数值分析10方程求根的迭代法

合集下载

数值分析10迭代法的收敛性分析

数值分析10迭代法的收敛性分析
例如,Jacobi迭代法和Gauss-Seidel迭代法是两种常见的求解线性方程组的迭代法。通过收敛性分析,可以发现Jacobi迭代 法在一般情况下是收敛的,但收敛速度较慢;而Gauss-Seidel迭代法在一般情况下也是收敛的,且收敛速度较快。因此,在 实际应用中,可以根据问题的具体情况选择合适的迭代方法。
研究方向
进一步深入研究迭代法的收敛性,探索更有 效的迭代公式和算法,以提高收敛速度和稳 定性。
展望
随着计算技术的发展,迭代法在数值分析中 的应用将更加广泛,其收敛性分析将为解决 实际问题提供更有力的支持。同时,随着数 学理论的发展,迭代法的收敛性分析将更加 深入和完善。
感谢您的观看
THANKS
例如,梯度下降法和牛顿法是两种常见的求解优化问 题的迭代法。通过收敛性分析,可以发现梯度下降法 在一般情况下是收敛的,但可能会遇到收敛速度较慢 或者不收敛的情况;而牛顿法在一般情况下也是收敛 的,且收敛速度可能比梯度下降法更快。因此,在实 际应用中,可以根据问题的具体情况选择合适的迭代 方法。
06
迭代法收敛的充要条件
迭代法收敛的充要条件是迭代矩阵的谱半径小于1。谱半径是迭代矩阵所有特征值的模的最大值。
收敛性的判定方法
可以通过计算迭代矩阵的特征值来判断迭代法的收敛性,也可以通过迭代矩阵的范数来近似判断。
收敛速度的度量
01
02
03
迭代次数
迭代次数是衡量收敛速度 的一个直观指标,迭代次 数越少,收敛速度越快。
在非线性方程求解中的应用
非线性方程的求解是数值分析中的另一个重 要问题,迭代法也是求解非线性方程的重要 方法之一。与线性方程组求解类似,收敛性 分析在非线性方程求解中也有着重要的作用 。通过收敛性分析,可以判断迭代法的收敛 速度和收敛性,从而选择合适的迭代方法和 参数,提高求解效率。

数值分析实验报告——方程求根

数值分析实验报告——方程求根

《数值分析》实验报告实验一方程求根一、实验目的:掌握二分法、Newton法、不动点迭代法、弦截法求方程的根的各种计算方法、并实施程序调试和运行,学习应用这些算法于实际问题。

二、实验内容:二分法、Newton法、不动点迭代法、弦截法求方程的根、程序的调试和运行,给出实例的计算结果。

观察初值对收敛性的影响。

三、实验步骤:①、二分法:定义:对于区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。

实现方法:首先我们设一方程400*(x^4)-300*(x^3)+200*(x^2)-10*x-1=0,并求其在区间[0.1,1]上的根,误差限为e=10^-4。

PS:本方法应用的软件为matlab。

disp('二分法')a=0.1;b=1;tol=0.0001;n0=100;fa=400*(a.^4)-300*(a.^3)+200*(a.^2)-10*a-1;for i=1:n0 p=(a+b)/2;fp=400*(p.^4)-300*(p.^3)+200*(p.^2)-10*p-1;if fp==0||(abs((b-a)/2)<tol)disp('用二分法求得方程的根p=')disp(p)disp('二分迭代次数为:')disp(i)break;end;if fa*fp>0 a=p;else b=p;end;end;if i==n0&&~(fp==0||(abs((b-a)/2)<tol)) disp(n0) disp('次二分迭代后没有求出方程的根')end;程序调试:运行结果:用二分法求得方程的根p=0.1108二分迭代次数为:14②Newton法定义:取定初值x0,找到函数对应的点,然后通过该点作函数切线,交x轴,得到新的横坐标值,然后找函数对应的点,做切线,得到新的横坐标值,重复上述步骤,多次迭代,直到收敛到需要的精度。

