线性代数的几何意义笔记
线性代数的重点知识点总结

线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。
在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。
本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。
1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。
向量可以表示为一个有序的数列,也可以表示为一个列矩阵。
矩阵是由多个向量按照一定规则排列而成的矩形阵列。
矩阵可以进行加法、减法和数乘等运算。
矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。
2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。
线性方程组的求解可以通过消元法、矩阵的逆等方法进行。
当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。
3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。
子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。
子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。
子空间的维度等于基向量的个数。
4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。
线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。
线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。
特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。
特征值和特征向量可以通过求解线性方程组来得到。
6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。
内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。
线性代数知识点全面总结

线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。
它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。
下面将全面总结线性代数的知识点。
1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。
向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。
向量的加法、减法、数乘等运算满足一定的性质。
2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。
向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。
向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。
3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。
矩阵可以表示线性方程组、线性变换等。
矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。
4.线性方程组线性方程组是由线性方程组成的方程组。
线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。
线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。
5.行列式行列式是一个包含数字的方阵。
行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。
6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。
特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。
通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。
7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。
8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。
最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。
9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。
正交变换是一种保持向量长度和夹角不变的线性变换。
线性代数知识点归纳,超详细

线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数与几何阅读笔记

《线性代数与几何》阅读笔记一、内容描述线性代数基础知识:书中首先介绍了线性代数的基本概念和定义,如向量、矩阵、线性方程组等。
作者详细解释了这些概念的本质,并通过实例加以阐述,帮助读者建立起扎实的线性代数基础。
矩阵理论:矩阵作为线性代数的重要工具,是本书的重点之一。
书中详细讨论了矩阵的运算(如矩阵的加法、乘法、转置等)、矩阵的逆、特征值和特征向量等关键概念,并对这些概念在解决实际问题中的应用进行了深入探讨。
向量空间与线性变换:本书阐述了向量空间的概念,包括其性质、子空间、向量空间的基和维数等。
书中还介绍了线性变换的概念、性质以及在线性代数和几何中的应用。
