为原来的b倍,如果这个时候我们同时对两个向量缩放为ab倍,这样的话面积也会变为原来的ab倍,这说明,面积的映射对于其他的两个操作数的矢量的标量积是呈现出各自线性的,如下:其实在实际的情况下,面积的映射对于其操作数(矢量)的矢量加法也是线性的.因为矢量加法的操作本身就是一个线性的,那么他的面积的映射其实也就是一个线性的映射.现在我想通过几个例子,来解释下映射加法线性的一些后果.两个共线矢量所张成的平行四边形是一条线,因此来说这个面积是0.现在假设面积映射是关于一个适量加法的线性映射,那么我们有以下的结果其实这里其实用到了一个理论:也就是说,在交换相互垂直操作数适量的顺序后,面积的映射变成一个负值.到底是正还是负取决于你认为的定义.一般情况下,我们把X轴的矢量放在前边,Y轴的矢量放在后边,从X轴到Y轴张成的一个平行四边形的面积,我们把这个符号一般看作为正号.2 三维空间里的应用在三维空间中,我们一般是利用的右手定则进行实验.如果以X轴的正方形为头部,Y轴的正方向为尾部.右手定则告诉我,纸面方向向外的方向是面积的正方向.如果反过来,纸面向内的方向就是该面积的正方向.与所规定的正负号的方向是相反的.现在这样来看正负号的几何的意义就比较明显了现在我们假设用平面内的任意两个矢量所张成的平行四边形的面积,现在用公式来进行表示:在这里,其实我们不难看到,所谓的面积其实就是一个2*2的矩阵的行列式:就跟下边的图所示的一样:其实我们的第一行即使我们的第一个行向量(a,b),第二行就是第二个行向量(c,d),再或者是第一列是第一个列向量(a,b)的转秩,第二个列自然就是第二个列向量(c,d)的转秩.当然这么做还是取决于我们是把矢量写成行向量还是列向量的形式表达.3 行列式的性质的计算在上述的推理中,我们可以很容易的发现,行列式的值是把与行列式的矢量写成列向量的横排还是行向量的竖排的方式是无关的.这也就是为什么,在计算行列式的时候,行列的地位是对等的.并且我们还应当注意到,根据上述的分析,交换向量的顺序,面积是负号的原因.这也就是为什么行列式中,交换列向量或者行向量一次,就应当要取一次负号的原因.另外行列式其他的计算的性子,其实都一一反映在面积映射的线性性当中.所以,综上所述,行列式实际上本身就是一个关于面积的形式的推广.其实就是在给定一组基的情况下,N个向量张成的一个N维定义的广义四边形的体积,其实这就是行列式本质的一个含义.4 行列式的一个推广根据上边的结论,我们其实很容易的推广到三维体积的一个计算:在这里我们应该要注意到,行列式的定义,其实是每一行各取一个不同列的元素的一个乘积并且符号和所谓的逆序性有关的.什么是逆虚性?所谓逆序性,其几何意义就是在规定了一个正方向之后(比如从1,2,3,4,5...N这个顺序定义为正号),交换任意一对数都取一次负号。
矩阵和行列式的几何意义及其应用

矩阵和行列式的几何意义及其应用矩阵和行列式是线性代数中非常重要的概念,它们不仅在数学理论中有着重要的地位,而且在现实生活中也有着广泛的应用。
矩阵和行列式的几何意义和应用是我们必须深入了解的内容,本文将就此进行探讨。
我们来说说矩阵的几何意义。
矩阵可以看作是一个矩形的数组,其中的元素通常代表着某种量,比如空间中的坐标,或者物理问题中的力、速度等。
在几何中,矩阵可以表示空间中的旋转、缩放、平移等变换。
二维空间中的平移可以通过一个2x2的矩阵来表示:\[ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]这个矩阵表示了在x和y方向上都不发生变化,也就是相当于没有平移。
而如果我们希望在x方向上平移了2个单位,那么可以使用如下的矩阵来表示:我们来说说行列式的几何意义。
行列式是矩阵的一个重要性质,它可以用来判断矩阵是否可逆,从而也可以用来判断一个线性变换是否可以逆转。
几何上来看,行列式可以表示一个线性变换对空间形状的影响。
如果一个矩阵的行列式为0,那么它代表的线性变换将使空间中的一些维度丢失,从而导致形状变得扁平或者折痕,这种情况往往是不可逆的。
接下来,让我们来说说矩阵和行列式在实际生活中的应用。
矩阵和行列式在很多领域都有着广泛的应用,下面就以几个具体的例子来说明。
矩阵和行列式在计算机图形学中有着重要的应用。
在计算机图形学中,我们经常需要对图形进行平移、旋转、缩放等变换,而这些变换都可以通过矩阵来表示。
计算机图形学中还经常需要进行投影变换,而将一个三维空间中的坐标点投影到二维屏幕上,也可以通过矩阵来表示。