数值分析第三章线性方程组迭代法

数值分析第三章线性方程组迭代法

数值分析第三章线性方程组迭代法线性方程组是数值分析中的重要问题之一,涉及求解线性方程组的迭代法也是该领域的研究重点之一、本文将对线性方程组迭代法进行深入探讨。

线性方程组的一般形式为AX=b,其中A是一个n×n的系数矩阵,x和b是n维向量。

许多实际问题,如电路分析、结构力学、物理模拟等,都可以归结为求解线性方程组的问题。

然而,当n很大时,直接求解线性方程组的方法计算量很大,效率低下。

因此,我们需要寻找一种更高效的方法来求解线性方程组。

线性方程组迭代法是一种基于迭代思想的求解线性方程组的方法。

其基本思想是通过构造一个序列{xn},使得序列中的每一项都逼近解向量x。

通过不断迭代,可以最终得到解向量x的一个近似解。

常用的线性方程组迭代法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法等。

雅可比迭代法是其中的一种较为简单的迭代法。

其基本思想是通过分解系数矩阵A,将线性方程组AX=b转化为x=Tx+c的形式,其中T是一个与A有关的矩阵,c是一个常向量。

然后,通过不断迭代,生成序列xn,并使序列中的每一项都逼近解向量x。

高斯-赛德尔迭代法是雅可比迭代法的改进方法。

其核心思想是利用当前迭代步骤中已经求得的近似解向量的信息。

具体而言,每次迭代时,将前一次迭代得到的近似解向量中已经计算过的分量纳入计算,以加速收敛速度。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

逐次超松弛迭代法是高斯-赛德尔迭代法的改进方法。

其核心思想在于通过引入一个松弛因子ω,将高斯-赛德尔迭代法中的每次迭代变为x[k+1]=x[k]+ω(d[k+1]-x[k])的形式,其中d[k+1]是每次迭代计算得到的近似解向量的一个更新。

逐次超松弛迭代法可以根据问题的特点调整松弛因子的值,以获得更好的收敛性。

除了以上提到的三种迭代法,还有一些其他的线性方程组迭代法,如SOR迭代法、共轭梯度法等。

这些方法都具有不同的特点和适用范围,可以根据问题的具体情况选择合适的迭代法。

高斯-赛德尔法--数值分析线性方程组的迭代解法

高斯-赛德尔法--数值分析线性方程组的迭代解法
高斯赛德尔法数值分析线性方程组的迭代解法线性方程组的迭代解法迭代法求解线性方程组高斯赛德尔迭代法高斯赛德尔迭代法原理高斯赛德尔迭代赛德尔迭代法线性方程组的解法pkpm线性方程组解法非线性方程数值解法
实验六、高斯-塞德尔法
一、实验目的
通过本实验学习线性方程组的迭代解法。掌握高斯-赛德尔迭代法编程。
二、计算公式
}
if(k==T)printf("\nNo");
else
printf("\n",k);
for(i=0;i<M;i++)
printf("x(%d)=%15.7f\n",i+1,x[i]);
}
四、例题
书P189页例6:用高斯-塞德尔迭代解线性方程组:
取 使得
#include<math.h>
#define M 3
#define N 4
main()
{
double a[M][N]={{8,-3,2,20},
{4,11,-1,33},
{6,3,12,36},
};
double x[M]={0,0,0};//初值
double r,t,q,eps=0.0000202;//需要精度
if(j!=i)q=q+a[i][j]*x[j];
x[i]=(a[i][N-1]-q)/a[i][i];
if(fabs(x[i]-t)>r)r=fabs(x[i]-t);
}
if(r<eps)break;
printf("\nk=%d,",k);
for(i=0;i<M;i++)
printf("\nx[%d]=%lf",i,x[i]);

