直线与圆锥曲线(面积问题)2

合集下载

2019-2020学年高二数学《2.5直线与圆锥曲线》教学过程二

2019-2020学年高二数学《2.5直线与圆锥曲线》教学过程二

2019-2020学年高二数学《2.5直线与圆锥曲线》教学过程二【课前热身】1.过点(0,1)的直线与椭圆14922=+y x 的位置关系为A A. 相交 B. 相切 C. 相离 D. 不确定2.已知双曲线方程x 2-y 2=1,过P (2,1)点的直线l 与双曲线只有一个公共点,则l 的条数为CA. 4B. 3C. 2D. 13. 直线过点(2,4)与抛物线y 2=8x 只有一个公共点,这样的直线共有B A.1条 B.2条 C. 3条 D.4条 【要点整合】[1.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有相交、相切、相离;相交有两个交点(特殊情况除外),相切只有一个交点,相离无交点.判断直线与圆锥曲线的位置关系,通常是将直线方程与曲线方程联立,消去变量y (或x )得变量x (或y )的方程:ax 2+bx+c=0(或ay 2+by+c=0)若a ≠0,可考虑一元二次方程的判别式Δ,有:Δ>0直线与圆锥曲线相交; Δ=0直线与圆锥曲线相切; Δ<0直线与圆锥曲线相离.若a=0,则直线与圆锥曲线相交,且有一个交点.若曲线为双曲线,则直线与双曲线的渐近线平行;若曲线为抛物线,则直线与抛物线的对称轴平行.2.直线与圆锥曲线相交的弦长公式设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2), 且由⎩⎨⎧+==nkx y y x F 0),(,消去y →ax 2+bx+c=0(a ≠0),Δ=b 2-4ac 。

则弦长公式为:d=221221)()(y y x x -+-=2212))(1(x x k -+=22)1(a k Δ+=Δ||)1(2a k +。

【典例精析】热点一 直线与圆锥曲线的交点问题例1. 直线1+-=k kx y 与椭圆14922=+y x 有_ C _个公共点 A. 0个 B. 一个 C. 二个 D. 不确定变式迁移1 不论k 为何值,如果直线 y=kx+b 与椭圆14922=+y x 总有公共点,求b 的取值范围?]2,2[-热点二 中点弦问题例2 在椭圆x 2+4y 2=16中,求通过点M(2,1)且被这点平分的弦所在直线的方程和弦长.变式迁移 2 (2010山东)已知抛物线 ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,求该抛物线的准线方程。

