数学:人教版九年级上 25.2概率的简单计算教案2(人教新课标九年级上)

合集下载

九年级数学上册第二十五章概率初步25.2用列举法求概率教案(新版)新人教版

九年级数学上册第二十五章概率初步25.2用列举法求概率教案(新版)新人教版

九年级数学上册第二十五章概率初步25.2用列举法求概率教案(新版)新人教版第1课时列表法求概率教学目标理解“包含两步,并且每一步的结果为有限多个情形”的意义.1.会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果.2.体验数学方法的多样性灵活性,提高解题能力.教学重难点正确理解和区分一次试验中包含两步的试验.当可能出现的结果很多时,简洁地用列表法求出所有可能结果.教学过程一、教师导学出示两个问题:1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,共有几种可能的结果?要求学生讨论上述两个问题的区别,区别在于这两个问题的每次试验(摸球)中的个数不一样.二、合作与探究【例】教材例1.1.要求学生思考掷两枚硬币所能产生的所有结果.学生可能会认为结果只有:两个都为正面,一个正面一个反面和两个都是反面这样3种情形,要讲清这种想法的错误原因.列出了所有可能结果后,问题就容易解决了.或采用列表的方法,如:2.问题:“同时掷两枚硬币”,与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?同时掷两枚硬币与先后两次掷一枚硬币有时候是有区别的.比如在先后投掷的时候,就会有这样的问题:先出现正面后出现反面的概率是多少?这与先后顺序有关.同时投掷两枚硬币时就不会出现这样的问题.三、总结提升1.本节课的例题,每次试验有什么特点?2.用列表法求出所有可能的结果时,要注意表格的设计,做到使各种可能结果既不重复也不遗漏.第2课时树形图求概率教学目标1.进一步理解有限等可能性事件概率的意义.2.会用树状图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.3.进一步提高分类的数学思想方法,掌握有关数学技能(树状图).教学重难点正确鉴别一次试验中是否涉及3个或更多个因素.教学过程一、合作与探究【例1】同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数的和是9;(3)至少有一个骰子的点数为2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有很多,我们用怎样的方法才能既不重复又不遗漏地求出所有可能的结果呢?这个问题要让学生充分发表意见,在此基础上再使学生认识到列表法可以清楚地列出所有可能的结果,体会其优越性.列出表格.(也可用树状图法)其实,求出所有可能的结果的方法不止是列表法,还有树状图法也是有效的方法,要让学生体验它们各自的特点,关键是对所有可能结果要做到:既不重复也不遗漏.板书解答过程.思考:教材思考题.【例2】教材例3.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?你打算用什么方法求得?在学生充分思考和交流的前提下,老师介绍树状图的方法.第一步可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步可能产生的结果有C、D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D和E.第三步可能产生的结果有两个H和I,两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可以利用概率和意义计算概率了.教师要详细地讲解以上各步的操作方法.写出解答过程.问:此题可以用列表法求出所有可能吗?小结:教材第139页右边的结论.二、巩固练习教材练习.练习中是每次试验涉及3个因素的问题,共有27种可能的结果.尽管这些问题可能的结果都比较多,但用树状图的方法并不难求得,重要的是要让学生正确把握题意,鉴别每次试验涉及的因素以及这些因素的顺序.三、能力展示教材习题25.2 第1题.这是一道正确理解概率意义的问题,在学生深入思考的基础上教师要着重分析解题的思路.。

人教版数学九年级上册25.2.2《用列举法求概率》教学设计

人教版数学九年级上册25.2.2《用列举法求概率》教学设计

人教版数学九年级上册25.2.2《用列举法求概率》教学设计一. 教材分析人教版数学九年级上册25.2.2《用列举法求概率》是概率论的一个基本内容,主要让学生了解列举法求概率的基本步骤和应用。

通过本节课的学习,学生能够理解列举法求概率的原理,掌握列举法求概率的基本方法,并能够应用列举法解决一些简单的实际问题。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率论的基本概念有一定的了解。

