最优化理论与算法试题2007
最优化复习题及答案

最优化复习题及答案一、选择题1. 最优化问题中,目标函数的值随着决策变量的变动而变动,我们称之为:A. 约束条件B. 可行域C. 目标函数D. 决策变量答案:C2. 在线性规划问题中,如果所有约束条件和目标函数都是线性的,则该问题被称为:A. 非线性规划B. 整数规划C. 线性规划D. 动态规划答案:C3. 以下哪个算法是用于求解无约束最优化问题的?A. 单纯形法B. 梯度下降法C. 拉格朗日乘子法D. 分支定界法答案:B二、填空题4. 在最优化问题中,满足所有约束条件的解称为________。
答案:可行解5. 当目标函数达到最大值或最小值时的可行解称为________。
答案:最优解6. 拉格朗日乘子法主要用于求解带有等式约束条件的________问题。
答案:最优化三、简答题7. 简述单纯形法的基本思想。
答案:单纯形法是一种用于求解线性规划问题的算法。
它通过在可行域的顶点之间移动,逐步逼近最优解。
在每一步中,选择一个进入基的变量,使得目标函数值增加最多,同时选择一个离开基的变量,使得目标函数值不降低。
通过这种方法,单纯形法能够找到线性规划问题的最优解。
8. 解释什么是局部最优解和全局最优解。
答案:局部最优解是指在目标函数的邻域内没有其他解比当前解更优的解。
而全局最优解是指在整个可行域内没有其他解比当前解更优的解。
局部最优解不一定是全局最优解,但全局最优解一定是局部最优解。
四、计算题9. 假设有一个生产问题,需要最小化成本函数 C(x, y) = 3x + 4y,其中 x 和 y 分别表示生产两种产品的产量,且满足以下约束条件: - 2x + y ≤ 12- x + 2y ≤ 18- x, y ≥ 0请求解该最优化问题。
答案:首先,我们可以画出约束条件所形成的可行域。
然后,检查可行域的顶点,这些顶点分别是 (0,0), (0,9), (6,0), (3,6)。
计算这些顶点处的成本函数值,我们得到:- C(0,0) = 0- C(0,9) = 36- C(6,0) = 18- C(3,6) = 30成本函数的最小值为 18,对应的最优解为 (x, y) = (6, 0)。
华工-07级《最优化理论与方法》试题

Final Examination of Optimal Theory and MethodsName Score Notice : Please write all the answers on the answer sheet. 1. Answer the following questions (10 points )(1)List four methods to solve one dimensional optimal problems.(2)List four methods to solve non-constrained multi-dimensional optimal problems. (3)List four methods to solve constrained multi-dimensional optimal problems. (4)List two methods to solve optimal problems by using the gradient. (5)List one method to solve optimal problems by using Hessian array. 2. Use simplex method to solve the following LP problem. (10 points )()321336max x x x f +-=xs.t. ⎪⎪⎩⎪⎪⎨⎧=≥≤+-≤+--≤+3 2, 1, j 0182143248232132121j x x x x x x x x x3. Use 0.618 method to find the minimum point with a object function of()212--=x x x f . List the results of first four steps. The region is [ 0, 1.2 ]. (10points )4. Use Newton method to find the minimum value of object function()222125x x f +=x . (5 points )( Note: take x0=[2,2]T ,and perform iteration once)5. Use interior-point penalty function method to solve the following problem. min f(x)=axs.t. g(x)=b -x ≤0 (Note :take k r=10-k )) (5 points )6. Use Kuhn-Tucker criteria to judge whether point [2,1]T and point [0,0]T are the extreme points of the following problem. (10 points )()()()222123min -+-=x x f xs.t.()()()()⎪⎪⎩⎪⎪⎨⎧≤-=≤-=≤+=≤+=00425241321222211x g x g x x g x x g x x x x7.Briefly explain A* algorithm. In Fig.1, the start point is S and the end point is E of an8 number problem. Using Misplaced(n) as a heuristic function ,form a A* algorithmsearching diagram.(10 points )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=56748321 45768132E SFig. 18.By using binary encoding genetic algorithm to solve the following optimal problem. min f (x)=x1+x2 s.t. 8≤x1≤12 3≤x2≤7It has been known that the three initial bodies (x1, x2) are (10, 5)、(12, 6)and (9, 7), and their binary codes are (1 0 1 0, 0 1 0 1),(1 1 0 0, 0 1 1 0),(1 0 0 1, 0 1 1 1). Please optimize the problem by using crossover (交叉),mutation (变异) and etc. Only the first two steps should be written.(10 points )9.The status function of a given system is as follows.u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=100010If the beginning boundary conditions are : 0x =)0(,; the ending boundary conditions are : x1(1) + x2(1)-1=0, find optimal control u*(t) and the optimal routine x*(t) tohave the performance functional :()⎰=12dtt u J to be a minimum.(10 points )10.If there are 5 cities 1, 2, 3, 4 and 5. The distances between them are shown in Fig.2. Please use function space iteration method (函数空间迭代法) or strategy space iteration method (策略空间迭代法) to find the shortest routes and the shortest distances of each city to City 5.(8 points )11.A known Hopfield net is as shown in Fig.3.Fig. 3The bipolar hard limiter and the updating equation are as follow.(1)(2)where, Ti =0; the initial values are:⎥⎦⎤⎢⎣⎡-=6.04.00I and ⎥⎦⎤⎢⎣⎡-=110S ; and the weight coefficients are⎥⎦⎤⎢⎣⎡=0210W 。
最优化方法(试题+答案)

