2010年普通高等学校招生全国统一考试-山东2010文科数学高考真题

合集下载

2010年高考新课标全国卷文科数学试题(附答案)

2010年高考新课标全国卷文科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}R x x x A ∈≤=,2,{}Z x x xB ∈≤=,4,则A B =(A )(0,2) (B )[0,2] (C ) {}2,0 (D ){}2,1,0(2)a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665- (3)已知复数z =,则||z = (A)14 (B )12(C )1 (D )2 (4)曲线321y x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A(B(C(D(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为A B CD(7) 设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为(A )23aπ(B )26aπ(C )212aπ(D )224aπ(8)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65 (D )56(9)设偶函数()f x 满足)0(42)(>-=x x f x ,则(){}20x f x ->=(A ){}24x x x <->或 (B ){}04x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (10)若4sin 5α=-,α是第三象限的角,则sin()4πα+=(A )-(B(C )(D(11)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是(A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数|lg |,010()16,102x x f x x x <⎧⎪=⎨-+>⎪⎩… 若a ,b ,c 均不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

2010年全国高考文科数学试题及答案(全国1卷)

2010年全国高考文科数学试题及答案(全国1卷)
(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)
第Ⅱ卷
二填空题:本大题共4小题,每小题5分。
(13)圆心在原点上与直线 相切的圆的方程为-----------。
(14)设函数 为区间 上的图像是连续不断的一条曲线,且恒有 ,可以用随机模拟方法计算由曲线 及直线 , , 所围成部分的面积,先产生两组 每组 个,区间 上的均匀随机数 和 ,由此得到V个点 。再数出其中满足 的点数 ,那么由随机模拟方法可得S的近似值为___________
设等差数列 满足 , 。
(Ⅰ)求 的通项公式;
(Ⅱ)求 的前 项和 及使得 最大的序号 的值。
(18)(本小题满分12分)
如图,已知四棱锥 的底面为等腰梯形, ∥ , ,垂足为 , 是四棱锥的高。
(Ⅰ)证明:平面 平面 ;
(Ⅱ)若 , 60°,求四棱锥 的体积。
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
K2=
(20)(本小题满分12分)
设 , 分别是椭圆E: + =1(0﹤b﹤1)的左、右焦点,过 的直线 与E相交于A、B两点,且 , , 成等差数列。
(Ⅰ)求
(Ⅱ)若直线 的斜率为1,求b的值。
2010年高校招生考试文数(新课标) 试题及答案
一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
(1)D (2) C (3) D (4) A (5) D (6) C

2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析

2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析

2010年普通高等学校招生全国统一考试文科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

【教师简评】本试卷整体上明显比去年加大了难度,整套题对程度中等的学生来说有比较有难度,估计最后的考试分数不会特别理想。

试题不仅注意对基础知识的考查,更注重了对能力的考查。

体现了“稳中求变,深化能力”的主导思想。

知识分布还是比较广的,题的形式稳定,延续以前试题格式。

本套试卷基础与能力并重,前6题都是常见题,在考场上能够稳定学生情绪,第10、11、12三题是较为综合性的试题,这是近几年来全国1套试卷难度最大的,填空题难度不算大。

主观题试题类型都是常规题,难度和运算量仍然不小。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 【答案】C【命题意图】本试题主要考查三角函数的诱导公式及特殊角求值。

2010高考数学试卷(全)

2010高考数学试卷(全)

2010年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷一、选择题(1)cos300°= (A )32- (B )12- (C )12 (D )32(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )52 (B)7 (C)6 (D)4 2(5)(1-x )2(1-x )3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90°(7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 23 (B)33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =125-,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A )233 (B) 433 (C) 23 (D) 8332010年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式2232x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{a n }的前n 项和为S ,设S x =12,且2a 1,a 2,a 3+1成等比数列,求S n .(18)(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3a x4-2(3a+2)x2+4x.(Ⅰ)当a=16时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FA FB−−→-−−→=,求△BDK的内切圆M的方程.。

2010年高考试题文科数学(全国卷I)及答案解析

2010年高考试题文科数学(全国卷I)及答案解析

A
1 1 + x2
=

O
P
��� � ��� � ��� � ��� � PA • PB =| PA| ⋅ | PB| cos 2α
2 2 4 2
x 2 (1 − 2 sin2 α )
= B
��� � ��� � x ( x − 1) x − x x4 − x2 = ,令 PA • PB = y ,则 y = , x2 + 1 x2 + 1 x2 + 1
| PF1 |i| PF2 | =
(A)2 (B)4 (C) 6 (D) 8 8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想, 通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析 1】.由余弦定理得 cos ∠ F1 P F2 =
| PF1 |2 + | PF2 |2 − | F1 F2 |2 2 | PF1 || PF2 |
D1 A1 D A O B1
C1
C B
面 AC D1 所 成 角 相 等 , 设 DO ⊥ 平 面 AC D1 , 由 等 体 积 法 得 VD − ACD1 = VD1− ACD , 即
1 1 S ∆ACD1 ⋅ DO = S∆ACD ⋅ DD1 .设 DD1=a, 3 3
则 S∆ ACD1 =
7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本 小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+b= a + 题者的用苦良心之处. 【解析 1】因为 f(a)=f(b), 所以|lga|=|lgb|, 所以 a=b(舍去) ,或 b =
1 ≥ 2 , 从而错选 D,这也是命 a