矩阵和行列式在计算机图形学中有着广泛的应用。
矩阵和行列式在机器学习和人工智能领域也有着重要的应用。
在机器学习中,我们经常需要对大量的数据进行处理和分析,而矩阵运算在这个过程中是非常高效的工具。
很多机器学习算法都可以通过矩阵运算来表示,比如主成分分析(PCA)和奇异值分解(SVD)等。
矩阵的秩的几何意义

a
。
,
…
,
,
今是
八的 行
,
。
:
,
…氏
l
所 生成 的 厂 的子空 间 L
:
, n
”
(
a
:
,
a
:
,
a
n
)
,
叫做 矩阵 A 的 行 空 间
,
类 似地
,
由 八的
个列 向景 日 日 … 日 所 生成 的 F
,
m
的子 空 间
(日
日
:
:
,
日 {
,
。
)
叫做
, ,
A 的列空 间
为 了 证 明矩 阵秩 的 几何 意 义
+
a
1
r
h
r
=
0
a
,
z
h
z
+
a
,
:
h
Z
十
…
+
a
。
,
h
,
=
0
〔1 〕
a
。
l
h
:
+
a
。
Z
h
:
+
…
+
a
。
,
1 1
:
=
0
r
由前
r
个 方 程 构 成 的 方 程组 系 数行 列 式 恰好 为 A 的 左 上 角
1 ) 只 有零 解 h
:
阶子 式
,
因此 不 等 于 零
故方 程组 (
=
h
, :
Z
二
矩阵的秩与矩阵的行列式

矩阵的秩与矩阵的行列式矩阵是数学中的一个重要概念,广泛应用于线性代数、计算机科学等领域。
在矩阵的研究中,我们常常涉及到矩阵的秩和矩阵的行列式两个概念。
本文将探讨矩阵的秩与矩阵的行列式之间的关系以及它们在实际问题中的应用。
一、矩阵的秩的定义和性质矩阵的秩是描述矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量中线性无关向量的个数。
定义:一个m×n的矩阵A的秩,记作rank(A),是指它的最大线性无关向量组所含向量的个数。
性质1:若矩阵A的行秩和列秩相等,则称其秩为r,且等于行秩或列秩。
性质2:任意一个m×n矩阵的秩不可能大于min(m, n)。
性质3:若矩阵A的秩为r,则矩阵A必定存在r阶非零子式,且所有r阶子式都非零。
二、矩阵的行列式的定义和性质矩阵的行列式是一个与矩阵相关的数值,它用于表示线性变换对$n$维空间的扩大或收缩的比例。
定义:对于一个n阶方阵A,A的行列式,记作det(A)或|A|,等于它的n阶子行列式的代数和。
性质1:对于一个n阶方阵A,若A可逆,则其行列式不为0,即det(A) ≠ 0。
性质2:若矩阵B由矩阵A的行(列)交换得到,则det(B) = -det(A)。
性质3:若矩阵B由矩阵A的一行(列)乘以常数k得到,则det(B) = k*det(A)。
三、矩阵的秩与矩阵的行列式的关系矩阵的秩与矩阵的行列式之间有着紧密的联系,下面我们来详细介绍。
定理1:对于一个n×n的矩阵A,A的秩与其行列式的关系为rank(A) = n,当且仅当det(A) ≠ 0时成立。
理解:当一个矩阵的秩等于其阶数时,意味着所有的行向量或列向量都是线性无关的,此时行列式不等于0。
反之亦然,当行列式等于0时,说明矩阵的行向量或列向量之间存在线性相关关系,从而秩小于n。
定理2:对于任意一个m×n的矩阵A,矩阵的主子式及其扩展子式(包括省略的行列)的非零子式所组成的最大阶数,即其秩rank(A)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的秩与行列式的几何意义这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)?1 关于面积:一种映射大家会说,面积,不就是长乘以宽么,其实不然。
我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。
平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。
然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。
注意到以下事实:面积是一个标量,它来自于(构成其相邻边)两个矢量。
因此,我们可以将面积看成一个映射:其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。
