最优化理论与算法课件 (5)

合集下载

最优化理论与算法

最优化理论与算法

最优化理论与算法
优化理论与算法研究的目标是解决最优化问题,即给定一定的约束条
件下,求得目标函数的最佳值,优化理论与算法是计算机科学、数学、运
筹学及其它相关学科的重要组成部分,是一个多学科交叉学科。

优化理论
与算法是指对复杂环境、条件、限制等进行模型建立,并以此模型为基础,运用计算机对各种优化问题进行求解,得到最优解的方法。

它在产业中的
应用非常广泛,包括交通系统、排课模式、物流系统、科研计划等,它的
应用领域也不断扩大。

优化理论与算法包括几何优化、数值优化、组合优化、动态规划等,
其中几何优化是指把优化问题转换成几何问题,按照优化准则进行空间,
以求取最优解的方法。

数值优化是指根据给定的模型,使用计算机求解目
标函数的最优解的方法。

组合优化是指求解那些变量数量特别多,而每个
变量又只能取有限的取值,使其能达到最优解的一种技术。

动态规划是指
通过构建有限步骤,每步骤之间相互关联的一个优化过程,以求得最优解
的方法。

优化理论与算法综合利用了统计学、数理统计、概率论、凸分析、数
值分析和计算机程序的优势和特点,能有效地处理实际中复杂的优化问题。

最优化理论与算法完整版课件 PPT

最优化理论与算法完整版课件 PPT

Bazaraa, J. J. Jarvis, John Wiley & Sons, Inc.,
1977.
组合最优化算法和复杂性
Combinatorial
Optimization 蔡茂诚、刘振宏
Algorithms and Complexity
清华大学出版社,1988 I运nc筹.,学19基82础/1手99册8
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2021/4/9
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2021/4/9
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
最优化理论与算法
2021/4/9
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
2021/4/9
2
其他参考书目

最优化理论与算法完整版课件陈宝林PPT

最优化理论与算法完整版课件陈宝林PPT

j1
m
s.t xij bj
i1
xij 0
i 1, 2,L , m
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2020/4/8
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2020/4/8
12
1. 食谱问题(续)
令x表示要买的奶的量,y为要买的蛋的量。食谱问题可以写
成如下的数学形式:
Min 3x +2.5y
极小化目标函数
s.t. 40
50
2x + 4y 3x + 2y
可行区域(单纯形) 可行解
运筹学工作x,者y参与0建.立关于何时出现最小费用 (或者最大利润)的排序,或者计划,早期被标示为programs。 求最优安排或计划的问题,称作programming问题。
2020/4/8
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费买这些食物, 而满足最低限度的维生素需求量。
Printice-Hall
徐光辉、刘彦佩、程侃
科学出版社,1999

最优化理论与算法完整版课件陈宝林

最优化理论与算法完整版课件陈宝林
最优化理论与算法
TP SHUAI
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
TP SHUAI
2
其他参考书目
Nonlinear Programming - Theory and Algorithms
j1
m
s.t xij bj
i1
xij 0
i 1, 2, , m
j 1, 2, n i 1, 2, , m j 1, 2, n
TP SHUAI
15
3 税下投资问题
• 以价格qi 购买了si份股票i,i=1,2,…,n
• 股票i的现价是pi
• 你预期一年后股票的价格为ri • 在出售股票时需要支付的税金=资本收益×30% • 扣除税金后,你的现金仍然比购买股票前增多 • 支付1%的交易费用 • 例如:将原先以每股30元的价格买入1000股股票,以
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
• 算法 TP SHUAI
5
绪论---运筹学(Operations Research - OR)
运筹学方法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
TP SHUAI
23
6.结构设计问题
p1
p2
h
2p
2L
B
d
受力分析图

