数列综合测试题(经典)含答案
等差数列数列综合测试题

等差数列测试题班级:_____________姓名:_____________得分:___________ 一选择题:(60分=5分×12)1.已知{}n a 为等差数列,135********,99,a a a a a a a ++=++=则等于( ) A. -1 B. 1 C. 3 D. 72.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B. 53C.- 2D. 3 4.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( )A.-2B. 12- C. 12D.25.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A.12B.13C.14D.15 6.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15 B .30 C .31 D .64 7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .120 8.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16 B .24 C .36 D .489.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27 10.设n S 是等差数列{}n a 的前n 项和,若36612S1,3S S S ==则( ) A.310 B.13 C.18 D.1911、等差数列{}n a 中,39||||,a a =公差d<0,则使前项n 和n S 取得最大值的自然数n 的值是( )A.4和5B.5和6C.6和7D.不存在12、含2n+1项的等差数列,其奇数项的和与偶数项的和之比为( ) A.21n n+ B.1n n + C.1n n - D.12n n +二、填空题(20分=5分×4)13.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= 14. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 15.设等差数列{}n a 的前n 项和为n S ,若535a a =,则95S S = 16.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 三、解答题(70分=10分+5×12分,22,23大题任选一题作答) 17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.18.已知等差数列{n a }中,374616,0a a a a ⋅=-+=,求{n a }前n 项和n S .19、求数列{}n a 的前n 项和n S ,其中1(1)n a n n =+20、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.21、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求: (1)}{n a 的通项公式a n 及前n项的和n S ; (2)12314...a a a a ++++*22、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.*23.若两个数列的前n 项和之比是(71):(427)n n ++,试求它们的第11项之比,第n 项之比。
高中数学选择性必修二 第4章数列 综合测试章节复习

人教A 版选择性必修第二册第四章数列综合测试1一、单选题1.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9B .12C .15D .182.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .553.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4 C .12-D .12±4.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .245.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 6.已知数列1,2a a +,234a a a ++,3456a a a a +++,…,则数列的第k 项是( )A .12k k k a a a ++++B .121k k k a a a --++C .12k k k a a a -+++D .122k k k a a a --+++7.数列{a n }满足211232222n n na a a a -+++⋯+=(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )A .5512⎛⎫ ⎪⎝⎭B .10112⎛⎫- ⎪⎝⎭C .9112⎛⎫- ⎪⎝⎭D .6612⎛⎫ ⎪⎝⎭8.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .09.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()*122n n a S n N ++=∈,则满足2100111100010n nS S 的n 的最大值为( ). A .7B .8C .9D .1010.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92 B .102C .8182D .11211.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N,且0nS>,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .1112.