下面我们将说明这个映射是一个线性映射。
从最简单的例子出发。
如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。
因此有:如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。
如果同时缩放,很显然,面积将会变成原面积的ab倍。
这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下:最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。
因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。
这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。
显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0):假定面积映射是一个关于矢量加法的线性映射,那么我们有:注意计算过程中用到了上面的结论。
这说明:也就是说,交换相互垂直操作数矢量的顺序,面积映射取负。
孰正孰负取决于认为的定义。
一般,我们把X轴单位矢量在前,Y轴单位矢量在后,从X轴到Y轴张成的一个平行四边形的面积,取做正号。
1.1 右手定则由此我们引入右手定则。
注意右手定则只在三维空间中有效。
如果以X正方向为首,Y正方向为尾,右手定则告诉我们,纸面向外是面积的正方向;如果反过来,那么纸面向内就是该面积的正方向,与规定的正方向相反,取负号。
那么面积正负号的几何意义就明显了。
由此,我们不难得到平面内任意两个矢量所张成的平行四边形的面积(*):我们不难看到,所谓面积就是一个2X2矩阵的行列式:如下图。
其中第一行就是我们的第一个行向量(a,b);第二行就是第二个行向量(c,d)。
或者第一列是第一个列向量(a,b)^T, 第二列是第二个列向量(c,d)^T。
这取决于我们把矢量写成行向量(前者)还是列向量(后者)的形式。
1.2 行列式的计算性质由此我们很容易能发现,行列式的值与把矢量写成列向量横排还是行向量竖排的方式是无关的。
这也就是为什么说,在计算行列式时,行和列的地位是对等的。
并且注意到,由上述分析,交换矢量的顺序,面积的值取负号,这也就是为什么行列式中,交换列向量或者行向量一次,就要取一次负号的原因。
另外,行列式的其他计算性质,都一一反映在面积映射的线性性之中。
由此我们可见,行列式就是关于“面积”的推广。
他就是在给定一组基下,N个向量张成的一个N维广义四边形的体积。
这就是行列式的本质含义。
2,行列式的推广由上,我们可以轻松推广到三维体积的计算:注意到,行列式的定义,是每一行各取一个不同列的元素的乘积并且符号和所谓的逆序性有关(PARITY)。
所谓逆序性,其几何意义就是在规定了一个正方向之后(比如从1,2,3,4,5...N这个顺序定义为正号),交换任意一对数都取一次负号。
这样的性质我们在上述的面积函数中已经有所看到,实际上体积,更高维度的广义体积,也有正方向之说,只不过已经难以用右手法则(以及叉乘)来形象说明罢了。
右手定则的局限性也是将高维面积推广成行列式表达的一个动机之一。
对于这种交换任何一对指标(操作数)就改变符号的性质,我们叫做:反对称(ANTISYMMETRIC)性。
之所以要取不同行不同列元素的乘积,是因为如果有任意两个元素是同行(列)的,那么交换他们的列指标,乘积不变但符号要相反,这乘积必须是0,也就是在行列式的值中不予体现。
行列式的定义之所以这么冗杂,就是来自于面积映射的反对称性。
实际上面积映射是一个2-FORM,把2-FORM拓展到任意的R-FORM,我们能看到R-FORM的形式和一个R乘R矩阵的行列式是完全一致的。
由上我们已经可以看到,2-FORM代表的是平面内的面积;3-FORM自然而然就是3维空间内的体积;4-FORM是4维空间里的超体积。
以此类推。
而实际上,由上我们已经看到,将这些矢量在给定的基坐标下写成矩阵(必定是方阵),矩阵的行列式就是对应的面积(体积)。
这个推广的证明各位应该能在任何一本线性代数的专门教材中看到(如果没有的话可以自证)。
3,线性无关的几何意义记空间的维度为N,给定一组矢量,什么是他们线性无关性?我们下面将说明,一组矢量的线性相关性本质上,是描述他们所张成的广义平行四边形体积是否为NULL(零)。