《最优化理论》课件

《最优化理论》课件

机器学习中的应用
介绍最优化理论在神经网络训练 中的作用。
工程优化中的应用
应用最优化理论优化机械设计和 自动化控制系统。
总结
通过本课程的学习,您掌握了最优化理论的基本知识和应用方法,为实际问 题的解决提供了有力工具和支持。期待您在未来能够更好地应用这些知识, 为创新和发展做出更大的贡献。
凸优化问题的定义
详细讲解凸优化问题的定义和常用求解方法。
对偶问题
讲解凸优化问题的对偶问题和应用案例。
其他优化问题
1
整数规划
讲解整数规划在实际问题中的应用及其求解方法。
2
半正定规划
介绍半正定规划的定义和求解方式。
3
非线性规划
学习非线性规划问题的求解方法和应用案例。
应用案例
Hale Waihona Puke 经济学中的应用讲解最优化理论在竞争市场模型 中的应用。
数学符号与常用概念
介绍数学符号的含义和常用概念,为后 续学习内容打下基础。
一元函数的最优化问题
讲解一元函数求极值的方法,如牛顿法 和梯度下降法等。
无约束优化问题
一维搜索法
介绍线性搜索和二分搜索等一维 搜索算法。
牛顿法
讲解牛顿法的动机和实现方式。
梯度下降法
详细介绍梯度下降法的原理和特 点。
共轭梯度法
《最优化理论》PPT课件
最优化理论是数学中一项重要的领域,涉及到许多实际问题的求解,如经济 学、机器学习和工程优化等。本课程将为您介绍最优化理论的基础知识和应 用案例,帮助您深入了解这个精彩的领域。
优化理论的基础知识
1
函数的极值
2
学习函数的最值概念和求解方法。
3
多元函数的最优化问题

最优化计算方法-第5章(线性规划)

最优化计算方法-第5章(线性规划)

第五章线性规划线性规划(Linear Programming,简记为LP)是数学规划的一个重要的分支,其应用极其广泛.1939年,前苏联数学家康托洛维奇(Л.B.Kah )在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题.1947年美国数学家丹泽格(G. B. Dantzig)提出了一般线性规划的数学模型及求解线性规划的通用方法─单纯形方法,为这门科学奠定了基础.此后30年,线性规划的理论和算法逐步丰富和发展.1979年前苏联数学家哈奇扬提出了利用求解线性不等式组的椭球法求解线性规划问题,这一工作有重要的理论意义,但实用价值不高.1984年在美国工作的印度数学家卡玛卡(N. Karmarkar)提出了求解线性规划的一个新的内点法,这是一个有实用价值的多项式时间算法.这些为线性规划更好地应用于实际提供了完善的理论基础和算法.第一节线性规划问题及其数学模型一、问题的提出例1 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知条件如表所示。

问应如何安排计划使该工厂获利最多?ⅠⅡ现有资源设备原材料A 原材料B 14248台时16kg12kg每件利润23ⅠⅡ现有资源设备原材料A 原材料B 1402048台时16kg12kg每件利润23解: 设x 1、x 2 分别表示在计划期内产品Ⅰ、Ⅱ的产量。

