北师大版六年级下册几何奥数教程

合集下载

六(下)奥数第5讲~平面几何之曲线图形

六(下)奥数第5讲~平面几何之曲线图形

六年级下册奥数 第5讲~平面几何之曲线图形重点、难点1、圆与扇形的周长、面积求法2、弓形、谷子、弯角的面积求法 教学内容【本讲说明】本讲内容属于几何专题中的必考题型,在历年升学考试中所占比例已达到30%-40%,在16年大桥,15年外国语,16年辅仁等试题中均有出现,主要以大题和操作题的形式考察。

每题的分值在8-10分左右。

本讲主要属于综合复习,对学生的综合要求以及几何思维能力要求较高,课前先复习一下知识点【课堂目标】本讲主要包含两大部分:1、掌握圆和扇形周长的相关题型;2、掌握圆和扇形面积的相关题型。

3、重点掌握圆和扇形与容斥定理相结合的题型。

知识点一:基本公式圆的周长 r C π2= 扇形的弧长3602N r l ⨯=π 扇形的周长l r C +=2 圆的面积2r S π= 扇形的面积3602N r S ⨯=π 知识点二:基本模型1、圆环的面积:()22r R -π2、 弓形:222141r r ππ-3、谷子(也叫柳叶):2221r r -π4、弯角形(也叫弯月):2241r r π-5、方中圆、圆中方模型圆=2a π 圆=2a π 方=2422a a a =⨯ 方=()22222a a =÷ 方:圆=4:π 方:圆=2:π6、方圆套中套:大方是小方的2倍,大圆是中圆的2倍,中圆是小圆的2倍。

知识点三:圆和扇形周长的运用例1、如图所示的图形由1个大的半圆弧和6个小的半圆弧围成,已知最大的半圆弧的直径为1,则这个图形的周长是多少?(圆周率用π表示)练1、如图所示,已知米米,70120==BC AB ,从A 到C 有3条不同的半圆弧线路可走,请你判断走哪一条半圆弧线路的距离最短。

知识点四:圆和扇形面积例2、如图,ABC是等腰三角形,D是半圆周的中点,BC是半圆的直径。

已知10AB,那么阴==BC 影部分的面积是多少?(圆周率取3.14)练2、如图所示,正方形ABCD和正方形CEFG并排放置,cm12=BC15=,,图中阴影部分的面cmCE积是多少?(保留π)例3、三角形ABC是直角三角形,阴影Ⅰ的面积比阴影Ⅱ的面积小252cm,cm=,求BC的长度。

北师大六年级同步奥数培优上课讲义

北师大六年级同步奥数培优上课讲义

【知识概述】圆是由曲线围成的平面图形。

在日常生活和学习中我们经常会遇到与圆的周长和面积有 关的问题。

圆的周长除以它的直径的商是一个固定不变的数,这个结果被称为“圆周率” 。

圆周率是一个无限不循环的小数,用字母“冗”表示,圆的周长 =圆周率X 直径,即C= π d 或C=2 冗r 。

圆的面积等于圆周率与半径平方的乘积,即 S= r 2。

下图圆的阴影部分是一个扇形,它的面积是一个圆的面积的四分之一, 它的周长是圆周 长的四分之一再加上两条半径的长。

【例题精学】例1:把4个啤酒瓶扎在一起(如图所示)捆 4圈至少用绳子多少厘米?(接头部分用去思路点拨:用绳子捆4圈的长度就是指周长的4倍。

这个图形的周长可分为两类:线段的 长度和弧的长度。

而这四条弧正好可以拼成一个圆,每条线段的长正好是圆的直径的长。

所 以绳子捆1圈的长度就是图中一个圆的周长加上 4条直径的长度之和。

【同步精炼】1、计算下雨中阴影部分的周长。

(单位:厘米)第一讲 圆的周长与面积(一)15厘米)2、一个街心花园如下图的形状,中间正方形的边长是20米,四周为半圆形,这个街心花园的周长是多少米?3、在学校200米的跑道中,每条跑道宽1.2米.由于有弯道,为了公平,外道和内道选手的起跑线不在同一地点.如:A点处是小明的起跑线,B是小强的起跑线,AB两点的距离是?例2:如下图,从点A到点B沿着大圆走和沿着中,小圆周走的路程相同吗?思路点拨:从点A到点B有两种走法:第一种是大圆的周长的一半;第二种是由A到C的中圆周长的一半与C到B的小圆周长的一半的和。