我们仍然从最简单的2维空间出发。
如果两个2维空间的向量是线性相关的,那么就是说,其中一个与另外一个共线,也就是说,他们所张成的四边形,面积是零。
反之,如果线性无关,则不共线,则面积不为零。
同理,如果三个三维空间的向量是线性无关的,那么他们三者就不共面。
因此他们所张成的平行六面体,体积不是零。
更进一步地,我们知道,二维空间如果给定三个向量,他们必定共面(二维空间内不可能存在一个“体积”),因此他们必定线性相关。
推而广之,我们不难理解,为什么一个维度为N的空间内,任意一组M个向量(M>N)必定线性相关了:因为维度大于空间维度的超平形四边体不存在。
由此我们得到一个一一对应的关系:N个向量线性无关 == 他们所张成的N维体体积不为零反之,如果N个向量线性相关,那么他们所张成N维体,体积为零。
例如,一对共线矢量张成的平行四边形,退化成一个线,其面积显然是0;一组共面的三个矢量张成的平行六面体,退化成一个面,其体积显然是0。
因为我们已经知道行列式与面积的关系,因此我们有结论:线性无关矢量组成的矩阵的行列式不为零;线性相关矢量组成的矩阵的行列式必为零。
4,行列式与矩阵的逆我们知道,行列式为0的矩阵,不可逆;行列式不为零的矩阵,可逆。
我们不禁要问,代表面积的行列式,是如何和线性变换的可逆性联系在一起的呢?当我们理解了线性变换的几何意义之后,就不难解答了。
我们现陈述如下:记线性变换的矩阵为A。
如果我们把空间中一组线性无关的矢量都写成列向量的形式,那么他们所张成的N维体体积不为零,根据上面的分析,其值由行列式给出。
向量经过线性变换A变换之后,得到的新向量形式如下:注意到A是一个N*N的矩阵,向量是列向量。
变换前,N维体的体积是:变换之后,N维体的体积是(注意到,第二个等式实际上说明了几何意义是如何定义矩阵乘法的,也就是N*N矩阵A和另外一个N个列向量组成的N*N矩阵的乘法):A的行列式如果不为零,则代表这个变换后,N维体的体积不是NULL。
又结合线性无关与体积的性质,我们可以说:如果A的行列式不为零,那么A可以把一组线性无关的矢量,映射成一组新的,线性无关的矢量;A是可逆的(一对一的映射,保真映射,KERNEL是{0})如果A的行列式为零,那么A就会把一组线性无关的矢量,映射成一组线性相关的矢量;A 就不是可逆的(非保真映射,KERNEL不是{0}。
我们可以研究他的陪集)如果A的行列式为负数,那么A将会改变原N维体体积的朝向。
从线性无关到线性相关,其中丢失了部分信息(例如坍缩成共线或者共面),因此这个变换显然就是不可逆的。
线性是否无关和所张成N维体的体积有直接关系,这个体积值又与A 的行列式有关。
因此我们就建立了A的行列式与其是否可逆的几何关系。
举例说明,我们假设A是一个3维的矩阵。
如果映射前,有一组三个线性无关的矢量,我们知道它们张成的体积不是0;经过映射后,他们对应的新矢量也能张成一个平行六面体,那么这个平行六面体的体积就是原体积乘以A的行列式。
显然,如果A的行列式是0,那么变换后的新“平行六面体"的体积将不可避免的也是0。
根据上文的结论,我们有:变换后的这一组新矢量线性相关。
结论:线性变换A的行列式是否为零,就代表了其映射的保真性,也即,能不能把一组线性无关的矢量变换成另一组保持无关性的矢量。
5,秩有时候,虽然A并不能保持把空间一组最大数目矢量的线性无关性,但它能保证一组更少数目矢量的线性无关性。
这个数目往往少于A的维度(或者说,线性空间的维度),这个数目就叫做线性变换A的秩。
例如,一个秩为2的三乘三矩阵A。
因为秩小于3,那么任何一个3维六面体经过他的变换后,体积都为零(退化一个面);但存在一个面积不为零的面,在变换之后还可以是一个非零面积的面。
所谓一个线性变换的秩,无非就是变换后,还能保持非零体积的几何形状的最大维度。
理解了秩,行列式和可逆性的几何意义,我们就能随意构造一些线性变换A,使得他要么保全所有的几何体,要么将特定维度特定结构的几何体,压缩成更低维度的几何体。
这不就是所谓的“降维打击”么。
所以说,三体中的终极必杀,其实也就是一个行列式为0,秩比维度少1的一个线性变换而已。
更高维度下的推广,还希望读者自己去进行;此外上文中关于面积函数线性性的证明,也交给读者自行去严格验明。
BO2012.11.10注: 本文非数学系同学所作,如有偏颇,还望谅解;也欢迎数学系同学提供指正~。