1.若 ,则 , .
2.设 连续可微且 ,若向量 满足,则它是 在 处的一个下降方向。
3.向量 关于3阶单位方阵的所有线性无关的共轭向量有.
4.设 二次可微,则 在 处的牛顿方向为.
5.举出一个具有二次终止性的无约束二次规划算法:.
6.以下约束优化问题:
的K-K-T条件为:
.
7.以下约束优化.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。
一方面,由于 二次连续可微, 正定,根据凸函数等价条件可知目标函数是凸函数。
另一方面,约束条件均为线性函数,若任意 可行域,则
故 ,从而可行域是凸集。
2.证明:要证 是 在 处的一个可行方向,即证当 , 时, ,使得 ,
解此线性规划(作图法)得 ,于是 .由线性搜索
得 .因此, .重复以上计算过程得下表:
0
1
1
2
(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)
2.采用精确搜索的BFGS算法求解下面的无约束问题:
3.用有效集法求解下面的二次规划问题:
4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为 ,计算到 即可):
参考答案
一、填空题
1. 2. 3. , (答案不唯一)。4.
5. 牛顿法、修正牛顿法等(写出一个即可)
0
1/2
1
2
2
3.解:取初始可行点 求解等式约束子问题
得解和相应的Lagrange乘子
转入第二次迭代。求解等式约束子问题
得解
令
转入第三次迭代。求解等式约束子问题
得解和相应的Lagrange乘子
最优化理论试题及答案

最优化理论试题及答案一、单项选择题(每题2分,共20分)1. 最优化问题中,目标函数的极值点可能是()。
A. 最小值点B. 最大值点C. 鞍点D. 所有选项答案:D2. 线性规划问题中,目标函数和约束条件都是线性的,以下说法错误的是()。
A. 线性规划问题有最优解B. 线性规划问题的最优解可能在可行域的边界上C. 线性规划问题的最优解一定在可行域的边界上D. 线性规划问题的最优解可能在可行域的内部答案:D3. 以下哪个算法不是用于解决非线性规划问题的()。
A. 梯度下降法B. 牛顿法C. 单纯形法D. 共轭梯度法答案:C4. 在约束优化问题中,拉格朗日乘数法用于()。
A. 求解无约束问题B. 求解有约束问题C. 求解线性规划问题D. 求解整数规划问题答案:B5. 以下哪个条件不是KKT条件的一部分()。
A. 梯度为零B. 可行方向C. 对偶可行性D. 互补松弛性答案:B二、填空题(每题2分,共10分)1. 一个最优化问题的可行域是指满足所有_________的解的集合。
答案:约束条件2. 目标函数在点x*处取得极小值,当且仅当在该点处的_________为零。
答案:梯度3. 线性规划问题的标准形式通常包括_________和_________两部分。
答案:目标函数;约束条件4. 拉格朗日乘数法中,拉格朗日函数是原目标函数和_________的和。
答案:约束条件的线性组合5. 非线性规划问题中,牛顿法的迭代公式是x_{k+1} = x_{k} -H(x_{k})^{-1}_________。
答案:∇f(x_{k})三、简答题(每题5分,共20分)1. 简述什么是凸优化问题,并给出一个例子。
答案:凸优化问题是一类特殊的最优化问题,其中目标函数是凸函数,可行域是凸集。
例如,二次规划问题就是凸优化问题的一个例子。
2. 解释什么是局部最优解和全局最优解。
答案:局部最优解是指在目标函数的邻域内比所有其他点都更优的解,但不一定在整个可行域内最优。
最优化试题及答案