《数值分析》第六讲方程求根

《数值分析》第六讲方程求根

《数值分析》第六讲方程求根数值分析是研究用数值方法解决数学问题的一门学科,其中方程求根是其中重要的内容之一、方程求根是指找到一个或多个满足方程条件的根。

在实际生活中,方程求根的问题是非常常见的,比如求解物理学中的运动方程、电路中的电流方程等等。

本文将简要介绍几种常用的方程求根方法。

首先介绍最简单的试位法。

试位法是通过选择一个初始值,然后逐步逼近根的位置。

具体来说,首先选择一个初始点x0,然后根据函数的性质来选择一个适当的步长h。

然后计算f(x0)和f(x0+h),如果它们符号相同,则说明根在区间(x0,x0+h)内;如果符号不同,则说明根在区间(x0-h,x0)内。

通过这样的逐步逼近,最终可以找到方程的根。

然而,试位法的精度依赖于所选择的初始值和步长,如果选择不当,可能会导致找不到根。

其次介绍割线法。

割线法也是一种逼近法,它的思路是通过不断连接两个初始点来逼近根的位置。

具体来说,选择两个初始点x0和x1,计算f(x0)和f(x1),然后通过割线的斜率来计算下一个点的位置,即x2=x1-(f(x1)*(x1-x0))/(f(x1)-f(x0))。

重复这个过程,可以逐步逼近根的位置。

割线法相较于试位法的优势是可以更快地逼近根的位置,但同样也依赖于所选择的初始点。

还有一种非常常用的方程求根方法是二分法。

二分法是通过不断将问题划分为两个子问题来逼近根的位置。

具体来说,选择一个初始区间[a,b],计算f(a)和f(b)。

如果f(a)和f(b)符号相同,则说明根不在此区间内,需要重新选择区间。

如果f(a)和f(b)符号不同,则说明根在此区间内。

然后根据区间中点的位置,划分出两个新的子区间,再次进行判断。

通过这样的逐步划分,最终可以找到方程的根。

二分法是一种十分稳定和可靠的方法,但是它的收敛速度相对较慢。

最后介绍牛顿法。

牛顿法是一种迭代法,通过不断进行线性逼近来逼近根的位置。

具体来说,选择一个初始点x0,然后通过计算函数f在该点的斜率来计算下一个点的位置,即x1=x0-f(x0)/f'(x0)。

数值分析 迭代法 二分法和迭代法原理

数值分析 迭代法 二分法和迭代法原理
| xk x*| L | xk1 x*| L2 | xk2 x*| Lk | x0 x*|
lim | xk x* | 0
k
即 lim xk x *.
k
(b) | xk1 x*| L | xk x*|
| xk 1 xk | | ( xk 1 x*) ( xk x*) | xk x * xk 1 x * (1 L) xk x * 1 xk x * xk 1 xk 1 L 又 | xk1 xk | ( xk ) ( xk1 ) | '( ) | | xk xk1 | L | xk xk1 |
等价变换
x = (x) 称为迭代函数
(x) 的不动点x*
不动点迭代
具体做法:
从一个给定的初值 x0 出发,计算 x1 = (x0), x2 = (x1), … x 若 k k 0 收敛,即存在 x* 使得 lim x k x *,则由 的连续
k
xk 1 lim xk 可得 x* = (x*),即 x* 是 的不 性和 lim k k
根的估计
引理3.1(连续函数的介值定理) 设f(x)在 [a,b]上连续,且f(a) f(b)<0,则存在x*(a,b) 使f(x*)=0。 例3.1 证明x33x1 = 0 有且仅有3个实根,并 确定根的大致位置使误差不超过 =0.5。 解:
单调性分析和解的位置 选步长h=2, 扫描节点函数值 异号区间内有根
ek 1 xk 1 x* ( xk ) ( x*) '( )ek e 取极限得 lim k 1 '( x*) 0 线性收敛. k e k