12max 23z x x =+..s t 1228x x +≤1416x ≤2412x ≤12,0x x ≥二、线性规划问题的标准型112211112211211222221122123max ..,,0n nn n n n m m m mn n mn z c x c x c x s t a x a x a x b a x a x a x b a x a x a x b x x x x =+++⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪≥⎩,,其中1,,0m b b ≥11max ..,1,2,,0,1,2,,nj jj nij j i j j z c x s t a x b i mx j n=====≥=∑∑ 12(,,,)T n c c c =c 12(,,,)Tn x x x =x 12(,,,)Tm b b b =b 111212122212n nm m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 12[,,,]n = p p pmax ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 001max ..()Tnj j j z s tx =⎧=⎪⎪=≥⎨⎪⎪≥⎩∑c xp bb x 00对于不是标准形式的线性规划问题,可以通过下列方法将线性规划的数学模型化为标准形式:(1)目标函数的转换对min z 可以化max()z -(2)右端项的转换对0i b <,给方程两边同时乘以1-(3)约束条件的转换约束条件为≤方程左边加上一个变量,称为松弛变量约束条件为≥方程左边减上一个变量,称为剩余变量(4)变量的非负约束变量j x 无限制时,令,,0j j j j j x x x x x ''''''=-≥变量0j x ≤时,令j jx x '=-例将下列线性规划模型转化为标准形式12312312312312min 23..7232500x x x s t x x x x x x x x x x x -+-⎧⎪++≤⎪⎪-+≥⎨⎪--=-⎪≥≥⎪⎩,解(1)变量的非负约束令345x x x =-1245max 233x x x x -+-..s t 612457x x x x x ++-+=712452x x x x x -+--=12453225x x x x -++-=§2 两变量线性规划问题的图解法例1 求下列线性规划的解12121212max ..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,120x x z +=将等值线沿梯度方向移动当等值线即将离开可行例2 求下列线性规划的解12121212max 2..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,1202x x z +=将等值线沿梯度方向移动当等值线即将离开可行域时与可行域“最后的交点点为问题的最优解例3 求下列线性规划的解12121212max ..2200z x x s t x x x x x x =+⎧⎪-≤⎪⎨-≥-⎪⎪≥≥⎩,c2x 1x O无解例4 求下列线性规划的解12121212min 3..123600z x x s t x x x x x x =-⎧⎪≤⎪⎨≥⎪⎪≥≥⎩++,2x 1x O线性规划问题的性质:(1)线性规划的可行域为凸集,顶点个数有限.若可行域非空有界,则可行域为凸多边形.(2)线性规划可能有唯一最优解,可能有无数多个最优解,也可能无解最优解.无最优解可能是目标函数在可行域上无界,也可能可行域为空集.(3)若线性规划有最优解,则最优解必可在可行域的某个顶点达到.若两个顶点都为最优解,那么这两点连线上的所有点都是线性规划的最优解.§3 线性规划解的概念及其性质1 线性规划解的概念考虑线性规划问题max ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 00定义.1 矩阵A 中任何一组m 个线性无关的列向量构成的可逆矩阵B 称为线性规划的一个基矩阵与这些列向量对应的变量称为基变量(basis variable )其余变量称为基对应的非基变量(nonbasis variable )B 若设一个基为12(,,)m B p p p = ,12,,,m x x x ——为基B 对应的基变量1,,m n x x + ——为基B 对应的非基变量1B m x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1m N n x x x +⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12(,,,)m m n ++= N p p p (,)=A B N 从而令=Ax b 则(,)N x ⎡⎤=⎢⎥⎣⎦B x B N b11B Nx B b B Nx --=-B N Bx Nx b+=令0N x =则1B x B b-=10B b -⎡⎤⎢⎥⎣⎦——基本解(basis solution )满足10B b -⎡⎤≥⎢⎥⎣⎦,=≥0Ax b x 的基本解——基本可行解(basis feasible solution )对应的基称为可行基(feasible basis ).B 可以写成即:定义4 若基本可行解中所有基变量都为正,这样的基本可行解称为非退化解(non-degenerate solution).若基本可行解中某基变量为零,这样的基本可行解称为退化解(degenerate solution).例1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:12123141234max ..28400,00z x x s t x x x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥≥≥⎩,,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点2 解的判别定理定理1 最优解的判别准则设B 为线性规划LP 的一个基,1(1)0-≥B b 1(2)T T--≥0Bc B A c 则基对应的基本可行解1-⎡⎤⎢⎥⎣⎦0B b 是LP 的最优解.1(1,2,,)σ--== TBj j j c B p c j n 为变量对应的检验数j x 112[0,,0,,,]σσσ-++-= ,T TBm m n c B A c 显然基变量对应得检验数为零.定理2 无穷多个最优解的判别定理在线性规划的最优解中,某个非基变量对应的检验数为零,则线性规划有无数多最优解.定理3 无界解的判别定理设B 为线性规划的一个可行基,若基本可行解中s x 对应的检验数0σ<s ,且1-≤0s B p 则线性规划具有无界解(或称无解).某非基变量§3.4 单纯形表设B 为线性规划的一个基,x 为对应的可行解,则=Ax b两边同乘得1-B 11--=B Ax B b两边同乘得T Bc 11T T --=BBc B Ax c B b T z =c xTz -=c x 11T T --+-=TBBz c B Ax c x c B b 11(T T --+-=)TBBz c B A c x c B b1111()T TT z ----⎧+-=⎨=⎩BBc B A c x c B b B Ax B b 11111T T Tz ----⎡⎤⎡⎤-⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0BBc B b c B A c x B A B b 定义矩阵1111TT----⎡⎤-⎢⎥⎣⎦T BBc B b c B A c B bB A 为基B 对应的单纯形表(table of simplex ),记为()T B1111()T T----⎡⎤-=⎢⎥⎣⎦T BBc B b c B A c T B B bB A 检验数函数值基变量的值各变量的系数100T b -=Bc B b 101020(,,,)--= T TBn c B A c b b b 10201-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥ b b B b则单纯形表可写成000101011102()⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦B n n m m mn b b b b b b T b b b 1112121222111112(,,)---⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n n m m mn b b b b b b B A B p B p bb b上例中1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:121231412max ..28400z x x s t x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥⎩,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点13410(,)01⎡⎤==⎢⎥⎣⎦B p p 231(,)=B p p 12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p T(0,0)=B C 10()T⎡⎤-=⎢⎥⎣⎦c T B b A 34011008121041001z x x -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦23140101()4021141001x x ⎡⎤⎢⎥=-⎢⎥⎢⎥z T B 121101--⎡⎤=⎢⎥⎣⎦B 31401014021141001z x x ⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦T(0,1)=B C单纯形表的特点:1、基变量对应的检验数为零2、基变量的系数构成单位阵§5旋转变换(基变换)设已知12(,,,,,)= r m j j j j B p p p p T()=B 1 r m j j j z x x x 1sn x x x 0001001011110102⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦sn s n r r rs rn m m ms mn b b b b b b b b b b b b b b b b为了将s x 变为基变量,而将r j x 变为非基变量,必须使表中的第s 列向量变为单位向量,变换按下列步骤进行:(1)将()T B 中第r 行,第s 列的元素化为1.01(,,,,,1,,) rj r rnr rs rs rs rsb b b b b b b b (2)将()T B 中第s 列的的其余元素化为0.0101(,,,,,0,,)---- is rn is rj is r is r i i ij in rs rs rs rsb b b b b b b b b b b b b b b b由此得出变换后矩阵中各元素的变换关系式如下,其中,01== ,,,rjrj rsb b j nb ,,01,01=-≠== ,,,,,,is rjij ij rsb b b b i r i m j nb 变换式称为旋转变换rs b 称为旋转元,r称为旋转行称为旋转列,s s x 称为入基变量,称为出基变量,r j x {,}r s定理3.5.1,01== ,,,rj rj rsb b j n b ,,0,01=-≠== ,,,,,is rj ij ij rsb b b b i r i m j n b 在变换之下,将基12(,,,,,)= r m j j j j B p p p p 的单纯形表变为基12(,,,,,)= m j s j j B p p p p 的单纯形表第6节单纯形法基本思路是:线性规划(通常是求最小值的形式)若有最优解,其必定在可行域(在相应几何空间中是一个凸多面体)的顶点达到,故从某一个顶点出发,沿着凸多面体的棱向另一顶点迭代,使得目标函数的值增加,经过有限次迭代,将达到最优解点.1.入基变量及出基变量的确定入基变量的确定由上面可知,目标函数用非基变量表示的形式为01n j jj m z z x σ=+=-∑若某检验数0j σ<则j x 的系数大于零,将j x 由零变为非零,目标函数值增大.所以,为了使的取值目标函数值增加,可以将某检验数0j σ<对应的非基变量j x 中的某个变为基变量.{}min 0j s j σ=<则s x 可选作为入基变量.即:在负检验数中,列标最小的检验数对应的非基变量入基.2.出基变量的确定在确定出基变量时应满足两个原则:(1)目标函数值不减;(2)保证新的基本解为基本可行解.0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,2 单纯形法设已知一个初始可行基及B T()B 基变量指标集合为{}1,,B m J j j = 非基变量的指标集合为{}1,2,,\N BJ n J =单纯形法若所有()00j N b j J ≥∈,则停止,最优解为0,1,,0,ij i j N x b i m x j J **⎧==⎪⎨=∈⎪⎩否则转(2).(1)最优性检验(2)选入基变量{}0min 0,j N s j b j J =<∈若()01~is b i m ≤=,则停止,(LP)无最优解,否则转(3)(3)选出基变量0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭0min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,(4)作{},r s 旋转运算,01rj rj rsb b j n b == ,,,,,01,01is rj ij ij rsb b b b i r i m j n b =-≠== ,,,,,,得B 的单纯形表()()ijT B b =,以ij b 代替ij b ,转(1)例1 求线性规划问题的解解标准型为:121231425max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 2328416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/408-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x08-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/40140244011/201001/40002-15z x 12345x x x x x 3/21/80⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 1/2例2求线性规划问题的解解标准型为:121231425max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 228416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/404-2441202101001/400400135z x x 12345x x x x x 01/40⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x0-2441202101001/400400135z x x 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/4080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 41/42-1/2080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 2x 2T 0803280101/410101/2-004-12z 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣01x 2x 42-1/25x 11212x k x k x =+12120,1,1k k k k ≤≤+=全部最优解为§7 两阶段法第二阶段从初始可行基开始,用单纯形法求解原问题.(LP )max ..(0)0T z c x s t Ax b b x ⎧=⎪=≥⎨⎪≥⎩(ALP )max ..0()T w s t z ⎧=-⎪-=⎪⎨+≥⎪⎪≥⎩00T e y c x A =b b x y x 第一阶段引入人工变量,构造辅助问题,求辅助问题的最优解,得出原问题的初始可行基及对应的基本可行解.(ALP)12112211112211121122222211212312max..0 ,,,,0mn nn nn nm m mn n m mn mw y y ys t z c x c x c xa x a x a x y ba x a x a x y ba x a x a x y bx x x x y y y=----⎧⎪----=⎪⎪++++=⎪++++=⎨⎪⎪++++=⎪⎪≥⎩,,,,,121111211112122122212000000100()010001m m m m i i i in i=1i i i n n n m m m mn b a a a c c c b a a a T B b a a a b a a a ===⎡⎤----⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑∑。