几何应用:本书强调了线性代数与几何学的紧密联系。
通过对向量、矩阵等概念在几何中的运用,阐述了线性代数在解析几何、空间几何等领域的应用实例。
书中还讨论了线性代数在图形处理、计算机动画等领域的实际应用。
实例分析:书中包含了许多实际问题的分析和解决过程,如通过线性代数解决线性方程组的问题、利用矩阵进行图像处理等。
这些实例不仅增强了理论的实用性,也使得读者能够更直观地理解线性代数的应用。
扩展知识:除了基础的线性代数知识,本书还介绍了一些高级主题,如张量、外积和内积等概念,为读者提供了更深入的学习方向。
通过阅读《线性代数与几何》,我深刻理解了线性代数的基本概念及其在几何学中的应用。
这本书不仅为数学爱好者提供了丰富的知识,也为相关领域的研究人员和学生提供了有价值的参考。
二、基础知识篇线性代数与几何作为数学的一门重要分支,是研究向量空间、矩阵、线性变换等概念及其相关性质的学科。
本阅读笔记的第二部分将围绕线性代数与几何的基础知识展开,旨在梳理关键概念,加深理解。
向量的概念:向量是一个具有大小和方向的量,可以用有向线段表示。
在几何空间中,向量可以描述点的位移、速度等。
在线性代数中,向量是一组数,可以表示空间中的点或方向。
向量的运算:包括向量的加法、数乘、数量积(点乘)、向量积(叉乘)等运算,这些运算是构建向量空间的基础。
线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。
它在数学、物理、工程、计算机科学等领域都有广泛的应用。
下面将对线性代数的一些重要知识点进行归纳整理。
1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。
向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。
2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。
线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。
3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。
解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。
4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。
矩阵可以表示线性映射、线性方程组和向量空间的基等。
矩阵的运算包括加法、数乘、矩阵乘法和转置等。
5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。
行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。
6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。
特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。
特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。
7.正交性:正交性是指向量之间的垂直关系。
在内积空间中,如果两个向量的内积为零,则它们是正交的。
正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。
8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。
如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。
线性代数的几何意义

线性代数的几何意义注解线性代数是优雅和有趣的一门学科,应用也很多,只是目前多数线性代数教材似乎都偏重"代数"而较少涉及"线性"一词包含的几何意义,所以可能给人印象较抽象,不容易让同学产生兴趣,有幸在以前偶然一次看到一位工程师自编的一本小册子叫《线性代数的几何意义》,加上后来阅读matlab 作者的书籍,才发现原来线性代数的几何含义真的印证了“数学之美”,的确很美,所以想借鉴这些零散的阅读,加上自己后来的理解,把它的部分几何意义注解一下,希望以前对线代没有很多兴趣的同学能喜欢上它,同时我也会保持更新,不断完善,一起体会数学无与伦比的美丽矩阵的几何意义1、一个矩阵是由若干向量组成的,矩阵可以看作是这些向量的集合或由这些向量为基张成的空间(在力学分析,向量空间应用时常取此几何含义,后文把此类几何含义称作矩阵的向量空间)如矩阵5673⎛⎫⎪⎝⎭按照行向量可表示为如下形式2、一个矩阵是由若干向量组成的,矩阵可以看作是这些向量终点组成的图形(在计算机图形学中常取此几何表示,后文把此类几何含义称作矩阵的图形),如矩阵579 635⎛⎫ ⎪⎝⎭按照列向量可表示为如下图形如下图是在matlab 中将z=sin(x)*cos(y)算得的离散点组成的矩阵表示成几何图形注1:如果单独查看一个矩阵m n A ⨯,可以有两种解读:矩阵A 由m 个n 维向量组成,或者由n 个m 维向量组成;在使用时会根据实际情或约定选择其中一种,而在参与变换或其他运算时,这两种解读一般不能混淆,一定要确定注2:当我们把矩阵表示成图形时,其作图没有固定标准,并不一定是把所有向量终点连接起来构成一个多边形,规则是使用者制定的,可以是网格,可以是离散面片等行列式的几何意义一个方阵n n A ⨯的行列式的绝对值是其行向量或列向量所张成的平行几何体的空间积,对于二阶行列式,就是向量张成的平行四边形的面积,对于三阶行列式,就是对应平行六面体的体积;如方阵5673⎛⎫ ⎪⎝⎭的行列式绝对值为27,它就是下图平行四边形的面积注:行列式其实是带有符号的,实际上,正负号表征了这些向量作为线性空间基的手性,正号表示右手系,负号表示左手系,在二阶矩阵的向量空间里,其判别方法是,伸出右手和矩阵的第一个列向量或行向量平行,然后调整手的正反使得能从此向量转过小于180度的角到达第二个向量,这时大拇指如果朝上(从纸面指向自己)则为右手系,矩阵的行列式为正,反之则为左手系,对应行列式为负;如果是三阶矩阵,则从第一个向量转向第二个向量时,如果大拇指指向第三个向量方向(不必重合),则为右手系,其行列式为正,反之为左手系,行列式为负;其实这一点上更广义的表述应是向量空间的基相对自然坐标系的顺序性(代数上可用逆序数表达)克拉默法则的几何意义以二维形式为例来说明其几何意义:方程A x =b ,设A=11122122a a a a ⎛⎫ ⎪⎝⎭,b =12b b ⎛⎫ ⎪⎝⎭,待求的x =12x x ⎛⎫ ⎪⎝⎭ 将A 的两个列向量分别表示为a1,a2,那么原方程可表示为1x a1+2x a2=b ,这样可以把1x 与2x 看作是列向量a1,a2的伸缩因子,经过伸缩后再叠加即得到和向量b ,故原方程可以看作已知列向量被伸缩并叠加后的向量b ,求伸缩因子i x我们已经知道行列式的几何意义,显然矩阵A 对应的平行四边形的面积就是|A|(这里以带符号的有方向面积表示,因为伸缩因子也是有符号的),当某一个向量被伸缩后,如图将OB 边伸长至OE ,形成新的平行四边形OAFE ,记其面积为OAFE S ,这样a1的伸缩因子1x 可表示为||OAFE S A ,显然只要求出OAFE S 即可解出未知量;图中OG 即向量b ,因为它是1x a1,2x a2的线性叠加,所以G 点必在EF 的延长线上,这样OG 和OE 相对OA 边的高就是相同的,故OA 与OG 组成的平行四边形面积和OAFE 相同,即OAFE S =|b a2|,所以可求得1x =|b a2|/|A|,同理可得2x =|a1 b |/|A|,可以看出此表达式和克拉默法则等价矩阵乘法的几何意义我们知道矩阵是由若干向量组成的,因此可自然地把矩阵乘法看作是两个矩阵的同维向量之间做内积(或点乘),而内积的意义是两向量同向投影的乘积,但这只是一个表面的几何含义,比较抽象(也有应用之处,后面会提到);实际上,对于矩阵乘法C=AB ,作用后得到的新矩阵C 可以看作是矩阵A 经过某种变换得到的,也可以看作是矩阵B 经过某种变换后得到的,而这种变换显然就是乘以另一个矩阵的过程,结合前面提到的矩阵的几何意义,故可以把矩阵乘法C=AB 看作是图形A (或B )经过变换B (或A )后得到新图形C ,或者是向量空间A (或B )经过变换B (或A )后得到新的向量空间C ,对于简单的变换矩阵这一点最容易感性体会到;例如变换矩阵100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭会把原3D 图形向x-y 面投影,变换矩阵100010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭会把原图形对x 轴镜像,变换矩阵cos30sin 30sin 30cos30-⎛⎫ ⎪⎝⎭会把原2D 图形相对原点逆时针旋转30度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以,看一个函数是不是线性函数,只需要证明上面这个等式是否成立,或(1)(2)分别证明也行。
K就如同高中的函数解析式,也就是两个集合间的对应法则。
线性变换与同构映射的区别和联系
相同点:都保持线性运算(保持加法、保持数乘),即和的像等于像的和,数乘的像等于像的数乘.
区别:
(1)线性变换是一个空间到自身的映射,同构映射通常是一个空间到另一个空间的映射;
(2)线性变换未必是可逆的,同构映射首先是双射,故一定是可逆的.
(3)如果线性变换可逆,则该线性变换为双射,从而满足同构映射的三个条件:
(i)是双射,(ii)保持加法,(iii)保持数乘
故为同构映射,但它又是到空间自身的映射,故可逆的线性变换是自同构映射.
线性变换就是矩阵的变换,而任何矩阵的变换可以理解为一个正交变换+伸缩变换+另一个正交变换。
(正交变换可以暂时理解为不改变大小以及正交性的旋转/反射等变换)A*P = y*P ,y就是特征值,P是特征向量,矩阵A做的事情无非是把P沿其P的方向拉长/缩短了一点(而不是毫无规律的多维变换)。
y描述沿着这个方向上拉伸的比例。
对于满秩的n*n方阵,做特征值变换,非满秩的矩阵,做奇异值变换,差别在于前者是个对角阵,后者形成对角阵和零矩阵合成的矩阵。
下面是更直观的例子
1.平面引入直角坐标系之后,二维空间所有的向量都可以用两个基向量i=(1,0)和j=(0,1)的线性组合来表示,例如a=(4,6),可以表示为a=4i+6j。
2.但是也可以由i=(2,0)和j=(0,2)两个向量来表示,例如a=2i+3j。
3.还可以由i=(1,1)和j=(1,-1)来表示,例如a=5i-1j。
4.或者由i=(1,0)和j=(1,-1)表示,例如a=10i-6j。
5.在1的基础上,我们还可以将a表示为i=(1,0),j=(0,1),k=(1,1)三个向量的线性组合,也就是a=4i+6j+0k或者a=0i+2j+4k或者a=2i+4j+2k等等等等我举不完了。
这其中k=i+j。
通过上面的举例我们可以总结出几条。
由5点到4点,将多余的基向量k去掉,得到最大线性无关向量组。
由4点到3点,将两个基向量的夹角变成直角,实现正交化。
由3点到2点,将构成正交的两个基向量旋转,使其与坐标轴重合,实现对角化。
由2点到1点,通过伸缩将两个基向量的长度变成单位长度,实现规化。
通过上面的几个步骤,我们可以看出,任何一组向量构成的坐标系,都可以通过化简,正交,对角,规的过程,将任何乱七八糟莫名其妙的坐标系变换成笛卡尔坐标系。
那这么做有什么用呢?到这里我开了一下脑洞:
假如说,平面有两个椭圆,将直角坐标系的原点放在一个椭圆的长轴和短轴交点处,这样就可以得到这个椭圆的标准方程,就是高中课本上那个。
由于这两个椭圆的位置相对,这样一来另一个椭圆的位置也就定下来了,可惜很难看,长得很歪,很难用方程表示。
这时就可以以这个椭圆为原点再建立一个坐标系,并且在这个坐标系下用标准方程表示出来,这样两个椭圆都有了方程来表示,问题就化简为了两个坐标系之间的关系,这时再用矩阵来运算就好了。
正交变换是保持图形形状和大小不变的几何变换,包含旋转,平移,轴对称及上述变换的复合.