设小圆的直径为a,中原的直径为b,则大圆的直径为a+b。

那么第一种走法的路程为C仁π a 2+ π b 2;第二种走法的路程为C2= π a 2+π b 2,所以C仁C2.【同步精炼】1、下图中,从A点到B点沿着大圆周走和沿着小圆周走,路程相同吗?2、已知AB=50cm求圆中各圆的周长总和。

3、已知一个大圆中紧紧的排列着三个半径不同的小3、下图中圆的面积等于长方形的面积,已知圆的周长是 周长是多少厘米?36厘米,那么图中的阴影部分的圆(如图),并且这四个圆的圆心恰好在同一条直线上。

六年级下册数学教案整理与复习《图形与几何》北师大版

六年级下册数学教案整理与复习《图形与几何》北师大版

六年级下册数学教案整理与复习《图形与几何》北师大版一、教学目标1. 让学生掌握《图形与几何》的基本概念、性质和公式,能够熟练运用。

2. 培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。

3. 培养学生合作学习、自主探究的学习习惯,激发学生对数学学习的兴趣。

二、教学内容1. 图形:认识并掌握点、线、面、体等基本图形,了解它们之间的关系。

2. 几何图形的性质:学习并理解直线、射线、线段、角、多边形、圆等几何图形的性质。

3. 图形的变换:学习平移、旋转、轴对称等图形变换,理解其性质。

4. 图形与坐标:学习平面直角坐标系,理解坐标与图形之间的关系。

5. 图形与测量:学习图形的测量方法,理解面积、体积等概念。

三、教学重点与难点1. 重点:掌握图形的基本概念、性质和公式,能够熟练运用。

2. 难点:理解图形的变换性质,掌握图形与坐标的关系。

四、教具与学具准备1. 教具:PPT、教学挂图、模型等。

2. 学具:练习本、草稿纸、直尺、圆规等。

五、教学过程1. 引入:通过生活中的实例,引导学生回顾已学的图形与几何知识,激发学生的学习兴趣。

2. 新课导入:讲解图形与几何的基本概念、性质和公式,通过实例演示,让学生理解并掌握。

3. 练习:布置课堂练习,让学生巩固所学知识,提高解决问题的能力。

5. 作业布置:布置课后作业,让学生进一步巩固所学知识。

六、板书设计1. 《图形与几何》整理与复习2. 目录:教学目标、教学内容、教学重点与难点、教具与学具准备、教学过程、板书设计、作业设计、课后反思3. 根据教学内容,分模块设计板书,突出重点与难点。

七、作业设计1. 基础题:让学生巩固图形与几何的基本概念、性质和公式。

2. 提高题:让学生运用所学知识解决实际问题,提高解决问题的能力。

3. 拓展题:让学生探索图形与几何的奥秘,培养创新思维。

八、课后反思1. 教师要关注学生的学习情况,及时调整教学策略,提高教学效果。

重点关注的细节:教学过程教学过程是整个教案中最为关键的部分,它直接影响到学生对知识的掌握程度和教学目标的实现。

最新北师大版六年级下册数学《奥数定义新运算》优质教学课件

最新北师大版六年级下册数学《奥数定义新运算》优质教学课件

材和大纲,局限于水平和专业!
• 三、更好的学习初中数理化

正是因为奥数的超前教育,以及思维方式的
扩展,让更多的孩子体会到了学习的快乐,能更
好的去接受更高更深的知识和能力!
低年级孩子学习奥数的好处是什么
• 全脑训练:
• 低年龄孩子学习奥数的意义在于对全脑的开发。 像是小孩子早期学习舞蹈一样,并不是每个家长 让孩子学习舞蹈都是为了让孩子将来成为舞蹈家。 但是在现实中我们看到很多学习舞蹈的孩子他的 体型、气质就是和没有受过训练的孩子不一样。 同样的道理,学习奥数也是这样。奥数的学习是 可以利用到全脑的,它要用到左脑的数学逻辑, 分析归纳能力,还要用到右脑来分析图形、形状、 颜色、大小、重量、远近。除此之外还会运用到 左后脑的计划安排,右后脑的理解沟通,所以说 学习奥数是全脑的一个训练。
定俗成的常规,并为历届东道主所遵循。国际奥林匹克数学竞赛由参赛国轮
流主办,经费由东道国提供,但旅费由参赛国自理。参赛选手必须是不超过
20岁的中学生,每支代表队有学生6人,另派2名数学家为领队。试题由各参
赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。东道
国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队
匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。以后国际奥林匹克数学
竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始
逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。目前参加这项赛
事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。经过40
多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约
二、精讲精练
• 【例题1】假设a*b=(a+b)+(a-b),求13*5和13* (5*4)。