AAA最优化理论与方法课件(第5章,马昌凤版)

AAA最优化理论与方法课件(第5章,马昌凤版)

和yk
,
可根据(*)估计在xk
处的
+1
Hesse矩阵的逆.令H k 1取代牛顿欠定法方中程的Hesse阵
H 的逆2
f
( xk
)1,则H
k
满足
1
d自k 1由度? 2 f (xkk11)1f (xk 1)
sk =Hk1 yk
(A1)
(样A1确)称定为满拟足牛这顿个条条件件(的方HHH程0kk)+,11 ?也I;H称k为割H线k方程。怎校矩正阵
0 0 3 1
5.1拟牛顿法及其性质
1
第一次迭代 在 x(0)的梯度是 g(0) 1 ,于是
1
1 d (0) H (0) g(0) 1
1
步长0
( g(0) )T d (0) (d (0) )T Gd (0)
1 ,于是
2
x(1) =x(0) +0d (0)
1, 2
1, 2
1 2
T
5.1拟牛顿法及其性质
目标函数是凸函数,因此 x(3) 是全局极小点。
5.1拟牛顿法及其性质
5.1拟牛顿法及其性质
5.1拟牛顿法及其性质
点评
• 在一定条件下,对称秩1校正算法收敛且具有二次终止性。
• 无法保证Hk和Bk的正定性。
H k 1 yk =sk
• 具体而言,有以下三种情况:
Bk1sk =yk
若yk =Bk sk,则满足拟牛顿方程的迭代矩阵Bk+1=Bk。 若(yk Bk sk )T sk 0,则满足拟牛顿方程的SR1校正 公式存在且唯一。
方法总结:
xk +1 xk k Hk (gk )
H
k
I,

最优化理论与算法完整版课件陈宝林PPT课件

最优化理论与算法完整版课件陈宝林PPT课件

2020/3/26
可编辑
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
几何规划 动态规划 不确定规划:随机规 划、模糊规划等
多目标规划 20对20/策3/2论6 等
随机过程方法
统计决策理论 马氏过程 排队论 更新理论 仿真方法 可靠性理论等
可编辑
统计学方法
回归分析 群分析 模式识别 实验设计 因子分析等
6
优化树
2020/3/26
可编辑
7
•最优化的发展历程
费马:1638;牛顿,1670
min f (x) x:数
欧拉,1755
df(x) 0 dx
Min f(x1 x2 ··· xn )
f(x)=0
2020/3/26
可编辑
8
拉格朗日,1797
Min f(x1 x2 ··· xn) s.t. gk (x1 x2 ··· xn )=0, k=1,2,…,m
欧拉,拉格朗日:无穷维问题,变分学 柯西:最早应用最速下降法
如果运输问题的总产量等于总销量,即有
m
n
ai bj
i 1
j 1
则称该运输问题为产销平衡问题;反之,称产销不平 衡问题。
2020/3/26
可编辑
14
2 运输问题(续)
令xij表示由产地Ai运往销地Bj的物品数量,则产销平衡 问题的数学模型为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A