2010年高考文科数学真题试卷及部分答案(全国1卷word版)

2010年高考文科数学真题试卷及部分答案(全国1卷word版)
2010 年高考数学真题试卷(全国 1 卷 word 版)
及答案( 1-18 题答案)
2010 年普通高等学校招生全国统一考试
一、选择题 ( 1) cos300°=
文科数学(必修 +选修 I )
第 I卷
3B)
2
1
( C)
2
3
(D )
2
( 2)设全集 U=( 1,2, 3,4,5),集合 M =( 1,4),N=( 1,3,5),则 N ( C,
x 轴的对称点为 D.
(Ⅰ )证明:点 F 在直线 BD 上;
(Ⅱ )设 FA
8
FB
,求△ BDK 的内切圆 M 的方程 .
9
2010 年高考文科数学参考答案 (全国卷 1)
1.C 2.C 3.B 4.A 5.A 6.D 7.C 8.B 9.D 10.C 11.D 12.B
13.(-2, -1)并 (2,+ 无穷 )
(B)45 °
(C)60 °
(D)90 °
(7) 已知函数 f(x)= lg x .若 a≠b,且 f(a)=f(b),则 a+b 的取值范围是
(A )(1, +∞)
(B ) [1,+ ∞]
(C)(2,+ ∞)
(D)[2,+ ∞ )
(8) 已知 F 1、 F 2 为双曲线 C:x2 -y2 =1 的左、右焦点,点 P 在 C 上,∠ F 1PF2=60°,则
(A )5 2
(B)7
(C)6
(D)4 2
(5)(1 - x)2(1- x )3 的展开式中 x2的系数是
(A) - 6
(B)- 3
(C)0
(D)3

2010年高考新课标全国卷文科数学(含答案)

2010年高考新课标全国卷文科数学(含答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2 C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分10⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分10⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧¼AC =»BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分) 选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

2010年高考新课标全国卷_文科数学(含答案)

2010年高考新课标全国卷_文科数学(含答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧 AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试(山东卷)文 科 数 学参考公式: 锥体的体积公式:Sh V 31=。

其中S 是锥体的底面积,h 是锥体的高。

如果事伯A 、B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A 、B 独立,那么)()()(B P A P AB P ⋅=第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集R =U ,集合{}240M x x =-≤ ,则U M =ð (A ){}22x x -<< (B ){}22x x -≤≤(C ){}22x x x <->或(D ) {}22x x x ≤-≥或(2) 已知2a ib ii+=+(,)a b R ∈,其中i 为虚数单位,则a b +=(A )-1(B )1 (C )2 (D )3(3) )13(log )(2+=xx f 的值域为(A )(0,)+∞ (B )[)0,+∞(C )(1,)+∞(D )[)1,+∞(4)在空间,下列命题正确的是 (A )平行直线的平行投影重合 (B )平行于同一直线的两个平面 (C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两个平面平行(5)设()f x 为定义在R 上的函数。

当0x ≥时,()22()xf x x b b =++为常数,则(1)f -=(A ) -3 (B ) -1 (C ) 1 (D ) 3(6)在某项体育比赛中一位同学被评委所打出的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分后,所剩数据的平均分值为和方差分别为 (A ) 92,2 (B ) 92 ,2.8 (C ) 93,2 (D )93,2.8(7)设{}n a 是首项大于零的等比数列,则“12a a p ”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分而不必要条件 (D )既不充分也不必要条件(8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为21812343y x x =-+-,则使该生产厂家获取最大年利润的年产量为(A )13万件 (B )11万件 (C )9万件 (D )7万件(9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于,A B 两点,若线段A B 的中点的纵坐标为2,则该抛物线的标准方程为 (A )1x = (B )1x =-(C )2x = (D )2x =-(10)观察2'()2x x =,4'2()4x x =,(cos )'sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()()g x f x 为的导函数,则()g x -(A )()f x(B )()f x - (C )()g x (D )()g x -(11)函数22xy x =-的图像大致是(12)定义平面向量之间的一种运算“e ”如下:对任意的(,)a m n =,(,)b p q =,令a b m q m p =-e .下面说法错误的是(A )若a b 与共线,则0a b =e (B )a b b a =e e(C )对任意的,R a a λλλ∈e e 有()b=(b) (D )2222()()a b a b ab +⋅=e第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分(13)执行右图所示流程框图,若输入4x =,则输出y 的值为____________________.(14) 已知(,)x y R +∈,且满足134x y +=,则xy 的最大值为____________________.(15)在ABC ∆中,角A B C、、所对的边分别为a 、b 、c .若,2,2==b a 2c o s s i n =+B B ,,则角A 的大小为____________________.(16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为22,则圆C 的标准方程为____________ 三、解答题:本题共6小题,共74分 。