函数222,3()11,316x ax a x f x ax x ⎧-+<⎪=⎨-≥⎪⎩,数列{}n a 满足()n a f n =,*n ∈N ,且为递增数列.则实数a 的取值范围是( )A .()0,1B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .53,42⎡⎫⎪⎢⎣⎭二、填空题13.已知等差数列{}n a 的前n 项和为n S ,且463a a +=,则9S =______.14.数列{}n a 的前n 项和为223n S n n =-+,则n a =_________________.15.设n S 是数列{}n a 的前n 项和,若()112nn n n S a =-+,则129S S S +++=________.16.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,现将该金杖截成长度相等的15段,记第n 段的重量为n a 斤(n =1,2,…,15),且1215a a a <<<,若[]n n n b a a =⋅(其中[]n a 表示不超过n a 的最大整数),则数列{}n b 的所有项和为________.三、解答题17.在等比数列{}n a 中,已知1a 1=-,2a 2=.()1求{}n a 的通项公式;()2若3a ,4a 分别为等差数列{}n b 的前两项,求{}n b 的前n 项和n S .18.已知等差数列{}n a 的前n 项和为n S ,且35a =,15150=S . (1)求数列{}n a 的通项公式;(2)记124na nb =⋅,{}n b 的前n 项和为n T ,求n T . 19.已知数列{}n a 的前n 项和为233n S n n =-.(1)求证:数列{}n a 是等差数列; (2)求n S 的最大值及取得最大值时n 的值.20.已知等差数列{}n a ,n S 为其前n 项和,5710,56.a S == (1)求数列{}n a 的通项公式;(2)若n a n n b a =+,求数列{}n b 的前n 项和n T .21.已知数列{}n a 的前n 项和为n S ,且2n S n n =+,数列{}n b 的通项公式为1n n b x -=.(1)求数列{}n a 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,求n T ;(3)设()44n n d n a =+,12n n H d d d =+++()*n N ∈,求使得对任意*n N ∈,均有9n mH >成立的最大整数m 22.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .参考答案1.A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A 2.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =,所以()1111161111552a a S a +===.故选:D. 3.C 【分析】利用等比通项公式直接代入计算,即可得答案;()211142211111122211121644a a q a qqqqa q a q⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩,故选:C.4.A【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a-=++=,代入求值. 【详解】由条件可知114832362a da d+=⎧⎪⎨⨯+=⎪⎩,解得:12ad=⎧⎨=⎩,()10789109133848S S a a a a a d-=++==+=.故选:A5.C【分析】由已知可得数列1nx⎧⎫⎨⎬⎩⎭是等差数列,求出数列1nx⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】由已知可得数列1nx⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x==,故公差12d=则()1111122nnnx+=+-⨯=,故21nxn=+6.D 【分析】根据已知中数列的前4项,分析数列的项数及起始项的变化规律,进而可得答案 【详解】解:由已知数列的前4项:1,2a a +,234a a a ++,3456a a a a +++,归纳可知该数列的第k 项是一个以1为首项,以a 为公比的等比数列第k 项开始的连续k 项和,所以数列的第k 项为:122k k k a a a --+++故选:D 7.B 【分析】根据题意得到22123112222n n n a a a a ---++++=,(2n ≥),与条件两式作差,得到12n n a =,(2n ≥),再验证112a =满足12n n a =,得到12n n a =()*n N ∈,进而可求出结果. 【详解】因为数列{}n a 满足211232222n n na a a a -++++=, 22123112222n n n a a a a ---++++=,(2n ≥) 则1112222--=-=n n n n a ,则12n n a =,(2n ≥), 又112a =满足12n n a =,所以12n n a =()*n N ∈,因此1010210123101011111112211222212S a a a a ⎛⎫- ⎪⎛⎫⎝⎭++=+++==- ⎪+⎝-=⎭.故选:B 8.A 【分析】根据条件得出数列{}n b 的周期即可. 【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3, 故选:A 9.C 【分析】根据()*122n n a S n N ++=∈可求出na的通项公式,然后利用求和公式求出2,n n S S ,结合不等式可求n 的最大值. 