A
A , b b, x , x 0, c任取如 c 0
若有多项式时间的LP算法,能够判断问题 *
不可行,则不等式组Ax b无解;或者得到其最优
解或判定问题无界,则得到不等式组Ax b的一个
解,显然就以多项式时间解决了问题Ax b。
定理:存在求解LP问题的多项式时间算法的充要条件
椭球法
第一个可以在多項式时间內解决一般线性规划问
题的解法。
min cx (P) s.t. Ax b
x 0
max bT w
(D)
s.t.
AT w c

w0
根据(P) 与(D) 的对偶关系, 我们可将两者的最优解以
一组最优性条件联结起来:
Ax b, x 0
走路径最短。
• 解:设xij=1若商人行走的路线中包含从城市i到j的路径,否则xij
=0。
min

i j
d ij xij

n
s.t.
xij 1, i 1,2,, n
j 1
x n i1 ij
1,
j
1,2,, n
xij | S | 1, 2 | S | n 1 S {1,, n}
等式组有解 x*, w*,则x *是LP问题的最优解,w*是其对
偶问题的最优解;若该联立不等式组无解,考虑不等式组
Ax b , x 0
若它有解,则LP问题无界;否则LP问题不可行。
只要能有效的解决最优性条件的线性不等式, 就能夠同时的解决一个线性规划问题(P) 以及它的 对偶问题(D)。椭球法正是一种专门解决线性不等 式的方法。
界K,则有
L n(n 1)1log2 K
• 一个求解实例I的算法的基本计算总次数C(I) 同实例I的计算机二进制输入长度d(I)的关系 常用符号C(I)=f(d(I))=O(g(d(I)))表示,它的 含义:求解实例I的算法的基本计算总次数 C(I)是实例输入长度d(I)的一个函数,该函 数被另一个函数g(x)控制,即存在一个函数 g(x)和一个常数a,使得

i, jS

xij 1 or 0

• 可行解:用n个城市的一个排列表示商人按 这个排列序推销并返回起点。
• 使用枚举法求解,需要(n-1)!次枚举。 • 以计算机1秒可以完成24个城市所有路径枚
举为单位。
• 城市数 24 25 26 27 30 • 计算时间 1秒 24秒 10分 4.3小时 10.8年
V(Ek+1) <e−k/2(p+1)V(E1)。 表明在多项式时间內, 新的椭球体积便可缩减至零, 否则原题无解。
步骤:
1: 考虑最优化条件的线性不等式(∗ )。在 (x,w)∈Rn+m的空间中, 以原点u1=(x1,w1)为心, 足夠大 的正数22L为半径做一圆球E1。置k=1。
2: 检验现有球心uk=(xk,wk)是否满足该最优化不等式。若 满足,则xk是(P) 的最优解,wk是(D)的最优解。若不满足, 则依前述方法得到一个新的椭球Ek+1及其球心uk+1。
• 1. 问题与实例 • 问题(problem):需要回答的一种提问,通
常包含一些参数和取值未定的自由变量,可 以从两个方面加以描述:
• (1)对所有参数的一般描述; • (2)对回答(也称为解)所需要满足的特
性的描述。
• 实例(instance):当对一个问题中的参数 赋予特定的数值时,如何寻找相应的回答 (解),这种提问称为该问题的一个实例。
S∩E1⊆E2, 若Mu2 ≤v成立, 则u2∈S∩E1必为其 解。否则经过u2又可切去半个E2, 而使S∩E1包 含在另一半椭圆1/2E2之中。
在p维空间中, 每次做出的椭球体积都会逐渐缩 小。以V(Ek)及V(Ek+1)来表示前后两个椭球的体积, 那么可以证明V(Ek+1) <e−1/2 (p+1)V(Ek)。所以
写成:
(P2)
min
cT
Dk
y

s.t.
n yj 1 2 1

j 1
应用(P1) 的解答技巧, 在y空间中的近似最优解为:
y* yk1 yk Dkc e Dkc
Dk c
Dk c
在x空间中(P2)的近似最优解为:
x* xk1 Dk yk1 Dke
3: 若是V(Ek+1) = 0,uk+1仍不满足最优化不等式, 則(P) 或(D)至少有一无最优解。否则置k :=k + 1, 返回2。
min cT x
(P)

