最优化理论与算法:灵敏度分析概述

合集下载

2-4灵敏度分析

2-4灵敏度分析
①保持 B-1b≥0 ,当前的基仍为最优基,最优解的结构 不变(取值改变); ② (B-1b)i<0 ,当前基为非可行基,但是仍保持为对偶 可行基,可用对偶单纯形法求出新的最优解; ③如何求出保持最优基不变的bi的范围? 把bi看作待定参数,令B-1b≥0求解该不等式组即可;
20
仍然来看上例的最优表格:
Cj
b xj
2 x1 1 1 2 1 0 0
3 x2 1 4 3 0 1 0
3 x3 1 7 3 -1 2 -1
0 0 j x4 x5 1 0 3/1 0 1 9/1 0 0 4/3 -1/3 B-1 -1/3 1/3 -5/3 -1/3
N =(-1,-5/3,-1/3)
N 0为原始单纯形表寻优的最优性条件(正则性
10
例:c3发生变化时,
3 =c3-z3=c3-[2×(-1)+3×2]=c3-4≤0,

得c3≤4。即当c3≤4时,最优解不变; 否则 3 >0,可使用原始单纯形法继续迭代求出新 的最优解。
例2 已知某LP问题的最优单纯表如下: 若C`1=5,则C`1>C1+C1=17/4, 最优解发生变化,重新用单纯形 法求解。 要保持原最优解, C3的变化范围为 C311/4
用表格单纯形法求解如下:
6
CB XB 0 0 2 0 2 3 X4 X5 -Z X1 X5 -Z X1 X2 -Z
Cj
b xj
3 9 0 3 6 -6 1 2 -8
2 x1 1 1 2 1 0 0 1 0 0
3 3 0 0 x2 x3 x4 x5 1 1 1 0 4 7 0 1 3 1 3 1 0 1 3 1 6 1 0 1 -1 -2 0 0 1 0

第3章 灵敏度分析

第3章  灵敏度分析
15





管 理 运 筹 学
13
使用敏感性报告进行敏感度分析
• (1)若产品A的利润系数从3(元/单位产品) 增至3.5(元/单位产品),那么,已求得的 最优解、最优目标值会变化吗? • 由图1所示可知敏感性报告上部的表格可知, 产品A的系数在允许的变化范围[3-3,3+1], 即[0,4]区间变化时,不会影响最优解。现 在产品A的利润系数是3.5,是在允许的变化 范围内,所以最优解不变,仍然是X=100, Y=350。 • 要注意的是,最优目标值将发生变化。原来 是3100,现在是3.5*100+8*350=3150。
管 理 运 筹 学
4
敏感性报告
• 灵敏度分析所要解决的问题可通过数学方法 进行分析,例如可用数学公式计算目标函数 的系数或约束条件右边变化对最优解与目标 值的影响。不过这种计算一般比较复杂。运 用Excel的规划求解功能可得到敏感性报告。





5
• 敏感性报告由两部分组成。位于报告上部的表格(单元格 A6:H10)是关于目标函数中的系数变化对最优解产生的影 响;位于报告下部的表格(单元格A12:H17)是关于约束 条件右边变化对目标值的影响。见下图1
• 注意!!! • 这里给出的决策变量的允许变化范围是指其 他条件不变,仅在该决策变量变化时的允许 变化范围。






8
• 表格中的前三列是关于约束条件左边的信息,其 中单元格是指约束条件左边所在单元格的地址, 名字是约束条件左边的名称,终值是约束条件左 边的终值。 • 在本题中,有三个约束条件,它们分别是原材料1 使用量、原材料2使用量和劳动时间使用量,它们 在电子表格上对应的地址分别是$B$19,$B$20, $B$21,其终值分别为1300,350和1600。 • 第四列是阴影价格即影子价格,后面讨论。 • 第五列为约束限制值,指约束条件右边的值,通 常是题目给定的已知条件,本题中三个约束条件 右边的值分别是原材料1,原材料2,劳动时间的 供应量,它们分别是1800,350,1600。 • 第六列与第七列是允许的增量和允许的减量,它 们表示约束条件右边在允许的增量与减量范围内 变化时,影子价格不变。