但是,对于列举法求概率的具体操作步骤和方法,学生可能还不够熟悉。

因此,在教学过程中,需要引导学生逐步理解列举法求概率的原理,并通过大量的练习来巩固所学知识。

三. 教学目标1.知识与技能:让学生掌握列举法求概率的基本步骤和方法,能够应用列举法解决一些简单的实际问题。

2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.重点:列举法求概率的基本步骤和方法。

2.难点:如何引导学生理解列举法求概率的原理,并能够灵活运用。

五. 教学方法1.引导法:通过教师的问题引导,让学生自主探究和发现列举法求概率的原理和方法。

2.互动法:教师与学生之间的提问和回答,学生与学生之间的讨论和交流,以提高学生的参与度和积极性。

3.练习法:通过大量的练习题,让学生巩固所学知识,并能够灵活运用。

六. 教学准备1.教学课件:制作精美的教学课件,以吸引学生的注意力,并帮助学生更好地理解和记忆。

2.练习题:准备一些有关列举法求概率的练习题,以便在课堂上进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个简单的实例,让学生思考如何求解该事件的概率,从而引出列举法求概率的方法。

2.呈现(10分钟)教师通过课件呈现列举法求概率的原理和方法,并进行讲解和演示。

3.操练(10分钟)学生分组进行练习,每组选择一道题目,应用列举法求解概率,并互相交流解题过程和方法。

九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)

九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)
三、教学目标
知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。

情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版

第2课时用列表法和树状图法求概率※教学目标※【知识与技能】理解并掌握列表法和树状图法求随即事件的概率,并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历列表或画树状图法求概率的学习,让学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力. 【情感态度】通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.【教学重点】学习运用列表法或树形图法计算事件的概率,能正确区分什么时候用列表法,什么时候用树状图.【教学难点】1.能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.2.列表法和树状图的选取方法※教学过程※一、情境导入教师讲《田忌赛马》的故事,提出以下问题,引入新课:(1)你知道孙膑给的建议是什么吗?(2)在不知道齐王出马顺序的情况下,田忌能赢的概率是多少?二、掌握新知例1 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用这样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A)的结果有6种(表中的红色部分),即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=636=16.(2)两枚骰子的点数和是9(记为事件B)的结果有4种(表中的绿色阴影部分),即(3,6),(4,5),(5,4),(6,3),所以P(B)=436=19.(3)至少有一枚骰子的点数为2(记为事件C)的结果有11种(表中的蓝色阴影部分),所以P(C)=11 36.归纳总结当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法. 运用列表法求概率的步骤如下:(1)列表;(2)通过表格确定公式中m,n的值;(3)利用P(A)=mn计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?讨论结果“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作改动对所得结果没有影响.例2 甲口袋中装有2和相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全部是辅音字母的概率是多少?分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机取出1个小球,共取出3个小球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?树状图的画法:(1)可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行;(2)可能产生的结果有C,D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C,D和E;(3)可能产生的结果有两个,H和I.两者出现的可能性相等且部分先后,从C,D和E 分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续)(4)把各种可能的结果对应竖写在下面,就得到了所有可能的结果总数,从中再找出符合要求的个数,就可以计算概率了.解:根据题意,可以画出如下的树状图:甲 A B乙 C D E C D E丙 H I H I H I H I H I H I由树状图可以看出吗,所有可能出现的结果共有12种,即A A A A A AB B B B B BC CD DE E C C D D E EH I H I H I H I H I H I这些结果出现的可能性相等.(1)只有1个元音字母的结果(红色)有5种,即ACH,ADH,BCI,BDI,BEH,所以P(1个元音)=512.有2个元音字母的结果(绿色)有4种,即ACI,ADI,AEH,BEI,所以P(2个元音)=412=13.全部为元音字母的结果(蓝色)只有1种,即AEI,所以P(3个元音)=112.(2)全是辅音字母的结果共有2种,即BCH,BDH,所以P(3个辅音)=212=16.归纳总结画树状图求概率的基本步骤:(1)明确试验的几个步骤及顺序;(2)画树状图列举试验的所有等可能的结果;(3)计数得出m,n的值;(4)计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图法”方便?一般地,当一次试验要涉及两个因素(或两个步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、巩固练习袋子中装有红、绿、黄、白、蓝5个除颜色外均相同的小球.欢欢设计了四种摸球获奖的方案(每个方案都是前后共摸球两次,每次从袋子中摸出一个小球).(1)第一次摸球后放回袋子并混合均匀,先摸出红球,后摸出绿球;(2)第一次摸球后放回盒子并混合均匀,摸出红球和绿球(不分先后);(3)第一次摸球后不再放回袋子中,先摸出红球,后摸出绿球;第一次摸球后不再放回袋子中,摸出红球和绿球(不分先后).上述四种方案,摸球获奖的概率依次是,,, .如果让你从中选择一种方案,你会选择方案,原因如下:.答案:125225120110(4)方案(4)获奖的可能性大四、归纳小结1.为了正确地求出所要求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?※布置作业※从教材习题25.2中选取.※教学反思※本节课以学生的生活实际为背景提出问题,让学生在自主探究解决问题的过程中,自然地学习使用“树状图”这种新的列举法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。