s.t.
Ax b

x0
称x∈Rn为一个可行內点(interior feasible) 如果Ax = b, x >0。
可行內点解集合:F0 = {x∈Rn|Ax =b, x > 0}。
将(P1) 变得稍微复杂一些, 将球改为第一象 限来考虑下列问题:
min cT x
(P2 )
s.t.
x0
假设xk 0,定义n n矩阵
1


x1k
Dk



x2k


x1k


0
D 1 k




1
x2k


0



0
xnk
0
C I ag(d (I ))
• 定义:假设问题和解决该问题的一个算法已经 给定,若给定该问题的一个实例I,存在多项式 函数g(x),使得
C I ag(d (I ))
• 成立,则称该算法对实例I是多项式时间算法; 若存在g(x)为多项式函数且对该问题任意一个实 例I ,都有上式成立,则称该算法为解决该问 题的多项式时间算法。
• 问题是对许多具体事例构成集合的一种抽象 表述,而实例就是相应问题的一种具体表现 形式。
• 例:线性规划问题与实例 • 一个线性规划问题的实例是指矩阵和向量
组(A, b, c)的某一特定取值,这些参数按照 如下的结构关联在一起,描述了问题(解) 所需要满足的特性。
min cx
s.t. Ax b
x0
线性规划问题是对具有上述结构的所有实例 的一种抽象描述。
• 算法:是一组含义明确的简单指令。
• 一个问题是算法可解的(solvable):存在一个 求解该问题的算法,只要让算法运行足够长的时 间,并且保证满足算法在运行过程中所需要的存 储空间,它就能求解该问题的任何一个实例。
• 停机问题:不可能构造出一个程序来确定任意给 出的程序是否会陷入无限循环。
• 当g(x)为指数函数时,称相应的算法为指数时间 算法。
time
n! =2O(n lg n) 2n
n2 10n
input length
• 多项式时间算法的优点:
• (1)随着问题输入规模的增加,算法的计 算量(即算法复杂性)呈多项式增长;
• (2)一个多项式时间算法利用另一个多项 式时间算法作为其“子程序”,构造一个 新的复合型算法,则新算法仍是多项式时 间算法。
mn m n 2 log2 | P | (P为A,b,c中所有非零数的乘积)
• 对应TSP,枚举算法的基本计算总次数为 [(n-1)!]n=n!
• 实例的二进制输入长度总量不超过

L=n(n-1)+log2|P|
• 其中P为所有非零数dij的乘积。
• 假设 S dij |1i, j n,i j 中每个数据都有上

AT
w

c,
w0
(*)
cx wb 0
定理:存在求解LP问题的多项式时间算法的充要条件
是存在求解线性不等式组Ax b的多项式时间算法。
证明:与线性不等式组Ax b相关的LP问题为
min cx
* s.t. Ax b


x 0
其中x


x x
,
计算复杂性
• 算法性能: • (1)在最坏情况下算法所表现出来的性能;
----------------------最坏性能 • (2)在各种情况可能出现时,算法所表现
出来的期望性能。---------平均性能
• 一个商人欲到n个城市推销商品,每两个城市i和j之间的距离为dij, 如何选择一条道路,使得商人每个城市走过一遍后回到起点且所
假设F0非空。
內点法可粗略的分为三个步骤:
步骤一: 找一个可行內点x1∈F0。置k=1。
步骤二: 决定现有解xk是否为(P) 的最优解。若是,
则输出x∗ = xk。否则就寻找一个好的移动方向d 以及适当的步长k> 0。
k x
,
步骤三:由xk移动到新的内点
xk 1

xk


k
d
k x
F0.
置k : k 1,返回步骤二。
是存在求解线性不等式组Ax b的多项式时间算法。
*的对偶问题为
max wb
s.t. wA c

w0
所以求解LP问题可归结为求解关于变量 x, w的
线性不等式组: Ax b , wA c, cx wb 0, x, w 0
设有多项式时间方法求解线性不等式组。若该联立不
n
max x0 10ni xi i 1
s.t. xi 2 10i j x j 102i2, i 2,, n ji xi 0, i 1, 2,, n
二进制输入大小d (I ) 6n2 2n 3n log2 | P |, 其中P为所有非零系数的乘积。
相关文档
最新文档