【详解】1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,212a =;则{}n a 是首项为1,公比为12的等比数列,100111111000210n⎛⎫<+< ⎪⎝⎭,1111000210n⎛⎫<< ⎪⎝⎭,则n 的最大值为9. 故选:C10.B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭.∴1211322a a ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得:12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值.()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值; 11.B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n n n n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 12.B 【分析】根据分段函数的特征,以及数列在*n N ∈是单调递增数列,列式求解. 【详解】{}n a 是单调递增数列,所以0a >,数列{}n a 是单调递增数列22303321142222316a a a a a ⎧<<⎪⎪⇔⇔<<⎨⎪-⋅+<-⎪⎩. 故选:B . 【点睛】易错点点睛:本题考查分段函数的单调性和数列单调性的简单综合应用,本地的易错点是1n =和2n =时,数列的单调性,容易和函数222,3y x ax a x =-+<时函数单调性搞混,此时函数单调性和数列单调性的式子是不一样的,需注意这点. 13.272【分析】根据题中条件,由等差数列的性质,求出532a =,再由等差数列的求和公式,根据等差数列的性质,即可求出结果. 【详解】因为等差数列{}n a 的前n 项和为n S ,且463a a +=, 由等差数列的性质可得,46523a a a +==,所以532a =, 因此()1995927922a a S a +===. 故答案为:272. 14.2,123,2n n n =⎧⎨-≥⎩【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩计算可得出数列{}n a 的通项公式.【详解】当2n ≥时,()()()221=23121323n n n a S S n n n n n -⎡⎤=--+----+=-⎣⎦; 而112a S ==不适合上式,2,123,2n n a n n =⎧∴=⎨-≥⎩.故答案为:2,123,2n n n =⎧⎨-≥⎩. 15.3411024【分析】令1n =计算得出114a =,然后推导出当n 为偶数时,0n S =,当n 为奇数时,112n n S +=,利用等比数列的求和公式可求得129S S S +++的值.【详解】当1n =时,11112a S a ==-+,解得114a =;当2n ≥时,()()()1111122nnn n n n n nS a S S -=-+=-⋅-+. 当n 为偶数时,可得112n n n n S S S -=-+,则112n nS -=; 当()3n n ≥为奇数时,可得112n n n n S S S -=-++,则1112120222n n n n nS S -+=-=-=. 因此,2512924681011111111341240000122222102414S S S ⎛⎫- ⎪⎝⎭+++=++++++++==-.故答案为:3411024. 【点睛】方法点睛:本题考查已知n S 与n a 的关系求和,常用的数列求和方法如下:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和; (3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.16.869【分析】先根据等差数列的通项公式列方程求出公差与首项,可得1018n n a +=,结合新定义与等差数列的求和公式可得答案. 【详解】由题意,由细到粗每段的重量成等差数列{}n a ,设公差为d ,则1123131415132,4,323394a a a a a a d a d a +++=⎧⎧⇒⎨⎨++=+=⎩=⎩解得11118a =,118d =, 所以1018n n a +=. 所以[]0,17,1,815.n n a n ≤≤⎧=⎨≤≤⎩因此数列{}n b 的所有项和为891518192586189a a a ++⋅⋅⋅+++⋅⋅⋅+==.故答案为:869【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答..17.(1)1(2)n n a -=--;(2)2610n S n n =-.【分析】(1)求出等比数列的公比q ,进而得到其通项公式;(2)求出等差数列公差d ,再利用等差数列的前n 项和公式求解. 【详解】(1)∵公比212a q a ==-,∴()1112n n n a a q --==--. (2)∵34a =-,48a =,4a -3a =8+4=12,∴14b =-,公差12d =.故()214126102n n n S n n n -=-+⨯=-.【点睛】本题考查了等比数列的基本量计算和等比数列的通项公式,考查了等差数列的基本量计算和前n 项和公式.是基础题.18.(1)2n a n =+ (2)122n n T +=-【分析】(1)由15150=S ,可得11510a a +=,即85a =,从而可得公差d ,从而得出答案. (2)由条件可得21122244n a n n n b +=⋅=⋅=,由等比数列的前n 项和公式可得答案. 【详解】(1)设等差数列{}n a 的公差为d ,11515151502a a S +=⨯= 则11520a a +=,又1158220a a a +==,810a =,又35a =83510a a d =+=,得1d =,则13a =所以()11312n a a n d n n =+-⨯=+-=+(2)21122244n a n n n b +=⋅=⋅= 所以()12122212n n nT +⨯-==--19.