这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。

通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。

但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。

三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。

2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。

四. 教学重难点1.重点:列举法求概率的方法及运用。

2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。

3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。

4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。

六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。

2.练习题:准备一些相关练习题,用于巩固所学知识。

3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。

七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。

九年级数学上册 2512概率精品教案 人教新课标版 教案

九年级数学上册 2512概率精品教案 人教新课标版 教案
作课类 别
教学媒 体 知 识 技
教能 过
学 程
目方 法
标情 感 态 度
教学重点
示范课
课题
25.1.2 概率
课 型 新授
多媒体
1.理解什么是随机事件的概率,认识概率是反映随机事件发生可能性大小的量. 2.理解“事件 A 发生的概率是 P(A)= m (在一次试验中有 n 种等可能的结果,其中事件
n
A 包含 m 种)”的求概率的方法,并能求出简单问题的概率.
历经实验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率求法.
理解概率意义,渗透辩证思想,感受数学现实生活的联系,体会数学在现实生活中的应 用价值.
随机事件的概率的定义;“事件 A 发生的概率是 P(A)= m (在一次试验中有 n 种等可能 n
的结果,其中事件 A 包含 m 种)”求概率的方法及运用
学生思考,尝试 回答,理解每种 结果的等可能
从实际问题出发, 使学生理解概率 定义,理解概率是
由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结 性.
从数量上刻画了
果的可能性大小相等,都是全部可能结果总数的多少.
一个随机事件发 生的大小.
给出概率定义
分析:可以看出概率
教师给出随机事 件的概率的定义,
(二)概率求法
讲解分析,学生理 总结条件“每一次
回顾上述掷骰子试验,有以下特点:
解.
试验中可能出现
(1)每一次试验中可能出现的结果只有有限个;
的结果只有有限
(2)每一次试验中,各种结果出现的可能性相等.
个;每一次试验
教学难点
理解 P(A)= m 并运用
n
教学过程设计

人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计

人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计一. 教材分析本节课的主题是“用列举法求概率”,这是人教版九年级数学上册第二十五章概率初步的内容。

教材通过实例引入概率的概念,让学生了解概率是反映事件发生可能性大小的量。

本节课的主要内容是用列举法求概率,通过列举所有可能的结果,再计算符合条件的结果数与总结果数之比,从而得到概率。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,了解了随机事件、必然事件和不可能事件。