数值分析--第三章--迭代法

数值分析--第三章--迭代法

数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。

线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。

得到第⼀次的x后,重复第⼀次的运算。

转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。

上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。

特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。

⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。

所以只需要⼀组存储单元。

转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。

计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。

迭代法求方程的根c语言

迭代法求方程的根c语言

迭代法求方程的根c语言迭代法求方程的根是数学中一种非常实用的方法,它通过反复逼近来得到方程的根。

对于许多复杂的方程,迭代法可以提供一种更加简单有效的求解方式。

在计算机中,使用C语言可以轻松地实现迭代法求方程的根。

迭代法基础迭代法是一种数值分析中常用的计算方法,它通过在初始条件下反复施加同一运算,来逐渐逼近目标值的过程。

简单的迭代法可以用下面的公式进行表示:Xn+1 = f(Xn)其中,Xn是第n次迭代的结果,Xn+1是下一次迭代的结果,f(Xn)是在当前值下计算得到的函数值。

这个公式可以反复使用,以达到逐步逼近目标值的效果。

例如,在求解方程f(x) = 0时,可以使用下面的迭代公式:Xn+1 = Xn - f(Xn)/f’(Xn)其中,f’(Xn)表示f(Xn)的导数,也就是函数在Xn 处的切线斜率。

这个公式可以通过在Xn处求出函数值和导数,计算出下一次迭代的Xn+1值。

实现迭代法求方程的根要使用迭代法求解方程的根,需要首先定义迭代函数f(x)以及其导数f’(x)。

这里我们以求解方程x^2 - 2x -1 = 0为例,f(x) = x^2 - 2x - 1,f’(x) = 2x - 2。

在C语言中,我们可以使用以下代码定义迭代函数和其导数:double f(double x) { return x*x - 2*x -1; }double fder(double x) { return 2*x - 2; }接下来,我们可以使用以上定义的迭代函数和导数,使用下面的代码实现迭代法求方程的根:double iterative(double x0, int n){ double x = x0; int i = 0; while(i<n) { x = x - f(x)/fder(x); i++; } return x; }其中x0为迭代的初始值,n为迭代的次数。