(17)(本小题满分12分)已知函数2()sin()cos cos (0)f x x x x πωωωω=-+>的最小正周期为π.(Ⅰ)求ω的值.(Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的21,纵坐标不变,得到函数()y g x =的图()g x 在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值。

(18)(本小题满分12分)已知等差数列{}n a 满足:3577,26a a a =+=.{}n a 的前n 项和为n S 。

(Ⅰ)求na 及n S ;(Ⅱ)令21()1n nb n N a +=∈-,求数列{}n a 的前n 项和T n .(19)(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m +<的概率。

(20)(本小题满分12分)如图所示,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E G F 、、分别为、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面⊥;(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.(21)(本小题满分12分)已知函数).(111)(R a xa ax nx x f ∈--+-=(Ⅰ)当处的切线方程;,在点(时,求曲线))2(2)(1f x f y a =-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.(22)(本小题满分14分)如图,已知椭圆12222=+by ax (a b 0)>>过点(1,22),离心率为22,左右焦点分别为12F F .点P 为直线l :2x y +=上且不在x 轴上的任意一点,直线1P F 和2P F 与椭圆的交点分别为A B 、和,C D O 、为坐标原点. (Ⅰ) 求椭圆的标准方程;(Ⅱ)设直线1P F 、2P F 斜率分别为1k 2k 、.()i 证明:12132k k -=(ⅱ)问直线l 上是否存在一点P , 使直线OA OB OC OD 、、、的斜率O A O B O C O D k k k k 、、、满足0O A O B O C O D k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.参考答案评分说明: 1.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半如果后继部分的解答有较严重的错误,就不再给分。

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

4.只给整数分数,选择题和填空题不给中间分。

一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分。

(1) C (2) B (3) A (4) D (5) A (6) B (7)C (8)C (9)B (10)D (11)A (12)B二、填空题:本题考 查基础知识和基本运算,每小题4分,满分16分。

(13)54- (14)3 (15)6π (16)22(3)x y -+=4三、解答题(17)本小题主要考查综合运用三角函数公式、三角函数的性质,进行运算、变形、转换和求解的能力,满分12分。

(Ⅱ)由(Ⅰ)知21)42sin(22)(++=πx x f ,所以21)44sin(22)2()(++==πx x f x g 。

当60π≤≤x 时,2444πππ≤+≤x所以1)44sin(22≤+≤πx因此 121()2g x +≤≤,故()g x 在区间0,16π⎡⎤⎢⎥⎣⎦内的最小值为1. (18)本小题主要考察等差数列的基本知识,考查逻辑推理、等价变形和运算能力。

解:(Ⅰ)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+ a 7=26,所以 a 1+2d=7,2a 1+10d=26, 解得 a 1=3,d=2.由于 a n = a 1+(n-1)d ,S n = 12[n(a 1+ a n ),所以a n =2n-1, S n =n 2+n , (Ⅱ)因为a n =2n-1, 所以 a n 2-1=4n (n+1), 因此 T n =b 1+ b 2+…+ b n = 14(1-12+ 12-12+…+1n-11n -)=14(1-11n -)=4(1)nn +所以数列{}n b 的前n 项和n T =4(1)n n + 。

(19)本小题主要考察古典概念、对立事件的概率计算,考察学生分析问题、解决问题的能力。

满分12分。

解:(I )从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个。

从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个。

因此所求事件的概率为1/3。

(II )先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m, n )有: (1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2), (3,3) (3,4),(4,1) (4,2),(4,3)(4,4),共16个 有满足条件n ≥ m+2 的事件为(1,3) (1,4) (2,4),共3个 所以满足条件n ≥ m+2 的事件的概率为 P=3/16 故满足条件n<m+2 的事件的概率为(20)本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力。

满分12分。

(I )证明:由已知ABCD,PD M A,MA ⊥平面∥ 所以 P D A B C D∈平面 又 B C A B C D ⊂平面,所以 PD DC ⊥因为 四边形ABCD 为正方形, 所以 BC DC ⊥, 又 P D D C =D ⋂,因此 B C P D C ⊥平面在PBC 中,因为G F 、分别为PB PC 、的中点, 所以 GF PC ∥ 因此 G F P D C ⊥平面 又 G F E FG ⊂平面,所以 E FG P D C ⊥平面平面.(Ⅱ)解:因为P D A B C D ⊥平面,四边形ABCD 为正方形,不妨设M A =1, 则 P D =A D =2,所以P -A B C D A B C D 1V =S 3正方形·8P D =3由于D A M A B ⊥面的距离,且P D M A ∥所以D A 即为点P 到平面M A B 的距离,三棱锥 322212131V MAB -P =⨯⨯⨯⨯=所以4:1V V ABCD -P MAB -P =:(21)本小题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力,考查分类讨论思想、数形结合思想和等价变换思想。

相关文档
最新文档