他们已经能够理解事件发生的可能性,并能够用分数表示事件发生的概率。

但是,学生对于用列举法求概率的方法可能还不够熟悉,需要通过本节课的学习和实践来掌握。

三. 教学目标1.知识与技能:使学生掌握用列举法求概率的方法,能够通过列举所有可能的结果,计算符合条件的结果数与总结果数之比,得到概率。

2.过程与方法:培养学生运用概率知识解决实际问题的能力,提高学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生对概率学科的兴趣,培养学生积极的学习态度,使学生认识到数学在生活中的应用。

四. 教学重难点1.重点:掌握用列举法求概率的方法。

2.难点:如何引导学生列举出所有可能的结果,并计算出概率。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,激发学生的学习兴趣。

2.讲授法:讲解概率的定义和列举法求概率的方法。

3.实践操作法:让学生动手列举实例,求解概率,提高学生的实践能力。

4.讨论法:分组讨论,引导学生交流与合作,共同解决问题。

六. 教学准备1.教学课件:制作课件,展示概率的定义和列举法求概率的方法。

2.实例:准备一些生活实例,用于导入和巩固所学知识。

3.练习题:准备一些练习题,用于让学生动手实践,巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币实验。

向学生展示硬币抛掷的结果,并引导学生思考:如何计算抛出正面的概率?2.呈现(10分钟)向学生讲解概率的定义,并用课件展示。

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件

例1 某班有1名男生、2名女生在校文艺演出中获演 唱奖,另有2名男生、2名女生获演奏奖.从获演唱 奖和演奏奖的学生中各任选一人去领奖,求两人都 是女生的概率.
解:设两名领奖学生都是女生的事件为A,两种奖 项各任选1人的结果用“树状图”来表示.
探究新知
开始
获演唱奖的

女'
女''
获演奏奖的
男1 男2 女1 女2 男1 男2 女1 女2 男1 男2 女1 女2
(1)P(全部继续直行)= 1 ; 27
共有27种行驶方向
(2)P(两车向右,一车向左)= 1 ;
(3)
P(至少两车向左)=
7 27
.
9
探究新知
例2 甲、乙、丙三人做传球的游戏,开始时,球在 甲手中,每次传球,持球的人将球任意传给其余两 人中的一人,如此传球三次. (1)写出三次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;
袋中装有2个相同的小球,分别写有数字1和2.从两个
口袋中各随机取出1个小球,取出的两个小球上都写有
数字2的概率是( C )
A.12
B.13
C.1
4
D.16
解析:如图所示,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:14 .
链接中考
2.在一个不透明的袋子里装有两个黄球和一个白球,它 们除颜色外都相同,随机从中摸出一个球,记下颜色后 放回袋子中,充分摇匀后,再随机摸出一个球.两次都 摸到黄球的概率是( A )
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?

九年级数学上册25.2用列举法求概率教案(新版)新人教版 (2)

用列举法求概率பைடு நூலகம்
课时
第1课时
课 型
新课
教具
多媒体
教学目标
知识与能力
能够运用列举法计算简单事件发生的概率
过程与方法
用列举法求事件的概率,探究如何画出适当的表格,列举出事件的所有等可能结果,如何用树形图列举事件的所有等可能的结果。探究什么时候使用“列表法”方便,什么时候使用“树形图法”方便。
态度与情感
合作探究如何画出适当的表格,如何用树形图列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯。
(1)指针指向红色;
(2)指针指向红色或黄色;
(3)指针不指向红色.
分析 问题中可能出现的结果有7个,即指针可能指向7个扇形中的任何一个.由于这是7个相同的扇形,转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等.因此可以通过列举法求出概率.
解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7.
2.利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图(下课时将学习)等.
A.4 B.7 C.12 D.81.
3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ).
(六)小结
(一)等可能性事件的两的特征:
1.出现的结果有限多个;
2.各结果发生的可能性相等;
(二)列举法求概率.
1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.
小组讨论以上3个例题的解法,首先分析透题意,如果在一次试验中,有n种可能的结果,分析出n是多少?事件A包含其中的m种结果,m是多少?最后利用式子P(A)=。得出事件A发生的概率。