直线与圆锥曲线

直线与圆锥曲线

直线与圆锥曲线1.从几何的角度看,可以分:直线与圆锥曲线有两个不同公共点,仅有一个公共点,无公共点; ⑴有两个公共点,就是相交,直线被圆锥曲线截得的线段称为曲线的弦; ⑵仅有一个公共点,对于圆和椭圆来说,表示直线与其相切; 对于双曲线来说,表示直线与其相切或与渐近线平行; 对于抛物线来说,表示直线与其相切或平行于对称轴; ⑶无公共点,就是相离;2.从代数的角度看,将表示直线的方程0Ax By C ++=代入到圆锥曲线的方程()0f x y =,中,消去一个变元y (或x )后,得到方程20ax bx c ++=;⑴若0a =,当圆锥曲线是双曲线时,说明直线与其渐近线平行; 当圆锥曲线是抛物线时,说明直线与其对称轴平行; ⑵若0a ≠,记24b ac ∆=-,则 0∆>,说明直线与圆锥曲线相交; 0∆=,说明直线与圆锥曲线相切; 0∆<,说明直线与圆锥曲线相离;知识梳理第10讲直线与圆锥曲线3.斜率为k 的直线与圆锥曲线()0f x y =,相交,将两者方程联立,消去y ,得到方程20ax bx c ++=,则弦长公12x x -=;4.当过定点00()P x y ,的直线斜率可能不存在时,为避免分类讨论,可以设斜率的倒数为m ,把直线方程写成x my n =+;这种形式的方程能够表示斜率不存在的情形,但不能够表示斜率为0的情形. 此时同样代入圆锥曲线方程,消去x ,得到20ay by c ++=.5.在计算圆锥曲线内接三角形面积时,我们常常用到下面这些计算公式:111sin sin 222ABC S dl d l ll αθ''===△由三角形的面积容易推出圆锥曲线内接四边形的计算公式:1sin 2ABCD S AC BD α=⋅(其中α为对角线夹角)特别地,对角线互相垂直的四边形的面积为ABCD S =12AC⋅<教师备案>直线与圆锥曲线的位置关系:⑴讨论直线与圆锥曲线的位置关系一般是将直线方程与圆锥曲线方程联立成方程组,消元(x 或y ),若消去y 得到20ax bx c ++=,讨论根的个数得到相应的位置关系,这里要注意的是: ①二次项系数a 可能有0a =或0a ≠两种情况,(例外情形:当圆锥曲线为双曲线且直线平行于渐近线时,或者当圆锥曲线为抛物线且直线平行于对称轴时,二次项系数为0)只有当0a ≠,才能用∆判断根的个数;②直线与圆锥曲线相切时只有一个公共点,但有一个公共点不一定相切.经典精讲⑵在讨论直线与双曲线的交点时,要注意数形结合的方法,结合图象作出判断有时更方便快捷,要注意双曲线的渐近线的斜率,以及直线与渐近线的斜率比较.⑶当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理”设而不求计算弦长;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.尖子班学案1【铺1】 ⑴若直线1y kx =+与椭圆2215x y m+=恒有公共点,则实数m 的取值范围为________.⑵过定点(01),且与双曲线224x y -=的两支各有一个公共点的直线l 的斜率的取值范围________.【解析】 ⑴1m ≥且5m ≠ ⑵()1,1-考点:直线与圆锥曲线的位置关系【例1】 ⑴过定点(01)-,且与抛物线24y x =有且只有一个公共点的直线有_____条;.⑵过点()4,4P 且与双曲线221169x y -=只有一个交点的直线有______条.⑶已知两定点(10)M -,,(10)N ,,若直线上存在点P ,使得||||4PM PN +=,则该直线为“A 型直线”.给出下列直线,其中是“A 型直线”的是. ①1y x =+②2y =③3y x =-+④23y x =-+⑷(海淀一模文8)若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是()A .22(1)1x y -+=B .2212x y +=C .2y x =D .221x y -=【解析】 ⑴3;⑵4 ⑶①④ ⑷B<教师备案>直线与圆锥曲线问题的基本方法:直线与圆锥曲线的问题尤其是相交问题,最基本的方法分为两种:⑴代入法;即联立直线与圆锥曲线的方程,把直线的方程代入后者消去一个变元(通常是y ),得到关于x 的二次方程,二次方程的根即代表交点的横坐标,然后用韦达定理与坐标运算去求解交点的相关问题; 代入法的优点:适用性强,基本上对于任何问题都能适用;代入法的缺点:通常计算量较大,当方程含参时,坐标运算比较复杂; 在与弦长有关的问题中,通常采用代入法. ⑵点差法:以直线与椭圆相交为例,设出交点的坐标()A A x y ,,()B B x y ,,由于这两者都满足椭圆方程,相减就得:22222222A B A B x x y y a a b b ⎛⎫-=-- ⎪⎝⎭,再利用平方差公式就得:22A B A BA B A By y x x b x x a y y -+=--+ 若设AB 的中点为M ,就得到了斜率与AB 中点坐标的一个简单关系式:22M Mx b k a y =-;这种方法称为点差法.点差法的优点:计算量非常小;点差法的缺点:适用范围非常狭窄,通常只能用来解决中点弦问题,或者斜率与坐标和密切相关的问题;而且点差法的变换过程不是等价的,需要考虑是否有0∆>;在与中点弦有关而且不太需要交点坐标运算的问题中,可以考虑使用点差法.考点:代入法与点差法【例2】 ⑴已知椭圆22143x y +=的右焦点为F ,过F 且倾斜角为45︒的直线与椭圆相交于A B ,两点,则弦长AB =________.⑵直线l 与椭圆22184x y +=交于两点A B ,,AB 的中点坐标为(11)-,,则直线l 的方程是.⑶ABC △的三个顶点都在抛物线24y x =上,A 点与原点重合,且三角形重心恰为抛物线的焦点,则三角形的周长是.⑷经过抛物线2y x =上一点(42)A -,引两条直线1l 和2l ,与抛物线分别交于M 、N 两点,若1l 与2l 的斜率互为相反数,则直线MN 的斜率为.【解析】 ⑴247; ⑵230x y --=⑷14【例3】 (石景山一模文19)已知椭圆22221x y a b+=(0a b >>)右顶点到右焦点的距离为1-,短轴长为 ⑴求椭圆的方程;⑵过左焦点F 的直线与椭圆分别交于A 、B 两点,若线段AB,求直线AB 的方程. 【解析】⑴椭圆方程为22132x y +=.⑵直线AB0y -+=0y +=.目标班学案1【拓2】 (东城二模文19)已知椭圆()222210x y a b a b+=>>的左焦点1(1,0)F -,长轴长与短轴长的比是2⑴求椭圆的方程;⑵过1F 作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m n ⊥,求证:11AB CD+为定值. 【解析】⑴椭圆方程为22143x y +=.⑵由⑴知()11,0F -,当直线m 与x 轴重合时,此时3,4AB CD ==,11AB CD +1173412=+=. 当直线m 不与x 轴重合时,设直线m 的方程为:1x my =-. 由221143x my x y =-⎧⎪⎨+=⎪⎩得:()2234690m y my +--=.由直线过椭圆内定点1F 知一定有0∆>.则有()2212134m AB m +==+.在上式中用1m -代换m ,同理可知()2212143m CD m +=+. 所以11AB CD +()()22223434712121121m m m m ++=+=++. 综上,11AB CD +为定值712.【例4】 ⑴连接抛物线24x y =的焦点F 与点(1,0)M 所得的线段与抛物线交于点A ,设点O 为坐标原点,则OAM △的面积为( )A .1-B .32C .1D .32⑵过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则OAB△的面积为___________.⑶已知抛物线24y x =,点()4,0M 关于y 轴的对称点为N ,直线l 过点M 交抛物线于A 、B 两点.则ANB △面积的最小值为________.【解析】 ⑴ B⑵53; ⑶32【例5】 (丰台二模文20)已知椭圆22221(0)x y a b a b+=>>经过点()01,,过右焦点F 且不与x 轴重合的动直线l交椭圆于A 、C 两点,当动直线l 的斜率为2时,坐标原点O 到l . ⑴求椭圆的方程;⑵过F 的另一直线交椭圆于B 、D 两点,且AC BD ⊥,当四边形ABCD 的面积169S =时,求直线l 的方程.【解析】 ⑴椭圆的方程为2212x y +=.⑵直线l 的方程为10x y --=或10x y +-=.尖子班学案2【铺1】 若已知点(C ,平行于CO 的直线l 和椭圆221124x y +=交于M 、N 两个不同点,当CMN △面积取最大值时,求直线l 的方程.【解析】 直线l 的方程为0x y +±=.【例6】 (西城二模文19)已知椭圆2222:1(0)x y C a b a b +=>>31,22⎛⎫ ⎪⎝⎭.⑴求椭圆C 的方程;⑵过点(0,2)P 的直线交椭圆C 于A ,B 两点,求AOB △(O 为原点)面积的最大值.【解析】⑴椭圆C 的方程是2213x y +=.⑵AOB △. 【点评】本题求面积也可以用传统面积公式点O 到直线AB的距离d =,弦长12AB x x -,【备选】(朝阳一模文19)已知椭圆()2222:10x y M a b a b+=>>的左右焦点分别为()12,0F -,()22,0F .在椭圆M 中有一内接三角形ABC ,其顶点C 的坐标)1,AB . ⑴求椭圆M 的方程;⑵当ABC △的面积最大时,求直线AB 的方程.【解析】 ⑴椭圆M 的方程为22162x y +=.⑵直线AB 的方程为y =过定点312P ⎛⎫- ⎪⎝⎭,的直线l 与抛物线24y x =相交所得的弦长为4,求直线l 的方程.【解析】 错解:设直线的斜率为k ,直线的方程可以写成3(1)2y k x +=-,与抛物线方程联立消去y ,得: 22223(234)02k x k k x k ⎛⎫-++++= ⎪⎝⎭222223(234)416241602k k k k k k ⎛⎫∆=++-+=++> ⎪⎝⎭恒成立; 然后得弦长4s ==化简得323321022k k k +++=,即2(1)(32)0k k k +++=,1k =-;所以直线方程为3(1)2y x +=--,即102x y ++=.【点评】 上面的误解中,设直线斜率时没有讨论斜率是否存在;若斜率不存在,则直线方程为1x =,与抛物线的两个交点为(12)±,,弦长正好也为4,所以满足题意的直线有两条:1x =或者102x y ++=.在设直线方程时,如果是用点斜式或者斜截式,一定要讨论斜率是否存在.(北京文19)已知椭圆2222:1(0)x y G a b a b+=>>()0,斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为(32)P -,.⑴求椭圆G 的方程; ⑵求PAB △的面积.【解析】 ⑴椭圆G 的方程为221124x y +=.⑵PAB △的面积92S =.【演练1】若直线4mx ny +=和圆O :224x y +=仅有一个交点,则过点()m n ,的直线与椭圆22194x y +=的交点个数为________.【解析】 1或2【演练2】已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA与FB 的比值等于.【解析】3+【演练3】已知F 是抛物线24C y x =:的焦点,A ,B 是C 上的两个点,线段AB 的中点为()22M ,,则ABF△的面积等于.【解析】 2实战演练真题再现【演练4】已知双曲线E 的中心为原点,(30)F ,是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(1215)N --,,则E 的方程为()A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=【解析】B【演练5】(西城一模文19)已知抛物线24y x =的焦点为F ,直线l 过点(40)M ,.⑴若点F 到直线ll 的斜率;⑵设A B ,为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.【解析】 ⑴l的斜率为2±. ⑵设线段AB 中点的坐标为00()N x y ,;因为AB 不垂直于x 轴,则MN 的斜率为004y x -,直线AB 的斜率为04x y -; 但另一方面,22044244A B A B AB A B A BA B y y y y k y y x x y y y --====-+-; ∴00042x y y -=,∴02x =;即AB 中点的横坐标恒为定值2. 【演练6】已知椭圆2222:1(0)x y C a b a b+=>>,1F 、2F 为左右焦点,点A 是椭圆上位于第一象限的点,且满足2AF x ⊥轴,直线AO 交椭圆于点B ,若2ABF △的面积为【解析】 椭圆方程为221168x y +=.(上海交大自主招生考试)已知线段AB 长度为3,两端均在抛物线2x y =上,试求AB 的中点M 到y 轴的距离最短时M 点的坐标.【解析】 如图所示,抛物线的焦点为104F ⎛⎫⎪⎝⎭,,准线方程为14x =-;过A M B ,,分别作准线的垂线,垂足为P R Q ,,;大千世界则()111424M x MR AP BQ =-=+-()1124AF FB =+- 115244AB -=≥等号成立当且仅当A F B ,,共线,即AB 过焦点F .设此时AB 的方程为14x my -=,与抛物线方程联立得214y my =+,∴A B y y -∴231A B AB y m =-=+,m =;∴()21152422424A B A B M M y y y y mm x y m ⎛⎛⎫++⎛⎫=+=+=± ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,,,,∴M 点的坐标为54⎛± ⎝⎭,.。