(1)证明见解析;(2)前16项或前17项和最大,最大值为272. 【分析】(1)先由n S 求{}n a 通项公式,再利用定义法证明即可;(2)先判断0n a ≥的n 的范围,得到数列的正负分布,即得何时n S 最大. 【详解】解:(1)证明:当2n ≥时,1342n n n a S S n -=-=-,又当1n =时,11323421a S ===-⨯,满足342n a n =-,故{}n a 的通项公式为342n a n =-, ∴()()134213422n n a a n n +-=-+--=-. 故数列{}n a 是以32为首项,2-为公差的等差数列; (2)令0n a ≥,即3420n -≥,解得17n ≤, 故数列{}n a 的前16项或前17项和最大,此时21617331717272S S ==⨯-=.20.(1)2n a n =;(2)12332n n T n n +-=++. 【分析】(1)设数列{}n a 的首项为1a ,公差为d ,然后根据题目条件列出关于1a 和d 的方程组求解;(2)将(1)中所得的数列{}n a 的通项公式代入,得到n b 的通项公式,再根据通项公式确定该用哪个方法求前n 项和. 【详解】解:(1)设数列{}n a 的首项为1a ,公差为d ,则根据题意得:由715172156410S a d a a d =+=⎧⎨=+=⎩,解得122a d =⎧⎨=⎩,所以2n a n =.(2)23na n n nb a n =+=+,则123(23)(43)(63)(23)n n T n =++++++++2(242)(333)n n =+++++++(22)3(13)213n n n +⨯-=+- 12332n n n +-=++. 【点睛】本题考查等差数列的基本公式的运用,考查利用分组求和法求数列的前n 项和. 解答时,如果已知数列为等差数列或等比数列求通项公式,只需将题目条件翻译成数学表达式,然后通过方程解出首项和公差或公比,然后得出数列的通项公式. 对于数列n n n c a b =+,当{}n a 和{}n b 分别为等差数列与等比数列时,可采用分组求和法求和.21.(1)2n a n =;(2)()()1222212,112,1n n n n x nx x T x n n x +⎧-++≠⎪=-⎨⎪+=⎩;(3)存在最大的整数5m =满足题意. 【分析】(1)当1n =时,11a S =;当2n ≥时,1n n n a S S -=-,将已知代入化简计算可得数列{}n a 的通项公式;(2)利用错位相减法计算n T ,分1x ≠和1x =两种情况,分别得出答案;(3)利用裂项相消法计算出n H ,并得出单调性和最值,代入不等式解出m 的范围,得到答案. 【详解】(1)当1n =时,112a S ==当2n ≥时,()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦即数列{}n a 的通项公式为2n a n =(2)12n n n n c a b nx -==,23124682n n T x x x nx -=+++++,①则23424682n n xT x x x x nx =+++++,②①﹣②,得()21122222n n n x T x x nx nx --=++++-.当1x ≠时,()11221nn n x x T nx x--=⨯--,则()()1222121n n n n x nx T x +-++=-. 当1x =时,224682n T n n n =+++++=+综上可得,()()1222212,112,1n n n n x nx x T x n n x +⎧-++≠⎪=-⎨⎪+=⎩(3)由(1)可得()411242n d n n n n ==-++,则12111111111111324352212n n H d d d n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++-=+-- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭显然n H 为关于n 的增函数,故()1min 23n H H ==. 于是欲使9n mH >恒成立, 则293m <,解得6m <.∴存在最大的整数5m =满足题意.【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和. 22.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可.【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =, ∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-, ∴()()()131********n n n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:1.公式法:直接利用等差、等比数列的求和公式计算即可;2.分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;3.裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;4.错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
分布列综合测试题 (3)(基础、好用、经典)