灵敏度分析名词解释

灵敏度分析名词解释

灵敏度分析名词解释
灵敏度分析是企业或组织的常用调查分析方式,用于判断响应选择和反应情况,识别外部和内部环境变化。

灵敏度分析也称为灵敏度测试或灵敏度评估,是某种现象和外来因素之间关系的检测。

社会及经济发展的快速增长促使企业接受不断变化的环境,企业向顾客提供产
品和服务,需要持续修改和评估其产品和服务的灵敏度。

灵敏度分析旨在发现企业是否响应足够快来适应市场的变化,并且能够在变化的市场上胜出。

灵敏度分析是对影响变量和反应量之间响应关系的量化分析,它有助于企业识
别和捕捉可能影响企业绩效的众多因素。

例如,灵敏度分析可以帮助企业判断客户对定价的反应,预测价格变动对销量的影响,以及识别新产品加入市场时的客户需求。

灵敏度分析具有系统的分析和评估市场变化的能力,使企业能够提供高品质的产品和服务,保持市场领先地位。

灵敏度分析是企业必不可少的管理工具。

它有助于企业了解市场的需求,及时
适应市场变化,控制预算和避免投资失误。

它还可以帮助企业制定正确的策略,以确保企业目标的实现,保证企业顺利前行。

灵敏度分析

灵敏度分析

2 1 b1 2b1 20 B b' 1 1 20 b 20 0 1 解之得:10≤b1≤20
1
即当10≤b1≤20时,最优基不变
分析使最优基保持不变的b2的范围:
2 112 24 b2 B b' 1 1 b 12 b 0 2 2
三、灵敏度分析的内容
价值系数cj的变化的分析 约束条件右端项bi变化的分析 系数矩阵A变化的分析
系数列向量Pk变化的分析
增加新约束条件的分析
增加新变量的分析
实例1
产品 资源 原料甲 原料乙 利润 (元/kg) A 1 1 5 B 1 2 8 C 1 2 6 资源拥 有量 12kg 20kg
x1 x1 x2 f 1 0 0 x2 0 1 0 x3 0 1 2 x4 2 1 2 x5 1 1 B-1b 24 -2
22 b 20
3 -104
最优单纯形表
x1 x4 -f
x1 1 0 0
x2 2 -1 -2
x3 2 -1 -4
x4 0 1 0
x5 B-1b 1 20 -1 2 -5 -100
x1 x2 -f
经迭代,得到最优单纯形表如下:
x1 1 0 -1 x2 0 1 0 x3 1 0 0 x4 2 -1 -4 x5 -1 1 -2 B-1b 4 8 -88
x3 x2 -f
3.2 增加新约束条件的分析
1、将最优解代入新的约束条件,若满足,则最优解不变。 2、若不满足,则当前最优解要发生变化;将新增约束条 件加入最优单纯形表,并变换为标准型。
k ' Ck CB B1Pk '