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

空间向量-直线-圆方程圆锥曲线二级结论

空间向量-直线-圆方程圆锥曲线二级结论

圆锥曲线常用的二级结论椭圆与双曲线对偶结论椭圆双曲线标准方程()222210x ya ba b+=>>焦点()()12,0,,0F c F c-()222210,0x ya ba b-=>>焦点()()12,0,,0F c F c-焦半径1020,PF a ex PF a ex=+=-e为离心率,x为点P的横坐标.1020,PF ex a PF ex a=+=-e为离心率,x为点P的横坐标.焦半径范围a c PF a c-≤≤+P为椭圆上一点,F为焦点.PF a c≥-P为双曲线上一点,F为焦点.通径过焦点与长轴垂直的弦称为通径.通径长为22ba过焦点与实轴垂直的弦称为通径.通径长为22ba如图,直线l过焦点1F与椭圆相交于,A B两点.则2ABF△的周长为4a.(即224F A F B AB a++=)如图,直线l过焦点1F与双曲线相交于,A B两点.则224F A F B AB a+-=.焦点弦倾斜角为α的直线l过焦点F与椭圆相交于,A B两点.焦点弦长()222222sinabABa b bα=-+.最长焦点弦为长轴,最短焦点弦为通径.倾斜角为α的直线l过焦点F与双曲线相交于,A B两点.焦点弦长()222222sinabABa b bα=+-.AF与BF数量关系直线l过焦点F与椭圆相交于,A B两点,则2112aAF BF b+=.直线l过焦点F与双曲线相交于,A B两点,则2112aAF BF b+=.已知点P是椭圆上一点,O坐标原点,则b PO a≤≤.已知点P是双曲线上一点,O坐标原点,则PO a≥.焦三角形如图,P是椭圆上异于长轴端点的一点,已知12F PFθ∠=,12PF Fα∠=,21PF Fβ∠=,则(1)122tan2PF FS bθ=△;(2)离心率sinsin sineθαβ=+.如图,P是双曲线上异于实轴端点的一点,已知12F PFθ∠=,12PF Fα∠=,21PF Fβ∠=,则(1)1222cot2tan2PF FbS bθθ==△;(2)离心率sinsin sineθαβ=-.垂径定理如图,已知直线l与椭圆相交于,A B两点,点M为AB的中点,O为原点,则22OM ABbk ka=-.如图,已知直线l与双曲线相交于,A B两点,点M为AB的中点,O为原点,则22OM ABbk ka=.(注:直线l与双曲线的渐近线相交于,A B两点,其他条件不变,结论依然成立)周角定理如图,已知点,A B椭圆长轴端点(短轴端点),P是椭圆上异于,A B的一点,则22PA PBbk ka=-.推广:如图,已知点,A B是椭圆上关于原点对称的两点,P是椭圆上异于,A B的一点,若直线,PA PB的斜率存在且不为零,22PA PBbk ka=-如图,已知点,A B双曲线实轴端点,P是双曲线上异于,A B的一点,则22PA PBbk ka=.推广:如图,已知点,A B是双曲线上关于原点对称的两点,P是双曲线上异于,A B的一点,若直线,PA PB的斜率存在且不为零,22PA PBbk ka=.直线l过焦点(),0F c与椭圆相交于,A B两点,点2,0aPc⎛⎫⎪⎝⎭,则APF BPF∠=∠(即0PA PBk k+=).直线l过焦点(),0F c与双曲线相交于,A B两点,点2,0aPc⎛⎫⎪⎝⎭,则APF BPF∠=∠(即0PA PBk k+=).切线方程已知点()00,P x y是椭圆上一点,则椭圆在点P处的切线方程为00221x x y ya b+=.已知点()00,P x y是双曲线上一点,则双曲线在点P处的切线方程为00221x x y ya b-=.双曲线的结论1.过定点(定点在双曲线外且不在渐近线上)的直线与双曲线交点个数问题:设斜率为k 的直线l 过定点()()0,0P t t ≠,双曲线方程为()222210,0x y a b a b-=>>,过点P 与双曲线相切时的斜率为0k .(1)当0bk a≤<时,直线l 与双曲线有两个交点,且这两交点在双曲线的两支上;(2)当bk a=时,直线l 与双曲线只有一个交点;(3)当0bk k a<<时,直线l 与双曲线有两个交点,且这两交点在双曲线的同一支上;(4)当0k k =时,直线l 与双曲线只有一个交点;(5)当0k k >时,直线l 与双曲线没有交点.2.如图,(),0F c 是双曲线()222210,0x y a b a b-=>>的焦点,过点F 作FH 垂直双曲线的其中一条渐近线,垂足为H ,O 为原点,则,OH a FH b ==.3.点P 是双曲线()222210,0x y a b a b -=>>上任意一点,则点P 到双曲线的渐近线的距离之积为定值2222a b a b +.4.点P 是双曲线()222210,0x y a b a b-=>>上任意一点,过点P 作双曲线的渐近线的平行线分别与渐近线相交于,M N 两点,O 为原点,则平行四边形OMPN 的面积为定值2ab.抛物线的结论如图,抛物线方程为()20y px p =>,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()11,A x y ,()22,B x y 两点,O 为原点,直线l 的倾斜角为α.1.212212,4.p x x y y p ⎧=⎪⎨⎪=-⎩2.焦半径:12p AF x =+,22pBF x =+,12AB x x p =++.3.焦点弦:22sin p AB α=.4.,AF BF 的数量关系:112AF BF p+=,22sin p AF BF α⋅=.5.三角形AOB 的面积22sin AOBp S α=△.6.以焦点弦AB 为直径的圆与准线相切;以焦半径AF 为直径的圆与y 轴相切.7.直线,PA PB 的斜率之和为零(0PA PB k k +=),即APF BPF ∠=∠.8.点,,A O N 三点共线;点,,B O M 三点共线.9.如图,点,A B 是抛物线()20y px p =>,O 为原点,若90AOB ∠=o ,则直线AB 过定点()2,0p.。

直线与圆锥曲线的综合应用

直线与圆锥曲线的综合应用

直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。

解决直线和圆锥曲线的位置关系的解题步骤是: (1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组; (3)讨论类一元二次方程(4)一元二次方程的判别式 (5)韦达定理,同类坐标变换(6)同点纵横坐标变换 (7)x,y ,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等1:已知椭圆)0(1:2222>>=+b a by a x C 过点)23,1(,且离心率21=e 。

(Ⅰ)求椭圆方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点)0,81(G ,求k 的取值范围。

解:(Ⅰ)Q 离心率21=e ,2213144b a ∴=-=,即2243b a =(1);又椭圆过点)23,1(,则221914a b +=,(1)式代入上式,解得24a =,23b =,椭圆方程为22143x y +=。

(Ⅱ)设1122(,),(,)M x y N x y ,弦MN 的中点A 00(,)x y由223412y kx m x y =+⎧⎨+=⎩得:222(34)84120k x mkx m +++-=, Q 直线)0(:≠+=k m kx y l 与椭圆交于不同的两点,2222644(34)(412)0m k k m ∴∆=-+->,即2243m k <+ (1)由韦达定理得:21212228412,3434mk m x x x x k k -+=-=++, 则2000222443,343434mk mk mx y kx m m k k k =-=+=-+=+++,直线AG 的斜率为:22232434413234348AGmm k K mk mk k k +==-----+, 由直线AG 和直线MN 垂直可得:22413234m k mk k=----g ,即2348k m k +=-,代入(1)式,可得22234()438k k k +<+,即2120k >,则1010k k ><-。

解圆锥曲线问题常用方法(二)

解圆锥曲线问题常用方法(二)

解圆锥曲线问题常用方法(二)【学习要点】解圆锥曲线问题常用以下方法:4、数形结合法解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。

如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“23+-x y ”,令23+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率……5、参数法(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。