人教版九年级数学上册25.2.2用列表法和树状图法求概率教案

举例:掷三个骰子,求至少有两个骰子点数相同的概率。
(2)树状图的绘制:难点在于如何引导学生正确绘制树状图,并从中找出所有可能的结果。
举例:一个盒子里有3个红球和2个蓝球,先随机取一个球,放回后再取一个球,求第二次取出的球是红色的概率。
(3)组合数的计算:难点在于如何让学生理解组合数在列表法和树状图法中的应用,并掌握计算方法。
3.重点难点解析:在讲授过程中,我会特别强调列表法的列出所有结果和树状图法的正确绘制这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与列表法和树状图法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示列表法和树状图法的基本原理。
3.培养直观想象素养:通过绘制树状图,使学生能够形象地把握事件之间的关系,培养直观想象和空间思维能力。
4.强化数学运算素养:在求解概率过程中,加强学生的数学运算能力,提高准确性,培养严谨的数学态度。
5.增进数据分析素养:引导学生对实际问题进行数据分析,培养从数据中提取信息、发现规律的能力,为解决更复杂问题奠定基础。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解列表法和树状图法的基本概念。列表法是通过列出所有可能的结果来计算概率的方法,而树状图法则通过图形化的方式展示事件之间的关系,帮助我们求解概率。这两种方法在解决实际问题时具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用列表法和树状图法求解实际问题的概率。
在实践活动方面,我发现学生们在解决实际问题时,对于如何将问题转化为数学模型还存在一定的困扰。针对这个问题,我将在后续的教学中,多提供一些案例,让学生们通过观察和模仿,逐步学会将实际问题抽象为数学模型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2 用列举法求概率教材与教学内容:人教版义务教育课程标准实验教科书《数学》九年级上册,第25章第2节:用列举法求概率第1课时.一、教材分析本节内容是第二十五章第二节“用列举法求概率”的第1课时,主要介绍用列举法求概率.以两个实际问题为载体,通过学生动手解决问题、观察、分析、评价解题方法获得新知.本节课的教学设计紧扣教材,设计了6个教学活动,由浅入深,层层递进,解决问题以学生为主,发挥学生的集体智慧,教师从中指导、总结,示范.在教学过程中,强调学生形成积极主动的学习态度,关注学生的学习兴趣和体验,充分体现“数学教学主要是数学活动的教学”这一教育思想.利用所学知识解决问题,突现应用意识,进一步巩固所学知识.力求充分体现教学内容的基础性、教学方法的灵活性、学生学习的主体性、教师教学的主导性.在学习活动中,尽力让学生主动参与、认真观察、比较思考、动手操作、合作交流、大胆表述,充分体现学生是学习的主人,教师是学习活动的组织者、引导者和合作者.二、教学目标依据课程标准和教材分析,兼顾学生的实际,本节课的教学目标是:1.知识与技能进一步理解等可能事件的意义,了解古典概型的两个特点——试验结果有无数个和每一个实验结果出现的等可能性;通过探究体会在公式P(A)=m/n中m、n之间的数量关系,P(A)的取值范围.掌握求等可能条件下的事件的概率,并能进行简单的表述、计算.2.过程与方法通过用列举法求事件的概率,体会在实践中获得事件发生的概率,渗透转化的思想方法,培养学生分析、判断的能力.3.情感态度与价值观通过分析探究事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.三、教学重难点1.教学重点:用列举法求事件的概率.2.教学难点:分析事件发生的概率.四、教学方法教师诱导---学生自学---小组互动---当堂检测针对九年级学生的年龄特征以及他们已有的知识水平,采用启发式、诱导法,结合演示、归纳、尝试等方法,组织生生互动、师生互动,激发学生的学习兴趣,通过多媒体课件的展示,提高教学效率,增进学生对知识的理解,激发他们的求知欲.