六(下)奥数第6讲~立体几何综合

六(下)奥数第6讲~立体几何综合

六年级下册奥数第6讲~立体几何综合重点、难点1、长方体、正方体2、圆柱、圆锥3、综合问题教学内容【本讲说明】本讲内容属于几何专题。

几何部分在历年升学考试中所占比例已达到30%-40%,在16年大桥,15年外国语,16年辅仁等试题中均有出现,主要以大题和操作题的形式考察。

每题的分值在8-10分左右。

本讲主要属于综合复习,对学生的综合要求以及几何思维能力要求较高,其中涉及到转换法、数形结合等各类解题方法,以及两大柱体的综合题型,部分题目难度较大。

【课堂目标】本讲主要包含三大部分:1、长方体正方体2、圆柱圆锥3、综合问题。

难点在于基本图形与旋转相结合。

知识点一:长方体正方体(基本公式;染色问题;综合问题)1、有一个方体图形,从前面看从西面看拼成这个图形,最小要用_______块,最多用______块。

2、图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是____。

例1、【大桥】一个长方体体积462立方厘米,在表面上涂上一层油漆,并切成棱长1厘米的正方体若干,长宽高均为整数,这时三面都有油漆的正方体有86个,有两面油漆的正方体有多少个?练1、用1024个棱长是1的小正方体组成体积是1024的一个长方体,将这个长方体六个面都涂上颜色,则六个面都没有涂色的小正方体最多有多少个?例2、一堆黄土如图所示,已知A的面积是25平方米,B的面积是15平方米,A处比B处高h是4米,现把A处的推向B处,使A、B两处同样高。

A处下降了多少?练2、有两个长方体水缸,甲水缸长4分米,宽3分米,高5分米;乙水缸长6分米,宽5分米,高7分米;两个水缸内的水高分别是2.5分米和6分米,乙倒一些水给甲,使两缸内的水一样高,求最后的水高。

知识点二:圆柱圆锥(表面积、体积公式;浸没问题)热身练习:【2016湖基】底面积为4平方厘米的圆柱切成4段,表面积增加__________。

例3、【辅仁】一棱长18厘米的圆柱形铅笔,底面直径是0.6厘米,把铅笔削高是2厘米的圆锥形后,铅笔的体积减少了多少立方厘米?(结果保留π)练3、【外国语】一个圆柱形水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心铁块放入水中,桶内还有多少升水?例4、一个圆柱形的水池,底面半径为6厘米,高20厘米,里面存有半池水,将一个底面半径为4厘米,高1米的圆柱形竖直放入池中,水面会上升多少?练4、一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米。

【精品】北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)

【精品】北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)

小学六年级下册数学奥数知识点讲解第1课《列方程解应用题》试题附答案
小学六年级下册数学奥数知识点讲解第2课《关于取整计算》试题附答案
答案
六年级奥数下册:第二讲关于取整计算习题解答
小学六年级下册数学奥数知识点讲解第3课《最短路线问题》试题附答案
答案
六年级奥数下册:第三讲最短路线问题习题解答
小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案
答案
小学六年级下册数学奥数知识点讲解第5课《巧求面积》试题附答案
六年级奥数下册:第五讲巧求面积习题解答
小学六年级下册数学奥数知识点讲解第6课《最大与最小问题》试题附答案
答案。

小学六年级奥数课件:几何部分教案共61页文档

小学六年级奥数课件:几何部分教案共61页文档
小学六年级奥数课件:几何 部分教案
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
61
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