在迭代过程中,我们可以使用while循环来反复使用迭代公式,来一步一步逼近方程的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x*) f ( x*) f ( m 1) ( x*) 0, f ( m ) ( x*) 0.
n次方程在复数域有且只有 n个根(含重根,m 重根为 m个根).
超越方程
e x /10 sin 10 x 0,
它在整个 x 轴上有无穷多个解,若 x 取值范围不同,解也
• 1828年17岁的法国数学家伽罗华(E· Galois 1811-1832)写出了划时代的论 文“关于五次方程的代数解法问题”,指出即使在公式中容许用 n次方 根,并用类似算法求五次或更高次代数方程的根是不可能的
• 文章呈交法兰西科学院后,因辈份太低遭到冷遇,且文稿丢失。 1830年 伽罗华再进科学院递稿,得到泊松院士的判词“完全不能理解”。 • 后来伽罗华命运不佳,投考名校巴黎工科大学落榜,屈就高等师院,并 卷入政事两次入狱,被开除学籍,又决斗受伤,死于1832年。决斗前, 他把关于五次代数求解的研究成果写成长信,留了下来。
如果实数 x *满足 f ( x*) 0,则称 x * 是方程(1.1)的 根,或称 x *是 f ( x)的零点. 若 f ( x)可分解为 f ( x) ( x x*)m g ( x),
其中 m 为正整数,且 g ( x*) 0. 则称 x *为方程(1.1)的m
重根,或 x *为 f ( x) 的 m重零点, m 1 时为单根. 结论 若 x *是 f ( x) 的 m重零点,且 g ( x ) 充分光滑,则
• 后来卡当的学生弗瑞里(Ferrari)又提出了四次方程的解法。此成果更 激发了数学家们的情绪,但在以后的二个世纪中,求索工作始终没有 成效,导致人们对高次代数方程解的存在性产生了怀疑。
• 1799年,高斯证明了代数方程必有一个实根或复根的定理,称此为代 数基本定理,并由此可以立刻推理n次代数方程必有n个实根或复根。 • 但在以后的几十年中仍然没有找出高次代数方程的公式解。一直到 18 世纪,法国数学家拉格朗日用根置换方法统一了二、三、四方程的解 法。 • 但求解五次方程时未能如愿,开始意识到有潜藏其中的奥妙, 用现代术 语表示就是置换群理论问题。 • 在继续探索5次以上方程解的艰难历程中,第一个重大突破的是挪威数 学家阿贝尔(N·Abel1802-1829) 1824年阿贝尔发表了“五次方程代数 解法不可能存在”的论文,但并未受到重视,连数学大师高斯也未理 解这项成果的重要意义。
画出y=f(x)的略图,从而看出曲线与x轴交点的大致位置。 也可将f(x)=0等价变形为g1(x)=g2(x)的形式,y=g1(x)与 y=g2(x)两曲线交点的横坐标所在的子区间即为含根区间。
例1 求方程3x-1-cosx=0的有根区间。 方程等价变形为3x-1=cosx, y=3x-1与y=cosx的图像只有一个交点位于[0.5,1]内。
在科学研究的数学问题中更多的是非线性问题, 它们又常常归结为非线性方程或非线性方程组的 求解问题。
4.1 方程求根与二分法
4.1.1 引言 单变量非线性方程的一般形式 (1.1) f ( x) 0 其中 x R , f ( x) C[a, b], [a, b] 也可以是无穷区间.
f(x)是高次多项式函数或超越函数 如果函数 f ( x) 是多项式函数,即
• 远在公元前1700年的古巴比伦人就已有关于一、二次方程的解法。 《九章算术》(公元前50~100年)其中“方程术”有联立一次方程组的一 般解法。
• 1535年意大利数学家坦特格里亚(TorTaglia)发现了三次方程的解法, 卡当(H· Cardano)从他那里得到了这种解法,于1545年在其名著《大法》 中公布了三次方程的公式解,称为卡当算法。
f ( x ) a0 x n a1 x n1 an1 x an (a0 0),
(1.2)
其中 a0 0, ai (i 0,1,, n) 为实数,则称方程(1.1)为 n 次代数方程.
超越函数 不能表示为多项式的函数
如 (x)=3x5-2x4+8x2-7x+1 (x)=e2x+1-xln(sinx)-2 高次代数方程 超越方程
(2)逐步搜索法
先确定方程f(x)=0的所有实根所在的区间为[a,b],从 x0=a 出发,以步长 h=(b-a)/n
其中n是正整数,在[a,b]内取定节点:
xi=x0+ih (i=0,1,2,……,n)
计算f(xi)的值,依据函数值异号及实根的个数确定有根区 间,通过调整步长,总可找到所有有根区间。 例2 求方程 f ( x) x3 11.1x 2 38.8x 41.77 0 的有根 区间. 对 f ( x) 0 的根进行搜索计算,
不同,因此讨论非线性方程(1.1)的求解必须强调 x 的定
义域,即 x 的求解区间 [a, b].
非线性问题一般不存在直接的求解公式,要使用迭代法.
本章将介绍常用的求解非线性方程的近似根的几种数值解法 通常方程根的数值解法大致分为三个步骤进行: ① 判定根的存在性。即方程有没有根?如果有根,有几个 根? ② 确定根的分布范围。即将每一个根用区间隔离开来,这 个过程实际上是获得方程各根的初始近似值。 ③ 根的精确化。将根的初始近似值按某种方法逐步精确化, 直到满足预先要求的精度为止.
• 十四年后,法国数学家刘维尔(J· Liouville)整理并发表了 伽罗华的遗作,人们才意识到这项近代数学发展史上的重 要成果的宝贵。 • 38年后,即1870年,法国数学家若当(C· Jordan)在专著 《论置换与代数方程》中阐发了伽罗华的思想,一门现代 数学的分支—群论诞生了。 • 在前几个世纪中,曾开发出一些求解代数方程的有效算法, 它们构成了数值分析中的古典算法。至于超越方程则不存 在一般的求根方式。
根的存在性定理——闭区间上连续函数的介值定理 有根区间 设 f(x)∈C[a, b], 且 f(a) f(b)<0, 存在ξ∈(a,b) ,使 f(ξ)=0.
如果f(x)在[a,b]上还是单调递增或递减的,则f(x)=0仅有一 个实根。 如何求方程 f ( x ) 0的有根区间? (1)描图法
相关文档
最新文档