分布列综合测试题一、选择题1.设随机变量ξ~B (6,12),则P (ξ=3)的值是( ) A.316 B.516 C.716 D.582.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )A.5960B.35C.12D.1603.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为( )A .0.45B .0.6C .0.65D .0.754.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( )A .(12)5B .C 25(12)5C .C 35(12)3D .C 25C 35(12)55.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎨⎧-1, 第n 次摸取红球1, 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57(13)2·(23)5B .C 27(23)2·(13)5C .C 57(13)2·(13)5 D .C 37(13)2·(23)5 二、填空题6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.8.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.三、解答题9.某同学参加3门课程的考试 .假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p 、q (p >q ),且不同课程(1)求该生至少有(2)求p ,q 的值.10.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率; (3)求这支篮球队在6场比赛中胜场数的期望和方差.11.某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,(2)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后乘客人数超过18人的概率大于0.9,公交公司就考虑在该线路增加一个班次,请问该线路需要增加班次吗?解析及答案一、选择题1.【解析】 P (ξ=3)=C 36(12)3(1-12)3=516. 【答案】 B 2.【解析】 因甲、乙、丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,至少有1人去北京旅游的概率为P =1-23×34×45=35. 【答案】 B 3.【解析】 设目标被击中为事件B ,目标被甲击中为事件A ,则由P (B )=0.6×0.5+0.4×0.5+0.6×0.5=0.8,得P (A |B )=P (AB )P (B )=P (A )P (B )=0.60.8=0.75.【答案】 D 4.【解析】 移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次.故其概率为C 35(12)3·(12)2=C 35(12)5=C 25(12)5. 【答案】 B 5.【解析】 S 7=3即为7次摸球中,有5次摸到白球,2次摸到红球,又摸到红球的概率为23,摸到白球的概率为13.故所求概率为P =C 27(23)2(13)5. 【答案】 B 二、填空题 6.【解析】 设该队员每次罚球的命中率为P (0<P <1),则依题意有1-P 2=1625,又0<P <1,∴P =35.【答案】 35 7.【解析】 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.【答案】 1927 8.【解析】 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗).依题意P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.【答案】 0.72 三、解答题 9.【解】 事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3.由题意知P (A 1)=45,P (A 2)=p ,P (A 3)=q .(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125. (2)由题意知P (ξ=0)=P (A 1·A 2·A 3)=15(1-p )(1-q )=6125,P (ξ=3)=P (A 1A 2A 3)=45pq =24125.整理得pq =625,p +q =1.由p >q ,可得p =35,q =25. 10.【解】 (1)P =(1-13)2×13=427.所以这支篮球队首次胜场前已负两场的概率为427.(2)6场胜3场的情况有C 36种,∴P =C 36(13)3(1-13)3=20×127×827=160729.所以这支篮球队在6场比赛中恰胜3场的概率为160729. (3)由于ξ服从二项分布,即ξ~B (6,13),∴E (ξ)=6×13=2,D (ξ)=6×13×(1-13)=43.所以在6场比赛中这支篮球队胜场的期望为2,方差为43. 11.【解】 (1)由表知,乘客人数不超过24人的频率是0.10+0.15+0.25+0.20=0.70,则从每个停靠点出发后,乘客人数不超过24人的概率约是0.70.(2)由表知,从每个停靠点出发后,乘客人数超过18人的概率约为12,设途经10个停靠站,乘车人数超过18人的个数为X ,则X ~B (10,12),∴P (X ≥2)=1-P (X =0)-P (X =1)=1-C 010(1-12)10-C 110·12×(1-12)9=1-(12)10-10×(12)10=1 0131 024>0.9, 故该线路需要增加班次.。
数列综合测试题与答案