如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。

除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。

(3)角参数当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。

6、代入法这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。

不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。

【典型例题】例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。

分析:由此根式结构联想到距离公式,解:S=22)3()2(-++b a 设Q(-2,3),则S=|PQ|,它的最小值即Q 到此直线的距离∴S min5535|1322|=-⨯+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)例2:已知点P(x,y)是圆x 2+y 2-6x-4y+12=0上一动点,求xy的最值。

新教材高中数学精品第3讲 直线与圆锥曲线的位置关系

新教材高中数学精品第3讲 直线与圆锥曲线的位置关系

第3讲 直线与圆锥曲线的位置关系[考情分析] 直线与圆锥曲线的位置关系是高考的必考内容,涉及直线与圆锥曲线的相交、相切、弦长、面积以及弦中点等问题,难度中等. 考点一 弦长、面积问题 核心提炼已知A (x 1,y 1),B (x 2,y 2),直线AB 的斜率为k (k ≠0), 则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=1+1k2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2. 考向1 弦长问题例1 (2022·新高考全国Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.(1)解 由题意得,椭圆半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1. (2)证明 由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2), 必要性:若M ,N ,F 三点共线,可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|2k |k 2+1=1,解得k =±1, 联立⎩⎪⎨⎪⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1·x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1·x 2=3, 所以必要性成立;充分性:设直线MN :y =kx +b (kb <0),即kx -y +b =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|b |k 2+1=1,所以b 2=k 2+1, 联立⎩⎪⎨⎪⎧y =kx +b ,x 23+y 2=1,可得(1+3k 2)x 2+6kbx +3b 2-3=0, 所以x 1+x 2=-6kb1+3k 2,x 1·x 2=3b 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1·x 2=1+k 2⎝⎛⎭⎫-6kb 1+3k 22-4·3b 2-31+3k 2=1+k 2·24k 21+3k 2=3, 化简得3(k 2-1)2=0,所以k =±1,所以⎩⎨⎧ k =1,b =-2或⎩⎨⎧k =-1,b =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立, 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 考向2 面积问题例2 (2022·大庆模拟)已知焦点在x 轴上的椭圆C :x 2a 2+y 2b 2=1(a >b >0),短轴长为23,椭圆左顶点A 到左焦点F 1的距离为1. (1)求椭圆C 的标准方程;(2)设椭圆的右顶点为B ,过F 1的直线l 与椭圆C 交于点M ,N ,且S △BMN =1827,求直线l 的方程.解 (1)由⎩⎪⎨⎪⎧2b =23,a -c =1,a 2-c 2=b 2,得⎩⎪⎨⎪⎧b =3,a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2)方法一 由题意知,直线的斜率不为0,F 1(-1,0), 设直线l 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,得(3m 2+4)y 2-6my -9=0, 即y 1+y 2=6m3m 2+4,y 1·y 2=-93m 2+4.又S △BMN =12·|BF 1|·|y 1|+12·|BF 1|·|y 2|=12·|BF 1|·|y 1-y 2| =12·|BF 1|·(y 1+y 2)2-4y 1·y 2 =18m 2+13m 2+4=1827,解得m =±1,所以直线l 的方程为x -y +1=0或x +y +1=0. 方法二 由(1)知F 1(-1,0),B (2,0),当直线l 的斜率不存在时,|MN |=3,点B (2,0)到直线l :x =-1的距离为3,所以S △BMN =92≠1827,所以直线l 的斜率存在. 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1)得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 23+4k 22-4(4k 2-12)3+4k 2 =1+k 2·144(k 2+1)(3+4k 2)2=12(k 2+1)3+4k 2.因为点B (2,0)到直线l 的距离为d =|3k |k 2+1,所以S △BMN =12·|MN |·d =12·12(k 2+1)3+4k 2·|3k |k 2+1=1827,即k 2=1,得k =±1, 所以直线l 的方程为x -y +1=0或x +y +1=0.易错提醒 (1)设直线方程时,需考虑特殊直线,如直线的斜率不存在、斜率为0等. (2)涉及直线与圆锥曲线相交时,Δ>0易漏掉.(3)|AB |=x 1+x 2+p 是抛物线过焦点的弦的弦长公式,其他情况该公式不成立.跟踪演练1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12. (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 解 (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4, 所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以椭圆C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立⎩⎪⎨⎪⎧x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0, 所以Δ=144m 2-4×16(3m 2-48)=0, 即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离, 即d =8+41+4=1255,由两点之间距离公式可得 |AM |=(2+4)2+32=3 5.所以△AMN 的面积的最大值为12×35×1255=18.考点二 中点弦问题 核心提炼已知A (x 1,y 1),B (x 2,y 2)为圆锥曲线E 上两点,AB 的中点C (x 0,y 0),直线AB 的斜率为k . 若E 的方程为x 2a 2+y 2b 2=1(a >b >0),则k =-b 2a 2·x 0y 0;若E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则k =b 2a 2·x 0y 0;若E 的方程为y 2=2px (p >0),则k =py 0.例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63.(1)证明:a =3b ;(2)若点M ⎝⎛⎭⎫910,-310在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ . ①求直线l 的方程; ②求椭圆C 的标准方程. (1)证明 ∵e =ca =c 2a 2=a 2-b 2a 2=1-⎝⎛⎭⎫b a 2=63,∴b a =33,∴a =3b . (2)解 ①由(1)知,椭圆C 的方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2, 当⎝⎛⎭⎫910,-310在椭圆C 的内部时,⎝⎛⎭⎫9102+3·⎝⎛⎭⎫-3102<3b 2,可得b >3010. 设点P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 1+x 22=910,y 1+y 22=-310,所以y 1+y 2x 1+x 2=-39,由已知可得⎩⎪⎨⎪⎧x 21+3y 21=3b 2,x 22+3y 22=3b 2,两式作差得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0, 所以y 1-y 2x 1-x 2=-x 1+x 23(y 1+y 2)=-13×⎝⎛⎭⎫-93=3,所以直线l 的方程为y -⎝⎛⎭⎫-310=3⎝⎛⎭⎫x -910, 即y =3x - 3.所以直线l 的方程为3x -y -3=0.②联立⎩⎨⎧x 2+3y 2=3b 2,y =3(x -1),消去y 可得10x 2-18x +9-3b 2=0. Δ=182-40(9-3b 2)=120b 2-36>0,由根与系数的关系可得x 1+x 2=95,x 1x 2=9-3b 210,又∵OP ⊥OQ ,而OP →=(x 1,y 1),OQ →=(x 2,y 2),∴OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+3(x 1-1)·3(x 2-1)=4x 1x 2-3(x 1+x 2)+3 =2(9-3b 2)-27+155=6-6b 25=0,解得b 2=1,合乎题意,故a 2=3b 2=3, 因此椭圆C 的方程为x 23+y 2=1.