2.灵敏度分析1

2.灵敏度分析1

8
b + β1r ∆br 1 ⋮ = B−1b + βr ∆br = bi + βir ∆br ≥ 0 ⋮ bm + βm ∆br r
bi 即, + βir∆br ≥ 0
则, ir∆br ≥ −bi (i = 1,2,⋯, m) β
不 组得: : 解 等式 组得
σ
12
解:
B−1
2 15 1 = − 15 4 − 15
T 1
1 15 8 15 13 − 15 −
0 0 1
β
2 1 4 ,− ,− ) =( 15 15 15
β
T 2
1 8 13 , ,− ) = (− 15 15 15
β
T 3
= (0,0,1)
= B−1(b + λb* ) λ = B−1b + B−1 − λ
λ 3 = 1 + − 1 − 1 − λ 2 1
= 1 + 4λ ≥ 0 2 − 2λ 1 所以, 所以, ≤ λ ≤ 1 − 4
(1) 非基变量目标函数系数 的改变 (2) 基变量目标函数系数的 改变
17
(1) 非基变量目标函数系数 的改变
系数 c 若非基变量的目标函数 c j变为 j = c j + ∆c j x σ' 则, j的检验数 j
'
σ j = c j − CBB−1Pj = c j + ∆c j − CBB−1Pj = σ j + ∆c j 若 讨论: 讨论: σ ′j > 0 ⇒ ∆c j > −σ j 原最优解改变

灵敏度分析

灵敏度分析

灵敏度分析研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。

在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。

通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。

因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的。

目录线性规划中灵敏度分析对于线性规划问题:这里max表示求极大值,s.t.表示受约束于,X是目标函数,xj是决策变量。

通常假定aij,bi和c j都是已知常数。

但是实际上这些参数往往是一些根据估计或预测得到的数据,因而存在误差。

同时,在实际过程中,这些参数还会发生不同程度的变化。

例如,在处理产品搭配的线性规划问题中,目标函数中的c j一般同市场条件等因素有关。

当市场条件等因素发生变化时,c j也会随之而变化。

约束条件中的aij随工艺条件等因素的变化而改变,bi的值则同企业的能力等因素有关。

线性规划中灵敏度分析所要解决的问题是:当这些数据中的一个或几个发生变化时,最优解将会发生怎样的变化。

或者说,当这些数据在一个多大的范围内变化时最优解将不发生变化。

编辑本段灵敏度的应用投入产出法中灵敏度分析可以用来研究采取某一项重大经济政策后将会对国民经济的各个部门产生怎样的影响。

例如,美国政府曾经利用投入产出表研究了提高职工工资10%对国民经济各部门商品价格的影响。

研究的结果表明,在职工工资增加10%时,建筑业产品的价格将上涨7%,农产品的价格将上涨1.3%,其余各部门产品价格将上涨1.3~7%不等,生活费用将上升3.8%,职工的实际得益为6.2%。

方案评价中灵敏度分析可以用来确定评价条件发生变化时备选方案的价值是否会发生变化或变化多少。

例如,在利用评价表进行评价时,需要确定每一个分目标的权重系数和各分目标的评分数。

这中间或多或少地会存在当事人的主观意识,不同的人可能会有截然不同的价值观念。

因此就必须考虑当分配的权重系数或评分数在某一个范围内变化时,评价的结果将会产生怎样的变化。

灵敏度分析

灵敏度分析

灵敏度分析1. 简介灵敏度分析(Sensitivity Analysis),又称为参数分析,是指在数学模型或系统模型中,通过改变各种输入参数,分析其对模型输出结果的影响程度的一种方法。

灵敏度分析可以帮助我们了解模型的稳定性、可靠性以及输入因素对输出的影响程度,从而帮助我们做出科学合理的决策。

在实际应用中,很多决策问题都涉及到多个不确定的参数,这些参数对于决策结果的影响程度可能不同。

灵敏度分析能够帮助我们确定哪些参数对决策结果更为敏感,哪些参数对决策结果影响较小,从而帮助我们确定关键参数,并为决策提供支持。

2. 灵敏度分析方法2.1 单参数灵敏度分析单参数灵敏度分析是指在数学模型中,依次改变一个输入参数,而其他参数保持恒定,观察模型输出结果的变化情况。

通过改变一个参数的值,我们可以分析该参数对模型输出结果的影响程度。

常用的单参数灵敏度分析方法有:•参数敏感度指标(Parameter Sensitivity Index,PSI):PSI用于衡量输入参数的变化对输出结果的影响程度。