五、教具准备多媒体课件、展示课件所需的多媒体设备、软件等.六、教学过程1.教学流程安排活动流程图活动内容和目的活动 1 回顾上节概率的求法.活动2 看试验,找特点,了解古典概型,初识概率的求法.活动3 探究在公式P(A)=m/n中m、n之间的数量关系,P(A)的取值范围.活动 4 通过解决问题学习用列举法求概率.活动5 练习.活动6 小结与作业.1.帮助学生回忆上节课所学的知识,为本节课的学习准备.2.使学生进一步在具体情境中了解古典概型的意义,能阐明运用列举法计算简单事件发生的概率的理由,为本节课探究用列举法求概率奠定基础.3.进一步体会随机事件、必然事件、不可能事件及其概率.4.通过对例1、例2的讨论探究,学习用列举法求概率.5.通过练习,巩固用列举法求概率.6.回顾本节知识和解决问题的方法,巩固、提高、提高、发展.2.教学过程设计问题与情境师生行为设计意图「活动1」回顾上节概率的求法.教师引入:前面我们用随机事件发生的频率所逐渐稳定得到的常数作为这个事件发生的概率,对于某些特殊类型的试验,实际不需要做试验,通过列举法分析就可以得到随机事件的概率.帮助学生回忆上节课所学的知识,为本节课的学习准备好知识基础.「活动2」看试验,找特点,了解古典概型,初识概率的求法.展示书中两个试验.(演示课件第2张幻灯片)问题(1)两个试验有什么共同的特点?(2)对于古典概型的试验,如何求事件的概率?学生分析、思考解答:(1)一次试验中,可能出现的结果是有限多个;各种结果发生的可能性相等.具有以上特点的试验称为古典概型.(2)对于古典概型的试验,我们可以用事件所包含的各种可能的结果在全部可能的试验结果中所占的比作为事件的概率.教师讲解概率求法:一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率为.在本次活动中,教师应重点关注学生参与数学活动是否积极主动,全神贯使学生进一步在具体情境中了解古典概型的意义,能阐明运用列举法计算简单事件发生的概率的理由,为本节课探究用列举法求概率奠定基础.问题与情境师生行为设计意图注.「活动3」探究在概率公式P(A)= 中m、n之间的数量关系,P(A)的取值范围.(演示课件第3张幻灯片)学生思考,解答、发言:n>0, m≥0,m≤n,0≤P(A) ≤1.当m=n时A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0.教师组织学生思考、讨论、解答.在本次活动中,教师应重点关注学生对随机事件、必然事件、不可能事件及其概率的再认识.进一步体会随机事件、必然事件、不可能事件及其概率.「活动4」通过解决问题学习用列举法求概率.问题1(演示课件第4张幻灯片)例1 掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数是奇数;教师组织学生分析本问题,运用列举法求其概率:学生思考、讨论、交流:(1)是否符合等可能事件的两个特点?(2)怎样叙述?教师介绍解题要求、步骤.例1 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2只有1种结果,P(点通过对例1、例2的讨论探究,初步掌握用列举法求概率.问题与情境师生行为设计意图(3)点数大于2且不大于5.问题2(演示课件第5、6张幻灯片)例1变式掷1个质地均匀的正方体骰子,观察向上一面的点数,(1)求掷得点数为2或4或6的概率;(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率.问题3(演示课件第7张幻灯片)例 2 如图:是一个转盘,转盘分成7个相同的扇形,颜色分为红、黄、绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时,当作指向右边的扇形)求数为2);(2)点数是奇数有3种可能,即点数为1,3,5,P(点数是奇数);(3)点数大于2且不大于5有3种可能,即3,4,5,P(点数大于2且不大于5).学生思考、讨论、交流:(1)是否符合等可能事件的两个特点?(2)怎样叙述?学生试着解决变式题.