规律方法 (1)处理中点弦问题常用的求解方法(2)中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.跟踪演练2 (1)(2022·太原模拟)若过椭圆x 29+y 24=1内一点P (2,1)的弦被该点平分,则该弦所在的直线方程为( ) A .8x +9y -25=0 B .3x -4y -5=0 C .4x +3y -15=0 D .4x -3y -9=0答案 A解析 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),P 为AB 的中点,因为A ,B 在椭圆上,所以x 219+y 214=1,x 229+y 224=1,两式相减得x 21-x 229+y 21-y 224=0,因为x 1+x 2=4,y 1+y 2=2, 可得y 1-y 2x 1-x 2=-89,则k =-89,且过点P (2,1),所以y -1=-89(x -2),整理得8x +9y -25=0.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,虚轴的上端点为B ,点P ,Q 在双曲线上,且点M (-2,1)为线段PQ 的中点,PQ ∥BF ,双曲线的离心率为e ,则e 2等于( ) A.2+12 B.3+12 C.2+22 D.5+12答案 A解析 方法一 由题意知F (c ,0),B (0,b ),则k PQ =k BF =-b c .设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y22b 2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1), 所以x 1+x 2=-4,y 1+y 2=2,又k PQ =y 1-y 2x 1-x 2=-b c ,所以-b c =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2),即4e 4-4e 2-1=0,得e 2=2+12. 方法二 由题意知F (c ,0),B (0,b ),则k BF =-bc .设直线PQ 的方程为y -1=k (x +2), 即y =kx +2k +1, 代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4,所以2a 2k (2k +1)b 2-a 2k 2=-4,又k =k BF =-b c ,所以2a 2·⎝⎛⎭⎫-b c ⎣⎡⎦⎤2·⎝⎛⎭⎫-b c +1=-4b 2+4a 2⎝⎛⎭⎫-b c 2, 整理得a 2=2bc ,所以c 2-b 2-2bc =0, 即⎝⎛⎭⎫c b 2-2c b -1=0,得cb=2+1, 则e 2=c 2a 2=c2c 2-b 2=⎝⎛⎭⎫c b 2⎝⎛⎭⎫c b 2-1=()2+12()2+12-1=2+12. 考点三 直线与圆锥曲线位置关系的应用 核心提炼直线与圆锥曲线位置关系的判定方法 (1)联立直线的方程与圆锥曲线的方程. (2)消元得到关于x 或y 的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.例4 (1)已知直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)相切,与直线x =-a ,x =a 分别交于点M ,N ,F 为椭圆的左焦点,若以MN 为直径的圆为E ,则F ( ) A .在圆E 上 B .在圆E 内C .在圆E 外D .以上三种情况都有可能答案 A解析 显然直线l 的斜率存在,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,可得(a 2k 2+b 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0, 因为直线l 与椭圆相切,所以Δ=(2a 2km )2-4(a 2k 2+b 2)(a 2m 2-a 2b 2)=0, 故m 2=a 2k 2+b 2.易知F (-c ,0),M (-a ,-ak +m ), N (a ,ak +m ),则FM →=(c -a ,m -ak ),FN →=(c +a ,m +ak ),则FM →·FN →=c 2-a 2+m 2-a 2k 2=-b 2+a 2k 2+b 2-a 2k 2=0,故∠MFN =90°, 即点F 在圆E 上.(2)(多选)(2022·漳州龙海二中模拟)已知直线y =x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)无公共点,则双曲线的离心率可能为( )A .1 B. 2 C.62D. 3 答案 BC解析 双曲线的一条渐近线为y =b a x ,因为直线y =x 与双曲线无公共点,故有ba ≤1.即b 2a 2=c 2-a 2a 2=e 2-1≤1,所以e 2≤2, 所以1<e ≤ 2.易错提醒 (1)直线与双曲线只有一个交点,包含直线与双曲线相切或直线与双曲线的渐近线平行.(2)直线与抛物线只有一个交点包含直线与抛物线相切、直线与抛物线的对称轴平行(或重合). 跟踪演练3 (2022·沈阳模拟)已知A ,B 分别是椭圆C :x 24+y 2=1的右顶点和上顶点,P 为椭圆C 上一点,若△P AB 的面积是2-1,则P 点的个数为( ) A .0 B .2 C .3 D .4 答案 C解析 由C :x 24+y 2=1可得a =2,b =1 ,所以A (2,0),B (0,1),|AB |= 5 ,所以直线AB 的方程为y -1=-12x ,即y =-12x +1,设过点P 与直线AB 平行的直线l :y =-12x +t ,则直线l 与直线AB 的距离d =|t -1|1+14=25|t -1|, 因为点P 为直线l 与椭圆的交点, 所以点P 到直线AB 的距离为d , 因为△P AB 的面积是2-1,可得S △P AB =12×|AB |×d =12×5×25|t -1|=2-1,解得t =2或t =2-2,当t =2时,由⎩⎨⎧x 24+y 2=1,y =-12x +2,可得(x -2)2=0,解得⎩⎪⎨⎪⎧x =2,y =22,此时P ⎝⎛⎭⎫2,22,当t =2-2时,⎩⎨⎧x 24+y 2=1,y =-12x +2-2,可得x 2+(22-4)x +10-82=0,因为Δ=(22-4)2-4(10-82)=16(2-1)>0,此时直线l 与椭圆有2个交点,此时有2个点P ,所以共有3个点P .专题强化练一、单项选择题1.直线l 经过P (4,2)且与双曲线x 22-y 2=1交于M ,N 两点,如果点P 是线段MN 的中点,那么直线l 的方程为( ) A .x -y -2=0 B .x +y -6=0 C .2x -3y -2=0 D .不存在答案 A解析 当斜率不存在时,显然不符合题意; 当斜率存在时,设M (x 1,y 1),N (x 2,y 2), 因为点P 是线段MN 的中点, 所以x 1+x 2=8,y 1+y 2=4,代入双曲线方程得⎩⎨⎧x 212-y 21=1,x222-y 22=1,两式相减得x 21-x 22=2(y 21-y 22),则k =y 1-y 2x 1-x 2=x 1+x 22(y 1+y 2)=1,又直线过点P ,所以直线方程为y =x -2,联立⎩⎪⎨⎪⎧x 22-y 2=1,y =x -2,得到x 2-8x +10=0,经检验Δ>0,方程有解,所以直线y =x -2满足题意.2.已知F 是抛物线y 2=2px (p >0)的焦点,斜率为-2且经过焦点F 的直线l 交该抛物线于M ,N 两点,若|MN |=52,则该抛物线的方程是( )A .y 2=xB .y 2=2xC .y 2=4xD .y 2=6x答案 B解析 设直线l :y =-2x +p ,联立方程⎩⎪⎨⎪⎧y =-2x +p ,y 2=2px , 得4x 2-6px +p 2=0,设M (x M ,y M ),N (x N ,y N ),则x M +x N =6p 4=3p 2. 又|MN |=52, 所以x M +p 2+x N +p 2=5p 2=52, 所以p =1,所以所求抛物线的方程是y 2=2x .3.(2022·成都模拟)设O 为坐标原点,直线l 过定点(1,0),与抛物线C :y 2=2px (p >0)交于A ,B 两点,若OA ⊥OB ,则抛物线C 的准线方程为( )A .x =-14B .x =-12C .x =-1D .x =-2 答案 A解析 由题意可知直线l 的斜率不为0.设直线l :x =my +1,与y 2=2px (p >0)联立得y 2-2pmy -2p =0,Δ>0恒成立.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2p .由OA ⊥OB ,得x 1x 2+y 1y 2=0,即y 212p ·y 222p+y 1y 2=0, 即4p 24p 2-2p =0,得p =12, 所以其准线方程为x =-14. 4.过椭圆内定点M 且长度为整数的弦,称作该椭圆过点M 的“好弦”.在椭圆x 264+y 216=1中,过点M (43,0)的所有“好弦”的长度之和为( )A .120B .130C .240D .260答案 C解析 由已知可得a =8,b =4,所以c =43,故M 为椭圆的右焦点,由椭圆的性质可得当过焦点的弦垂直于x 轴时弦长最短,所以当x =43时,最短的弦长为2b 2a =2×168=4, 当弦与x 轴重合时,弦长最长为2a =16,则弦长的取值范围为[4,16],故弦长为整数的弦有4到16的所有整数,则“好弦”的长度之和为4+16+(5+6+7+…+15)×2=240.5.已知过椭圆x 25+y 2=1的右焦点的直线l ,斜率存在且与椭圆交于A ,B 两点,若AB 的垂直平分线与x 轴交于点M ,则点M 横坐标的取值范围为( )A.⎣⎡⎦⎤0,85 B.⎝⎛⎦⎤-85,0 C.⎣⎡⎭⎫0,85 D.⎣⎡⎭⎫-85,0 答案 C解析 当直线AB 的斜率k =0时,即AB 为x 轴,则垂直平分线为y 轴,所以x M =0; 当直线AB 的斜率k ≠0 时,又斜率存在,则设直线方程为y =k (x -2),联立⎩⎪⎨⎪⎧x 2+5y 2=5,y =k (x -2),得(5k 2+1)x 2-20k 2x +20k 2-5=0, 由根与系数的关系得x 1+x 2=20k 25k 2+1,x 1x 2=20k 2-55k 2+1, 设N 为线段AB 的中点,所以x N =10k 25k 2+1,代入直线方程可得y N =-2k 5k 2+1, 则AB 的垂直平分线MN 的方程为y +2k 5k 2+1=-1k ⎝⎛⎭⎫x -10k 25k 2+1, 当y =0时,x =8k 25k 2+1=85+1k 2, 因为k 2>0,所以x ∈⎝⎛⎭⎫0,85, 综上所述,x ∈⎣⎡⎭⎫0,85, 即点M 横坐标的取值范围为⎣⎡⎭⎫0,85. 