常见的PSI指标有:绝对敏感度、相对敏感度、弹性系数等。

•参数敏感度图(Parameter Sensitivity Plot):通过绘制参数敏感度图,可以直观地看出输入参数对输出结果的影响程度。

常见的参数敏感度图有:Tornado图、散点图等。

•分析输出结果的极值情况:通过改变参数的值,观察模型输出结果的极值情况,可以分析参数对极值情况的敏感程度。

2.2 多参数灵敏度分析多参数灵敏度分析是指同时改变多个输入参数,观察模型输出结果的变化情况。

多参数灵敏度分析可以帮助我们分析多个参数之间的相互作用,以及各个参数对输出结果的综合影响。

常用的多参数灵敏度分析方法有:•流量排序法(Flow Sort):通过将参数的取值按照大小进行排序,逐步改变参数取值的范围,观察输出结果的变化情况。

可以帮助我们确定哪些参数对输出结果的影响更大。

•剥离法(Perturbation):通过逐个改变参数的取值,观察输出结果的变化情况。

灵敏度分析

灵敏度分析
该种情况必须另找新的最优解。此时,只要在原来的单纯形表(注意:是 最终单纯形表)里增加一行,用对偶单纯形法求解即可。
例2.5.5 对于例2.5.1的原问题,如果增加一道生产工序 ,要求产品满足约束条件 x1+ 3 x2 ≤ 9 ,试问应如何安排生产计划,可以使利润最大?
解:首先把表13的最优解代入新约束条件,看是否满足。显然,由于原最优解 不满足新约束,所以,必须寻找新的最优解。
解:先计算B﹣1⊿b。
0 1/4 0
B﹣1⊿b = -2 1/2 1
1/2 -1/8 0 再把结果加到表16的 b 列中。
0
4
0
0 = -8-8
0
00
cj
CB
XB
b
2
3
x1
x2
0
0
x3
x4
2
x1
4 +0
1 00
1/4
0
x5
4 -8
0 0 [-2]
1/2
3
x2
2 +0
0 1 1/2
-1/8
(cj-zj) 或 j
1/3
0
0 -M
x5
x6
-1/6 0
-1
-1/6
0
1/3
0
7/6
1
5/6
-5/6
0
-1/3 -M+3
(五)、增加一个约束条件的分析
增加一个约束条件: 增加约束条件一般意味着可行域的缩小。 情况1:基变量没有改变(即最优解满足增加的约束条件)
该种情况,最优解没变化。(方法:把基变量的值代入约束条件中,如果 满足新的约束条件,就可断定最优解没有变化。) 情况2:基变量不适应新增加的约束条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. B 1b ' 0。 此时,原来的最优基对于新问题 来说,不再是可行的,但由于所有的判别数 0,所以 是对偶可行的,此时,只要把原问题最优表的右端列 B 1b ' 加以修改,代之以 ,就可用对偶单纯性法求解 1 cB B b ' 新问题。
例:某工厂在计划期内要安排生产两种产品,已知生产 单位产品所需的设备台时及A、B两种原材料的消耗为: 产品1 产品2 8台时 1 2 设备 16kg 0 原材料A 4 12kg 4 原材料B 0 该工厂每生产一件产品1可获利2元,每生产一件产品2 可获利3元,问应如何安排计划,使该工厂获利最多?
j为非基变量下标
在原单纯形表中将zk-ck换成zk’-ck’, 然后在 原表中用单纯性法求新问题的解。
2、基变量xr的系数cr改变为c’r=cr+ห้องสมุดไป่ตู้cr
z 'j c 'j c 'B B 1 Pj c ' j cB cB B 1 Pj c ' j cB B 1 Pj c j cB B 1Pj c j c 'j z j c j cB y j c j c 'j 若j r , 有 z 'j c 'j z j c j 0 zr' cr' zr cr 0 cr cr 0 y j z j c j cr yrj ; 0 y j cr cr'