北师大版最新小学数学奥数基础教程(六年级)图文百度文库

北师大版最新小学数学奥数基础教程(六年级)图文百度文库

一、拓展提优试题1.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.若质数a,b满足5a+b=2027,则a+b=.4.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.5.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.6.根据图中的信息可知,这本故事书有页页.7.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.8.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.9.如图所示的“鱼”形图案中共有个三角形.10.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.11.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.12.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.13.能被5和6整除,并且数字中至少有一个6的三位数有个.14.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.15.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.16.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.17.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.18.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)21.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.25.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).26.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).27.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.28.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.29.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.30.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?31.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.32.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)33.图中的三角形的个数是.34.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.35.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.36.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.37.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.38.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.39.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.40.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.【参考答案】一、拓展提优试题1.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.4.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.5.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.6.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.7.解:==,答:这三个分数中最大的一个是.故答案为:.8.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.9.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.10.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.11.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.12.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.13.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.14.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.15.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.16.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.17.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.18.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.21.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.25.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.26.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.27.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.28.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.29.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.30.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.31.解:根据分析可得,,=,=2;故答案为:2.32.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①33.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.34.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.35.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.36.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.37.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.38.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.39.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.40.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何问题1
1、求阴影部分的面积。

(单位:厘米)
2、正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)
3、求图中阴影部分的面积。

(单位:厘米)
4、求阴影部分的面积。

(单位:厘米)
5、如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?
6、求阴影部分的面积。

(单位:厘米)
7、求阴影部分的面积。

(单位:厘米)
8、求阴影部分的面积。

(单位:厘米)
9、求阴影部分的面积。

(单位:厘米)
10、求阴影部分的面积。

(单位:厘米)
11、求阴影部分的面积。

(单位:厘米)
12、已知直角三角形面积是12平方厘米,求阴影部分的面积。

13、求阴影部分的面积。

(单位:厘米)
14、图中圆的半径为5厘米,求阴影部分的面积。

(单位:厘米)
15、如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。

16、正方形边长为2厘米,求阴影部分的面积。

17、如图,四个扇形的半径相等,求阴影部分的面积。

(单位:厘米)
18、如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。

19、如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。

20、如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28
平方厘
21、如图,大正方形的边长为6厘米,小正方形的边长为4厘米。

求阴影部分的面积。

22、求阴影部分的面积。

(单位:厘米)
23、求阴影部分的面积。

(单位:厘米)
体积与表面积的问题
1把两个相同的正方体拼在一起成一个长方体,这个长方体的表面积是两个正方体表面积之和的分之 .
2一个长6分米、宽4分米、高2分米的木箱.用三根铁丝捆起来(如右图),打结处要用1分米铁丝.这根铁丝总长至少为分米.
2
6
4
3、一个长方体的底面、侧面和前面的面积分别是12平方厘米、8平方厘米和6平方厘米.那么它的体积是 .
4、将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是 .(14.3=π)
5、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积之和最大.这时表面积之和是 平方厘米.
6、一个圆柱形玻璃杯中盛有水,水面高2.5厘米,玻璃内侧的底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体的铁块后,水面没有淹没铁块,这时水面高 厘米.
7、一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 . 9、一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后
,得到一个 ,这个形体的体积是 .
10、把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.
11、一个棱长为10cm 的正方体,如果在它的各面的中间的正
中位置打一个深4cm ,长、宽均为2cm 的长方体孔洞,
则打孔以后的正方体的表面积=_________cm2,体积=
_________cm3。

12、将一个长8厘米宽6厘米长方形4个角各剪去一个边长1厘米的正方形,然后折成一
个无盖长方体。

求长方体表面积和体积?
13、在一个棱长8厘米的正方体玻璃缸中,盛有一定深度的水。

将棱长4厘米正
方体铁块放入缸中
(1)若缸中水深6厘米,则水面上升多少厘米?
(2)若缸中水深2厘米,则水面上升多少厘米?
(3)若缸中水深7.5厘米,则水面上升多少厘米?
14、向一容积27升正方体容器注水,3分钟后容器水深3厘米,注满水要()分钟
15、一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,
放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘
米?
16、如下图所示,图(1)是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱状,底面直径为10厘米,水瓶高度是26厘米,瓶中液面高度为12厘米。

将水瓶倒置后,如图(2),瓶中液面高度是16厘米。

水瓶的容积是多少毫升?(π取3,水瓶壁厚不计)
图(1)图(2)
17、一个圆柱体容器装满了水。

第一次放入铁球,取出铁球后水面下降了1厘米;
第二次放入铜球,取出后水面下降0.5厘米;第三次放入铅球,取出后水面下降了2.5厘米.求铁球,铜球,铅球的体积比
18、一个圆锥形沙堆,底面半径是2米,高15分米,如果每立方米沙重5.8吨,这堆沙重多少吨?(得数保留整吨数)。

相关文档
最新文档