就是所有保持原点不动、长度不变的线性变换。
比如旋转,比如反射。
就这两种。
前者保持定向,后者反向。
[][]121
121112111121cos cos cos e ⋅=⋅=⋅⋅=θαββθαβββθαββββαβ,,是2α在1e 上的 分向量
即a的模,
矩阵等价与向量组等价的关系
矩阵是指排成n行m列的一个数表。
在线性代数中矩阵是一个重要而有力的工具,应用于线性代数的始末,与线性代数的每一章节容都有牵连。
向量是一个数组。
如果向量仅有一个分量,它就是通常意义上的数;如果向量的分量有两个或三个,在解析几何中,它表示平面或空间的有向线段。
在几何上与线性代数中向量的运算具有相同或相应的法则。
向量可以作为特殊的矩阵,也可作为矩阵的一部分。
n个m维列向量组成的向量组即可作成一个m×n矩阵。
所以矩阵与向量组之间有着千丝万缕的联系。
例如矩阵与其行向量组及列向量组均有相同的秩,方阵可逆的充要条件是其行(列)向量组线性无关等。
但是矩阵的等价与向量组的等价却没有任何必然的联系!
矩阵等价的定义:如果矩阵A可以经过有限次初等变换成为矩阵B,就称矩阵A与矩阵B等价。
矩阵等价的两个充要条件:存在可逆矩阵P、Q,使得PAQ =B;A与B同型,且r(A)=r(B)。
向量组的等价,是指两个向量组能相互线性表示。
矩阵等价与向量组等价有如下关系:
1.两矩阵等价,它们的行向量组与列向量组不一定等价!(反例在后面)
2.两个向量组等价,它们作成的矩阵不一定等价!(向量组等价,两向量组中所含向量个数可以不同,但矩阵等价,两矩阵必定具有相同的行数与列数)
在什么情况下矩阵等价其行向量组或列向量组等价呢?
l 若矩阵A经初等列变换成为矩阵B,即存在可逆矩阵Q,使AQ=B,也可以写为(α1,α2,…,αn)Q =(β1,β2,…,βn),此时可知B的列向量组可以由A的列向量组线性表示,因为Q为初等矩阵的乘积,所以可逆,对AQ=B两边右乘Q-1,有A=BQ-1,故A的列向量组可以由B的列向量组线性表示。
此时可得A的列向量组与B 的列向量组等价。
l 同理可知:若矩阵A经初等行变换成为矩阵B,则A的行向量组与B的行向量组等价。
l 矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价!(反例在后面)在什么情况下向量组等价其对应的矩阵也等价呢?
l 若向量组A与向量组B均有n个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A与B等价!(因向量组A与向量组B等价,则它们有相同的秩,又A与B作成的矩阵A与B有相同的行与列,且秩相等,故矩阵A与B等价)
l 要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n个向量的两个m维向量组A与B,才有可能讨论其对应的矩阵A与B是否等价。
两矩阵,A B 等价,能推出他们的行向量组一定等价或者列向量组一定等价么?
【解答】不可以!
首先矩阵A 经初等行变换化为矩阵B ,则称,A B 行等价;
矩阵A 经初等列变换化为矩阵B ,则称,A B 列等价;
矩阵A 经初等变换(包含行变换和列变换)化为矩阵B ,则称,A B 等价;
显然,A B 行等价则有,A B 等价,反之不然!
我们再来看看什么是向量组的等价?
两向量组等价是指两向量组可以互相线性表示,应注意两向量组等价他们所含向量个数可以不一样的!!!
例如向量组I :100⎛⎫ ⎪ ⎪ ⎪⎝⎭
与向量组II :210,000⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭等价。
显然矩阵,A B 行等价,可以推出他们的行向量组等价!,A B 列等价可以推出他们的列向量组等价! 从而,A B 等价未必有,A B 行等价,从而也未必有他们的行向量组等价!
看一个具体的例子:
3131100100101010010010000100101A r r B c c C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
u u u u u r u u u u u u r
显然矩阵,A B 行等价,,A B 的行向量组等价,但列向量组不等价!
矩阵,B C 列等价,,B C 的列向量组等价,但行向量组不等价!
矩阵,A B等价(既做了行变换,也做了列变换),但他们的行、列向量组均不等价!
左行右列。