6.(2022·大连模拟)第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)的国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于-916,则椭圆的离心率为( )A.34B.74C.916D.32答案 B解析 若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(m >1),∴A (-ma ,0),B (0,mb ),设切线AC 为y =k 1(x +ma ),切线BD 为y =k 2x +mb ,∴⎩⎪⎨⎪⎧y =k 1(x +ma ),x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0,由Δ=0知, (2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0, 整理得k 21=b 2a 2·1m 2-1, 同理,⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1), ∴(k 1k 2)2=b 4a 4=⎝⎛⎭⎫-9162,即b 2a 2=916,故e =c a =a 2-b 2a 2=74. 二、多项选择题7.(2022·兰州模拟)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线C 的准线的垂线,垂足分别为M ,N ,若线段MN 的中点为P ,且线段FP 的长为4,则直线l 的方程为( )A .x +3y -1=0B .x -3y -1=0 C.3x -y -3=0 D.3x +y -3=0 答案 AB解析 由y 2=4x 得p =2,所以F (1,0),准线为x =-1,设直线l 的方程为x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1,y 2=4x ,消去x 并整理得y 2-4ty -4=0,Δ=16t 2+16>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,所以y 1+y 22=2t , 依题意得M (-1,y 1),N (-1,y 2),则线段MN 的中点P (-1,2t ),因为|PF |=4,所以22+4t 2=4,解得t =±3,所以直线l 的方程为x +3y -1=0或x -3y -1=0.8.已知双曲线E :x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),两条渐近线的夹角正切值为22,直线l :kx -y -3k =0与双曲线E 的右支交于A ,B 两点,设△F 1AB 的内心为I ,则( )A .双曲线E 的标准方程为x 26-y 23=1 B .满足|AB |=6的直线l 有2条C .IF 2⊥ABD .△F 1AB 与△IAB 的面积的比值的取值范围是(2,6]答案 ACD解析 A 选项,设双曲线E 的一条渐近线的倾斜角为θ,0<θ<π2,因为a >b ,所以0<2θ<π2,从而tan 2θ=2tan θ1-tan 2θ=22,解得tan θ=22或tan θ=-2(舍去),所以b a =22,又a 2+b 2=9,所以a 2=6,b 2=3,所以双曲线E 的标准方程为x 26-y 23=1,故A 正确;B 选项,直线l 的方程kx -y -3k =0,即k (x -3)-y =0,则直线l 恒过右焦点F 2,又过焦点F 2的弦最短为2b 2a =66=6,所以满足|AB |=6的直线l 只有1条,B 错误; C 选项,由双曲线的定义可知,|AF 1|-|AF 2|=26=|BF 1|-|BF 2|,即|AF 1|-|BF 1|=|AF 2|-|BF 2|,因此F 2是△F 1AB 的内切圆在AB 边上的切点,因此IF 2⊥AB ,C 正确;D 选项,由题意知1F ABIAB S S △△=12|IF 2|·(|AF 1|+|BF 1|+|AB |)12|IF 2|·|AB | =26+|AF 2|+26+|BF 2|+|AB ||AB |=46|AB |+2, 因为|AB |≥6,所以1F AB IAB S S △△∈(2,6],D 正确.三、填空题9.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则实数m 的取值范围是________. 答案 [1,4)∪(4,+∞)解析 直线y =kx +1过定点(0,1),故点(0,1)在椭圆x 24+y 2m=1上或内部, ∴1m≤1,且m >0,m ≠4, ∴m ≥1,且m ≠4.10.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.答案 53解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝⎛⎭⎫53,43, 不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43, ∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53. 11.(2022·绵阳模拟)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)与抛物线C :y 2=2px (p >0)有共同的一焦点,过E 的左焦点且与曲线C 相切的直线恰与E 的一条渐近线平行,则E 的离心率为________.答案 2 解析 因为抛物线与双曲线共焦点,所以c =p 2,p =2c ,抛物线方程为y 2=4cx , 双曲线的左焦点为F 1(-c ,0),过F 1与一条渐近线y =b a x 平行的直线方程为y =b a(x +c ), 由⎩⎪⎨⎪⎧y 2=4cx ,y =b a (x +c ),得by 2-4acy +4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a =b ,从而c =a 2+b 2=2a ,离心率为e =c a = 2.12.已知直线y =kx +2(k >0)与抛物线C :x 2=8y 相交于A ,B 两点,点F 为C 的焦点,|F A |=4|FB |,则k =________.答案 34解析 设A (x 1,y 1),B (x 2,y 2),由题意知抛物线的焦点坐标为F (0,2),直线y =kx +2(k >0)与抛物线C :x 2=8y 联立方程得x 2-8kx -16=0,所以x 1+x 2=8k ,x 1x 2=-16,所以y 1+y 2=k (x 1+x 2)+4=8k 2+4,y 1y 2=(kx 1+2)·(kx 2+2)=4,又因为|F A |=4|FB |,所以y 1+2=4(y 2+2),即y 1=4y 2+6,所以由y 1=4y 2+6和y 1y 2=4,解得y 1=8,y 2=12(负值舍去), 所以y 1+y 2=8k 2+4=8+12,解得k 2=916,所以k =34. 四、解答题13.已知点A (0,2),B 为抛物线x 2=2y -2上任意一点,且B 为AC 的中点,设动点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)A 关于直线y =x 的对称点为D ,斜率为12的直线l 交曲线E 于M ,N 两点,且△MDN 是以MN 为底边的等腰三角形,求△MDN 的面积.解 (1)设C (x ,y ),B (m ,n ),∵B 是AC 的中点,∴⎩⎨⎧m =x 2,n =y +22,∵B 在抛物线x 2=2y -2上,∴m 2=2n -2,∴x 24=2×2+y 2-2, ∴曲线E 的方程为x 2=4y .(2)由题意得D (2,0), 设l :y =12x +t ,M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧y =12x +t ,x 2=4y ,得x 2-2x -4t =0, ∴x 1+x 2=2,x 1x 2=-4t ,Δ=4+16t >0,∴y 1+y 2=12(x 1+x 2)+2t =1+2t . 设MN 的中点为P ,则P ⎝⎛⎭⎫1,12+t , ∵△MDN 是以MN 为底边的等腰三角形,则k DP ·k MN =-1,∴12+t 1-2·12=-1,解得t =32,符合Δ>0. ∴x 2-2x -6=0,∴|MN |=1+⎝⎛⎭⎫122·|x 1-x 2|=1+14·4-4×(-6)=35,|DP |=5, ∴S △MDN =12×35×5=572. 14.设中心在原点,焦点在x 轴上的椭圆E 过点⎝⎛⎭⎫1,32,且离心率为32,F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,圆F 的半径为PF .(1)求椭圆E 和圆F 的方程;(2)若直线l :y =k (x -3)(k >0)与圆F 交于A ,B 两点,与椭圆E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求l 的方程;若不存在,请说明理由.解 (1)由题意可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0), 如图,由e =32,即c a =32, 再由a 2=b 2+c 2,可得a =2b ,①将点⎝⎛⎭⎫1,32代入椭圆方程,可得1a 2+34b 2=1,② 由①②可解得a =2,b =1,故椭圆E 的方程为x 24+y 2=1, ∴F (3,0),∵PF ⊥x 轴,∴P ⎝⎛⎭⎫3,±12,∴圆F 的方程为(x -3)2+y 2=14. (2)由A ,B 在圆上得|AF |=|BF |=|PF |=r =12, 设C (x 1,y 1),D (x 2,y 2),则|CF |=(x 1-3)2+y 21=2-32x 1, 同理|DF |=2-32x 2, 若|AC |=|BD |,则|AC |+|BC |=|BD |+|BC |, 即|AB |=|CD |=1,∴4-32(x 1+x 2)=1,∴x 1+x 2=2 3. 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =k (x -3),得(4k 2+1)x 2-83k 2x +12k 2-4=0,∴x 1+x 2=83k 24k 2+1, ∴83k 24k 2+1=23, 得4k 2=4k 2+1,无解,故不存在.。