mi 1 m *m j * g j (x*) 0最优化理论、方法及应用试题一、(30 分)1、针对二次函数f(x) 1x T Qx b T x c,其中Q是正定矩阵,试写出最速下降算法的详细步骤,并简要说明其优缺点?答:求解目标函数的梯度为g(x) Qx b,g k g(x k) Qx k b,搜索方向:从X k出发,沿g k作直线搜索以确定x k 1。
Stepl:选定X。
,计算f o,g oStep2:做一维搜索,f k i min f X k tg k , x k 1 X k tg k.Step3 :判别,若满足精度要求,则停止;否则,置 k=k+1,转步2优缺点:最速下降法在初始点收敛快,收敛速度慢。
算法简单,在最优点附近有锯齿现象,2、有约束优化问题min f (x)g i(x) 0,i 1,2,L ,ms.th j (x) 0,j 1,2,L ,l最优解的必要条件是什么?答:假设x*是极小值点。
必要条件是f,g,h函数连续可微,而且极小值点的所有起作用约束的梯度h(x*)(i 1,2丄,1)和g j(x*)( j 1,2,L ,m)线性无关,则* * * *存在1 , 2丄,I, 1, 2丄,m,使得lf(x*) i* h i(x*)i 1j*g j(x*) 0,j 1,2,L* * * * *1 ,2 ,L , l , 1 , 2 ,L ,*0, j 03、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定?答:起作用约束:若g j(x0) 0,这时点x0处于该约束条件形成的可行域边界上,它对x0的摄动起到某种限制作用可行方向:x0是可行点,某方向 p,若存在实数0 0,使得它对任意2、应用共轭梯度方法求解无约束优化问题 min X 28X |,初始点为X 0 1 1 丁 。
答:假设误差范围是0.001。
最优化理论与算法习题答案

最优化理论与算法习题答案最优化理论与算法习题答案最优化理论与算法是应用数学中的一个重要分支,它研究如何在给定的约束条件下,找到一个使目标函数取得最优值的解。
在实际应用中,最优化问题广泛存在于各个领域,如经济学、管理学、物理学等。
本文将回答一些与最优化理论与算法相关的习题,帮助读者更好地理解和应用这一领域的知识。
1. 什么是最优化问题?最优化问题是指在给定的约束条件下,寻找一个使目标函数取得最优值的解。
其中,目标函数是需要最大化或最小化的函数,约束条件是对解的限制条件。
最优化问题可以分为无约束最优化和有约束最优化两种情况。
2. 什么是凸优化问题?凸优化问题是指目标函数和约束条件均为凸函数的最优化问题。
凸函数具有良好的性质,例如局部最小值即为全局最小值,因此凸优化问题的求解相对容易。
常见的凸优化问题有线性规划、二次规划等。
3. 什么是拉格朗日乘子法?拉格朗日乘子法是一种求解有约束最优化问题的方法。
它通过引入拉格朗日乘子,将有约束最优化问题转化为无约束最优化问题。
具体地,对于一个有约束最优化问题,我们可以构造拉格朗日函数,然后通过求解无约束最优化问题来获得原问题的解。
4. 什么是线性规划?线性规划是一种特殊的最优化问题,其中目标函数和约束条件均为线性函数。
线性规划在实际应用中非常广泛,例如在生产计划、资源分配等方面都有重要的应用。
线性规划可以使用单纯形法等算法进行求解。
5. 什么是整数规划?整数规划是一种最优化问题,其中变量需要取整数值。
与线性规划相比,整数规划的求解更加困难,因为整数约束条件使得问题的解空间变得离散。
常见的整数规划问题有旅行商问题、装箱问题等。
6. 什么是非线性规划?非线性规划是一种最优化问题,其中目标函数或约束条件为非线性函数。
非线性规划的求解相对复杂,通常需要使用迭代算法进行求解,例如牛顿法、拟牛顿法等。
非线性规划在实际应用中非常广泛,例如在经济学、工程学等领域都有重要的应用。
7. 什么是梯度下降法?梯度下降法是一种常用的优化算法,用于求解无约束最优化问题。
最优化方法试题及答案