max 2 x1 3 x2 s.t x1 2 x2 8 4x1 16 4 x2 12 x j 0 j 1,2
min 2 x1 3 x2 s.t x1 2 x2 x3 4x1 4 x2 x4 8 16 x5 12
x j 0 j 1,2,3,4,5
例: min x1 2 x2 x3 s.t x1 x2 x3 4 3x1 2 x2 6 x j 0 j 1,2,3
引入松弛变量x4,得它的最优单纯形表为
x1 x2 x3 x4
x2 x4
1 5 -3
1 0 0
1 2 -3
0 1 0
4 14 -8
1. c3由1变为-3时 x1 x2 x3 x2 x4 1 5 1 0 1 2
0 cr cr 0 目标函数值 cB cB B 1b cB B 1b cB B 1b cB B 1b cr br cr变为cr’ 后,只要把原单纯形表中xr所在的行乘以(cr’-cr)加到 判别数行,并使xr对应的判别数为0,既可用单纯形法继续做下去。
min x1 2 x2 x3
x2 x4 x3 x4
4 14 -8+20 4 6 4
x* 0, 0, 4, 6 f min 4
T
问题:c2在什么范围变化时,最优解不变?
二、改变右端向量b
设b→b’,设改变前的最优基为B。
1. B 1b ' 0 此时,原来的最优基仍为最优基, 但基变量的取值、目标函数最优值将发生变化。 设 b ' b b, 则
灵敏度分析
一、参数的可变性 (cj ,bi ,aij) 二、灵敏度分析的内容 1、参数的变化对原最优解有什么影响?原最优解是否 仍为最优解。
2、参数在什么范围变化时,原最优解保持不变?
3、当原最优解已不再最优时,应如何利用原单纯形表, 以最简捷的方法求得新的最优解。 三、最优性分析
B 1b 0 可行性
x1
x2 2 0 4 3
若j k , 有 z c cB B Pj c j z j c j 0
' j ' j ' ' ' ' zk ck cB B 1 Pk ck zk ck ck ck ' ' 若zk ck 0,则B仍为最优基; ' ' 若zk ck 0,改变后xk 为进基变量。 1
x* 0, 0, 4, 6 f min 12
T
问题:c3在什么范围变化时,最优解不变?
一般情况:
令c cr cr 则 cB B Pr c 1 cB B Pr cr cr r cr
' r
' r 1
' r
若要保持最优性不变
则 0 r cr 0 cr r
cB B 1 A c 0 最优性(对偶可行)
一、价值系数向量c的变化
L
min cx Ax b s.t. x0
设(L)的最优解为xB=B-1b, xN=0, fmin=cBB-1b
1、非基变量xk的系数ck改变为c’k
考虑检验数:zj-cj=cBB-1Pj-cj
x4 0 1
min x1 2 x2 x3
4 14 -8
-3
0
-3
0
由于z3’-c3’=cBB-1P3- c3’ =z3-c3+(c3- c3’)=-3+(1+3)=1 x1 x2 x4 x3 x4 1 5 -3 1 3 -4 x2 1 0 0 1 -2 -1 x3 1 2 1 1 0 0 x4 0 1 0 0 1 0 4 14 -8 4 6 -12
' xB B 1b ' B 1 b b B 1b B 1b ' xN 0 ' f min cB B 1b ' cB B 1 b b cB B 1b cB B 1b
f min cB B 1b
二、改变右端向量b 设b→b’,设改变前的最优基为B。
' r
2. c2由-2变为3, 此时Δ c2 =3-(-2)=5
x1 x2 x4 1 5 -3 x1 1 5 -3+5 1 3 0 x2 1 0 0 x2 1 0 0 1 -2 -2 x3 1 2 -3 x3 1 2 -3+5 1 0 0 x4 0 1 0 x4 0 1 0 0 1 0 4 14 -8
相关文档
最新文档