2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)

2023届高三数学一轮复习专题  直线与圆锥曲线的综合运用  讲义 (解析版)

直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆锥曲线(面积问题)1.如图所示,、分别为椭圆的左、右焦点,为两个顶点,已知椭圆上的点到、两点的距离之和为4.(Ⅰ)求椭圆的方程和焦点坐标; (Ⅱ)过椭圆的焦点作的平行线交椭圆于、两点,求的面积.2.已知椭圆()2222:10x y C a b a b +=>>经过点P ⎛ ⎝⎭,离心率e = (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点()0,2E -的直线l 与椭圆C 相交于P Q 、两点,求OPQ ∆的面积的最大值。

3.已知中心在原点O ,焦点在x 轴上的椭圆E 过点()0,1C . (1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于,A B 两点,若OAB ∆的面积为23,求直线l 的方程. 4.已知点,椭圆的长轴长是短轴长的2倍,是椭圆的右焦点,直线的斜率为,为坐标原点.(1)求椭圆的方程;(2)设过点的动直线与椭圆相交于两点.当的面积最大时,求直线的方程.5.已知椭圆2222:1(0)x y C a b a b+=>>,其长轴为4,短轴为2.(1)求椭圆C 的方程及离心率.(2)直线l 经过定点()0,2,且与椭圆C 交于,A B 两点,求OAB ∆面积的最大值.6.如图,已知椭圆22221(0x y a b a b+=>>)的右顶点和上顶点分别为,,A B AB 求椭圆的标准方程; (2)过点A 作斜率为(0k k >)的直线l 与椭圆交于另外一点C ,求ΔABC 面积的最大值,并求此时直线l 的方程.7.已知O 为坐标原点, M 是椭圆2212x y +=上的点,设动点P 满足2OP OM = .(1)求动点P 的轨迹C 的方程;(2)若直线():0l y x m m =+≠与曲线C 相交于A ,B 两个不同点,求OAB ∆面积的最大值.8.已知中心在原点O ,焦点在x 的椭圆过点⎭. (Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与y 轴的非负半轴交于点B ,过点B 作互相垂直的两条直线,分别交椭圆于点P , Q 两点,连接PQ ,求BPQ ∆的面积的最大值.9.已知椭圆G : 22221x y a b +=的右焦点为F ,点P ⎛- ⎝⎭在椭圆上,且PF 与y 轴交点恰为PF 中点.(1)求椭圆G 的方程;(2)过F 作两条互相垂直的直线,分别交椭圆G 于点,A C 和,B D .求四边形ABCD 的面积的最小值.10.设椭圆方程22221(0)x y a b a b+=>>, 12,F F 是椭圆的左右焦点,以12,F F 及椭圆(I )求椭圆方程;(II )过12,F F 分别作直线12,l l ,且12l l ⊥,设1l 与椭圆交于,A C 两点, 2l 与椭圆交于,B D 两点,求四边形A.BCD 面积的取值范围.参考答案1.(Ⅰ),;(Ⅱ).【解析】试题分析:(Ⅰ)由椭圆上的点到、两点的距离之和为4,得 ,椭圆方程为,点代入方程可得,从而可得椭圆的方程,进而可得焦点坐标;(Ⅱ)根据题意得到的方程,与椭圆方程联立,利用韦达定理及三角形面积公式可得求出,.试题解析:(Ⅰ)由椭圆上的点到、两点的距离之和为4,得 ,椭圆方程为,点代入方程可得,从而可得椭圆的方程为,从而可得焦点坐标为.(Ⅱ)将与联立,消去,得.2.(1) 2214x y +=;(2)1. 【解析】试题分析:(Ⅰ)运用椭圆的离心率公式和点满足椭圆方程,以及a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程;(Ⅱ)当直线l 的斜率不存在,不合题意,可设直线l :y=kx ﹣2,P (x 1,y 1),Q (x 2,y 2),联立椭圆方程,消去y ,得到x 的方程,运用判别式大于0和韦达定理,以及弦长公式,点到直线的距离公式,由三角形的面积公式,运用换元法和基本不等式即可得到所求最大值. 试题解析:(Ⅰ)由点1,2P ⎛ ⎝⎭在椭圆上得, 221314a b +=①c e a ==又所以② 由①②得2223,4,1c a b ===,故椭圆C 的标准方程为2214x y += ()()1122:=2,,,,.II l x l y kx P x y Q x y ⊥-()当轴时不合题意,故设22214x y kx y =-+=将代入得 ()224116120.k x kx +-+=1=2OPQ S d PQ ∆⋅=244,0,.4444,20.1OPQ t t t S t t tt t k t OPQ ∆=>==+++≥==∆>∆则因为当且仅当,即的面积最大值为 3.(1)2212x y += (2)10,10x y x y -+=++= 【解析】试题分析:(1)根据椭圆几何意义得1b =得22a =(2)设直线l 点斜式方程,与椭圆方程联立方程组,结合韦达定理以及弦长公式求底边AB 长,再根据点到直线距离公式得高,最后根据三角形面积公式列方程,解出直线斜率,注意验证斜率不存在时是否满足题意试题解析:解:(Ⅰ)设椭圆E 的方程为: 22221x y a b+= (0)a b >>,由已知:2221{b c a a b c ===+得: 22a =, 21b =,所以,椭圆E 的方程为: 2212x y +=. (Ⅱ)由已知直线l 过左焦点()1,0F -.当直线l 与x 轴垂直时,1,A ⎛- ⎝⎭,B ⎛- ⎝⎭,此时AB =则1122OAB S ∆==,不满足条件. 当直线l 与x 轴不垂直时,设直线l 的方程为: ()1y k x =+由()221{ 12y k x x y =++= 得()2222124220k x k x k +++-=所以2122412k x x k +=-+, 21222212k x x k -=+, 而12121122OAB S OF y y y y ∆=⋅-=-, 由已知23OAB S ∆=得1243y y -=,, 所以()22222441612912k k k k +=++,则4220k k +-=,所以1k =±, 所以直线l 的方程为: 10x y -+=或10x y ++=.4.(1) .(2) 或.【解析】试题分析:(1)由条件知a=2b ,,又,可得a,b ,故得到E 的方程;(2)设出直线l 的方程和点P 的坐标,联立直线l 与椭圆方程,当判别式大于0时,根据韦达定理得根与系数的关系得到的长。