最优化方法试题及答案一、选择题1. 下列哪项不是最优化方法的特点?A. 目标性B. 可行性C. 多样性D. 随机性答案:D2. 在最优化问题中,约束条件的作用是什么?A. 限制解的可行性B. 增加问题的复杂性C. 提供额外的信息D. 以上都是答案:A3. 线性规划问题中,目标函数与约束条件之间的关系是什么?A. 无关B. 相等C. 线性D. 非线性答案:C二、简答题1. 简述最优化问题的基本构成要素。
答案:最优化问题的基本构成要素包括目标函数、决策变量、约束条件和解的可行性。
目标函数是衡量最优化问题解的质量的函数,决策变量是问题中需要确定的参数,约束条件是对决策变量的限制,解的可行性是指解必须满足所有约束条件。
2. 什么是局部最优解和全局最优解?请举例说明。
答案:局部最优解是指在问题的邻域内没有其他解比当前解更优的解,而全局最优解是指在整个解空间中最优的解。
例如,在山峰攀登问题中,局部最优解可能是到达了一个小山丘的顶部,而全局最优解是到达了最高峰的顶部。
三、计算题1. 假设一个农民有一块矩形土地,长为100米,宽为80米,他想在这块土地上建一个矩形的养鸡场,但只能沿着土地的长边布置。
如果养鸡场的一边必须靠在土地的长边上,另一边与土地的宽边平行,求养鸡场的最大面积。
答案:为了使养鸡场的面积最大,养鸡场的一边应该靠在土地的宽边上,另一边与土地的长边平行。
这样,养鸡场的长将是80米,宽将是100米,所以最大面积为80米 * 100米 = 8000平方米。
2. 一个工厂需要生产三种产品A、B和C,每种产品都需要使用机器X 和机器Y。
生产一个单位的产品A需要机器X工作2小时和机器Y工作1小时;产品B需要机器X工作3小时和机器Y工作2小时;产品C需要机器X工作1小时和机器Y工作3小时。
工厂每天有机器X总共300小时和机器Y总共200小时的使用时间。
如果工厂每天需要生产至少100单位的产品A,50单位的产品B和20单位的产品C,请问工厂应该如何安排生产以最大化产品的总产量?答案:设生产产品A的单位数为x,产品B的单位数为y,产品C的单位数为z。
最优化方法试卷及答案5套.docx

《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
min f ( x= ) x12 − x2 x1 − 1 ≥ 0
2 − x12 − x2 + 26 ≥ 0
x1 + x2 − 6 = 0
五,(12 分) 写出下列规划的 KKT 条件并用可行方向法解之。
min (4 − x2 )( x1 − 3) 2 s.t x1 + x2 ≤ 3, x1 ≤ 2, x2 ≤ 2, x1 ≥ 0, x2 ≥ 0 取初点( 0. 2 ,1. 8) .
i =1 i i
k
七, (12 分)假设 f(x)是 R 上的二次连续可微严格凸函数, 分析如下迭 代点列的收敛性质
xk +=xk − 1
f ′( x)( xk − xk −1 ) f ′( xk ) − f ′( xk −1 )
六,(12 分)若 f i ( x), i = 1, 2,.., k 是定义在凸集 X 上的凸函数,则不等
1, 2,.., k f ( x) < 0, i = 无解的充分必要条件是: 存在一组不全 式组 i x∈ X
为零的数 λi ≥ 0, 对一切有 x∈ X,
∑ λ f ( x) ≥ 0
《最优化理论与算法》期末试题
姓名 院系 学号
2007.7
成绩
一,(20 分)用原始单纯形法和对偶算法分别求解下列线性规划:
min − 1.1x1 − 2.2 x2 + 3.3 x3 − 4.4 x4 + 10 x5 + 20 x6 x1 + x2 + 2 x3 x1 + 2 x2 + 2.5 x3 + 3x4 1, 2,..., 6 x j ≥ 0, j =
二,(20 分)用最速下降法和 DFP 法求解下列无约束优化问题
+ x5
=4
5 + x6 =
max f ( x, = y ) 15 x + 25 y − 0.03 x 4 + −0.15 y 4 + 2 xy
三,(12 分)利用学过的方法求出下面方程组
= x sin( x + y ) 在 ( x0 , y0 ) = (0.5, 0.5) 附近的一个(近似)解。 = y cos( x − y )