例1变式解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A);(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种.他第六次掷得点数通过对例题变式的分析,激发学生学习学习欲望,进一步掌握用列举法求概率,体会数学的应用价值,.问题与情境师生行为设计意图下列事件的概率:(1)指向红色;(2)指向红色或黄色;(3)不指向红色.问题4(演示课件第8、9两张幻灯片)例2变式如图,是一个转盘,转盘被分成两个扇形,颜色分别为红黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.(1)指向红色;(2)指向黄色.(3)小明和小亮做转转盘的游戏,规则是:两人轮流转转盘,指向红色,2(记为事件B)有1种结果,因此P(B).学生思考、讨论、交流:(1)是否符合等可能事件的两个特点?(2)怎样叙述?鼓励学生解答:例2解:一共有7个等可能的结果,且这7个结果发生的可能性相等,(1)指向红色有3个结果, P(指向红色)=_____ ;(2)指向红色或黄色一共有5种等可能的结果,P(指向红色或黄色)=_______;(3)不指向红色有4种等可能的结果,P( 不指向红色)= ________.引导学生分析:图中两个扇形的圆心角不相等,某个扇形停在指针所指的位置的可能性就不相等?怎么办?学生思考、讨论、交流:(1)是否符合等可能事件的两个特点?通过例2的讨论探究,巩固用列举法求概率.通过对例题变式的分析,体会数学的应用价值,激发学生学习学习兴趣.问题与情境师生行为设计意图小明胜;指向黄色小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.(2)怎样叙述?学生试着解决变式题.例2变式解:把黄色扇形平均分成两份,这样三个扇形的圆心角相等,某个扇形停在指针所指的位置的可能性就相等了,因而共有3种等可能的结果,(1)指向红色有1种结果, P(指向红色)=_____;(2)指向黄色有2种可能的结果,P(指向黄色)=_______.(3)把黄色扇形平均分成两份,小明胜(记为事件A)共有1种结果,小亮胜(记为事件B)共有2种结果, P(A),P(B).∵P(A)<P(B),∴这样的游戏规则不公平.可以设计如下的规则:两人轮流转转盘,指向红色,小明胜,小明得2分;指向红色,小亮胜,小亮得1分,最后按得分多少决定输赢.问题与情境师生行为设计意图还可以设计怎样的规则?因为此时P(A)×2=P(B)×1,即两人平均每次得分相同.在本次活动中,教师应重点关注:(1)学生语言的规范性;(2)学生的应用意识,模仿能力;(3)学生在学习中发表个人见解的勇气.(4)学生自主探究、合作交流意识.「活动5」练习.(演示课件第10、11、12三张幻灯片)5. 某班文艺委员小芳收集了班上同学喜爱传唱的七首歌曲,作为课前三分钟唱歌曲目:歌唱祖国,我和我的祖国,五星红旗,相信自己,隐形的翅膀,超越梦想,校园的早晨,她随机从中抽取一支歌,抽到“相信自己”这首歌的概率是().学生在独立思考的基础上,讨论问解,决问题.教师评判.教师参与讨论,认真听取学生的分析,引导学生分析,书写解答过程.在本次活动中,教师应重点关注:(1)学生能否正确应用列举法求概通过练习,巩固用列举法求概率.问题与情境师生行为设计意图6. 掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:(1)点数是6的约数;(2)点数是质数;(3)点数是合数.(4)小明和小亮做掷骰子的游戏,规则是:两人轮流掷骰子,掷得点数是质数,小明胜;掷得点数是合数,小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.率解决问题;(2)学生应用所学知识的应用意识.「活动6」小结与作业:(演示课件第13张幻灯片)这节课我们学习了哪些内容,有什么收获?学生自己总结发言,不足之处由其他学生补充完善.教师重点关注不同层次的学生对本节知识的理解、掌握程度.加深对列举法求概率的认识.了解教学效果,及时精品文档实用文档。

相关文档
最新文档