根据点到直线距离公式代入面积中,得到其关于k 的表达式,根据换元法和基本不等式即可得到当面积取得最大值时k 的值,即求得l 的方程.试题解析:(1) 设F(c,0),由条件知a=2b ,得,又,所以a=2, ,故的方程.(2)依题意当轴不合题意,故设直线l :y=kx-2,设将y=kx-2代入,得,当,即时,,从而,又点O 到直线PQ 的距离,所以OPQ 的面积,设,则t>0,,当且仅当,等号成立,且满足,所以当OPQ 的面积最大时,的方程为: 或.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.5.(1)2214x y +=, e =(2)1 【解析】试题分析:(1)根据条件可得2a =, 1b =,即得椭圆C 的方程,及离心率.(2)先设直线方程为: 2y kx =+,与椭圆联立方程组,利用韦达定理,结合弦长公式求得底边边长AB ,再根据点到直线距离得高,根据三角形面积公式表示OAB 面积,最后根据基本不等式求最大值试题解析:解:(Ⅰ) 2a =, 1b =,c =,∴椭圆C 的方程为: 2214x y +=,离心率:c e a ==. (Ⅱ)依题意知直线的斜率存在,设直线的斜率为k ,则直线方程为: 2y kx =+,由2244{2x y y kx +==+,得()224116120k x kx +++=,()()()22216441121643k k k ∆=-+⨯=-,由0∆>得: 2430k ->, 设()11,A x y , ()22,B x y ,则1221641k x x k -+=+, 1221241x x k =+,AB ==又∵原点O 到直线的距离d =∴12OABS AB d =⨯==41==. 当且仅当22164343k k -=-,即2434k -=时,等号成立, 此时OAB 面积的最大值为1.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.6.(1)2214x y +=;(2)直线l 的方程是y=112x .【解析】试题分析:(1)由题意得222222{5, c a a b a b c =+==+据此解答即可;(2) 由题意,设与AB 平行的椭圆的切线方程为12y x m =-+, 联立方程组, 消去,y 根据0∆= ,求出m ,然后求出点C 的坐标,即可解答.试题解析:(1)由题意得22222{5, c a a b a b c =+==+2{1a b ==解得,22,14x y +=所以椭圆方程为.(2) 12AB k =-, 设与AB 平行的椭圆的切线方程为12y x m =-+, 联立方程组得221{ ,244y x mx y =-++= 消去y 得222220x mx m -+-=, ①()2244220m m ∆=--=,解得m =.0,k m >∴=代入到①中得x =代入到y=12x --y =, 当取C的坐标是⎛⎝⎭时,ΔABC 的面积最大, dΔABC S=121,此时,直线l 的方程是y =112x .7.(1)22184x y +=;(2)【解析】试题分析:(1)设点()()11,,,P x y M x y ,,则由2OP OM =,得112,2x x y y ==,利用“逆代法”可得动点P 的轨迹C 的方程;(2)直线():0l y x m m =+≠与曲线22184x y C +=,联立可得2234280x mx m ++-=,,根据韦达定理,弦长公式、点到直线距离公式将OAB ∆面积用m 表示,利用基本不等式 即可得结.试题解析:(1)设点,,则由,得,即,,因为点在椭圆,所以,故22184x y +=,即动点的轨迹的方程为22184x y +=. (2)由曲线与直线联立得,消得,因为直线与曲线交于,两点,所以,又,所以.设, ,则, ,因为点到直线:的距离,,所以,,当且仅当,即时取等号,所以面积的最大值为.【方法点晴】本题主要考查逆代法求曲线方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最大值的.8.(Ⅰ)2219x y +=;(Ⅱ) 278.【解析】试题分析:(Ⅰ)由题意可设椭圆方程为22221(0)x y a b a b +=>>,则223{ 2719c a a b =+=可求得a b ,(Ⅱ)由题意可知,直线BP 的斜率存在且不为o .故可设直线BP 的方程为1y kx =+,由对称性,不妨设0k >,由221{990y kx x y =++-=,消去y 得()2219180k xkx ++=,求弦长|BP|,将式子中的0k >换成1k -,得221116212829BPQ BQ S BP BQ k k k k ∆⎛⎫==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭,设1k t k +=,则2t ≥. 2162964BPQ tS t ∆=+利用基本不等式即得解. 试题解析:(Ⅰ)由题意可设椭圆方程为22221(0)x y a b a b +=>>,则22{ 2719c a a b =+=,故3{ 1a b ==, 所以,椭圆方程为2219x y +=. (Ⅱ)由题意可知,直线BP 的斜率存在且不为o .故可设直线BP 的方程为1y kx =+,由对称性,不妨设0k >,由221{990y kx x y =++-=,消去y 得()2219180k x kx ++=,则BP =0k >换成1k -,得:29BQ k =+.12BPQS BP BQ ∆==22118··2199k k ++=211891k k =+()221629191k k ⎛⎫++ ⎪⎝⎭2211621829k k k k ⎛⎫=+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭,设1k t k+=,则2t ≥. 故2162964BPQ t S t ∆==+162276489t t≤=+,取等条件为649t t =即83t =, 即183k k +=,解得k =时, BPQ S ∆取得最大值278. 9.(1)22132x y +=;(2)9625【解析】试题分析:(1)由题意易得()1,0F ,即1c =,根据椭圆的定义122PF PF a +=可求出a 的值,故而可求出b ,即可求出椭圆的方程;(2)考虑直线AC 的斜率为0或不存在,分别求得面积,讨论当直线AC 的斜率存在且不为零时,设直线AC 的方程为()1y k x =-,( 0k ≠),代入椭圆方程,运用韦达定理和弦长公式可得AC ,将k 换为1k-得BD ,由四边形的面积公式,运用换元法和基本不等式,可得最小值;,即可得到面积的最小值试题解析:(1)依题意, ()1,0F ,另一焦点坐标为()1,0-,123PF PF +=+=a = 1c =,所以b =所以椭圆G 的方程为22132x y +=. (2)当AC 垂直于坐标轴时, 2BD a =, 22b AC a=, 21242S AC BD b ===,当AC 不垂直于坐标轴时,设直线AC 的方程为()1y k x =-, 0k ≠, ()11,A x y ,()22,B x y由()221{ 321x y y k x +==-,得()2222326360k x k x k +-+-=, 0∆>, 2122632k x x k +=+, 21223632k x x k -=+,12AC x =-=AC == 同理,2132BD k==+, 所以()()()()2222242241112426322366136k k S AC BD k k k k ⎛⎫+ ⎪===- ⎪++++⎝⎭, 因为24222116613625613k k k k k =≤=++++,当且仅当221k k =,即1k =±时等号成立,所以min 119624662525S ⎛⎫=-=⎪⨯⎝⎭. 10.(1) 22143x y += (2) 288,649⎡⎤⎢⎥⎣⎦【解析】试题分析:(1)布列关于a ,b 的方程组,解得椭圆方程,(2)直线():i l y k x m =+,联立方程得()222223484120kxk mx k m +++-=,利用韦达定理表示()2212143k AC k +=+,()2212143k BD k +=+, ()()22222721121ABCDk Sk k +=++,换元求值域即可.试题解析:(I )由题设可得: 2{a c bc ==, 222abc -= , 224,3a b ∴==,故椭圆方程为22143x y += (2)当直线斜率不存在时, 6S =当直线斜率存在时,设直线():i l y k x m =+,代入椭圆方程得:()222223484120k x k mx k m +++-=,则2221212228412,?3434k m k m x x x x k k --+=-=++所以弦长:12x =-== A.C 的斜率为k ,不妨设0k >,则()2212143k AC k +=+,()2212143k BD k +=+()()()()()2222222222422121121721721124343122512121ABCDk k k k S k k k k k k ++++∴=⋅⋅==++++++ ()22227272288,649121211k kk k ⎡⎫==∈⎪⎢⎣⎭++⎛⎫++ ⎪⎝⎭ 综上,四边形A.BCD 面积的取值范围是288,649⎡⎤⎢⎥⎣⎦.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,面积问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.。

相关文档
最新文档