高一数学数列综合测试题1. { an }是首项 a1= 1,公差为 d =3 的等差数列,如果 an =2 005 ,则序号 n 等于 ().A .667B . 668C . 669D .6702.在各项都为正数的等比数列 { an }中,首项 a1 =3 ,前三项和为 21,则 a3+ a4+a5= ( ) .A .33B . 72C . 84D .1893.如果 a1, a 2, , a8 为各项都大于零的等差数列,公差d ≠0,则 () . A .a 1a8> a4a5 B . a1a 8< a4a 5 C . a1+ a8 < a4+ a5D .a1a8 =a4a 54.已知方程 (x 2- 2x + m)( x 2- 2x + n)= 0 的四个根组成一个首项为 1的等差数列,则|m - n |等于 ( ).4A .1 3 1D . 3 B . C .8 4 25.等比数列 {an} 中, a2 5 n }的前 4 项和为 (). = 9, a= 243,则{ aA .81B . 120 C . 168D . 1926. 若数列 { an }是等差数列,首项 a 1> 0, a2 003 + a2 004 > 0 ,a 2 003 ·a2 004 < 0,则使前 n 项和Sn > 0 成立的最大 自然数 n 是 ().A .4005B . 4006C . 4007D .40087.已知等差数列 { a }的公差为 2,若 a , a ,a成等比数列 , 则 a = () .n 1 3 4 2A .- 4B .-6C .- 8D . -108.设 Sn 是等差数列 {an}的前 n 项和,若 a 9 = ( ).5 = 5 ,则 S a 3 9 S 5A .1B .-1 C . 2D . 1 29.已知数列- 1, a1 , a2,- 4 成等差数列,- 1 ,b 1,b 2,b3,- 4 成等比数列,则 a 2a1的值是 ( ).b 2 A . 1 B .- 1 C .- 1或1 D . 12 2 2 2 4 10.在等差数列 {a n} 中, an ≠0, an -1- a n 2 + an +1= 0(n ≥ 2),若 S2n -1 =38,则 n = ( ). A .38B . 2C . 1D .9二、填空题..11.设 f (x)=1 n 项和公式的方法,可求得f (- 5) + f( - 4) ++ f (0) ++,利用课本中推导等差数列前2x 2f (5) + f(6) 的值为.12.已知等比数列 {an} 中,(1) 若 a3 ·a4·a5=8 ,则a2·a3·a4 ·a5·a6=.(2) 若a1+a 2=3 4 5 6=.324 ,a+ a=36,则 a + a(3) 若 S4= 2, S8= 6,则 a17+ a18+ a19+ a20=.13.在8和27之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.3 21 4.在等差数列 {a } 中,3(a3+ a)+2(a7+ a +a13)= 24,则此数列前13 项之和为.n 5 101 5.在等差数列 {a n} 中, a5= 3, a6 =-2 ,则 a4+ a5++a10=.1 6.设平面内有 n 条直线 ( n≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f ( n) 表示这n条直线交点的个数,则 f (4) =;当 n> 4 时, f (n)=.三、解答题1 7. (1) 已知数列{a2- 2n,求证数列{a} 成等差数列 .} 的前 n 项和 S =3nn n n(2) 已知1,1,1成等差数列,求证 b c , c a , a b也成等差数列 .a bc ab c18.设 { an}是公比为q 的等比数列,且a1, a3, a2 成等差数列.(1)求 q 的值;..(2)设 { bn }是以 2 为首项, q 为公差的等差数列,其前 n 项和为 Sn ,当 n ≥2时,比较 Sn 与 bn 的大小,并说明理由.19.数列 { an }的前 n 项和记为Sn,已知 a1= 1, an+1=n2 Sn( n= 1, 2, 3 ).n求证:数列 { Sn }是等比数列.n20.已知数列 {a n}是首项为 a 且公比不等于 1 的等比数列, Sn 为其前 n 项和, a1,2a 7,3a 4 成等差数列,求证: 12S3,S6, S12- S6 成等比数列 ...高一数学数列综合测试题参考答案一、选择题 1. C解析:由题设,代入通项公式 an = a1+( n - 1)d ,即 2 005= 1 +3( n - 1) ,∴n = 699 . 2. C解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列 { an }的公比为q(q > 0) ,由题意得a1+ a2+a 3= 21,2 2 = 7.即 a1(1 + q + q )= 21,又 a1= 3,∴1+ q + q 解得 q =2 或 q =- 3( 不合题意,舍去 ) , 2 2 2 ∴a 3+ a4 +a5= a1 q (1 + q +q )= 3×2 ×7= 84. 3. B .解析:由 a 1+ a8 =a4+ a5,∴排除 C . 又 a1·a8= a1(a1+ 7d) = a12+ 7a1d ,∴a ·a =(a + 3d)(a + 4d)=a 2+7a d +12d 2 .1 > a ·a 4 5 1 1 1 1 84. C解析:..解法 1:设 a1= 1 , a2= 1 + d , a3= 1 + 2d , a4=1+ 3d ,而方程 x 2- 2x + m = 0 中两根之和为 2, x 2- 2x + n =4 4 4 4中两根之和也为 2,∴a + a +a + a =1 + 6d =4 ,1 2 3 4∴d = 1 , a1= 1 , a4= 7 是一个方程的两个根,a1= 3 , a3= 5 是另一个方程的两个根.24444∴ 7 , 15 分别为 m 或 n , 16 16 ∴|m - n |=1,故选 C .2解法 2:设方程的四个根为 x1, x2, x3, x4 ,且 x1+ x2= x3 + x4= 2, x1·x2= m ,x3·x4= n .由等差数列的性质:若 + s = p +q ,则 a +a = a +a ,若设x 为第一项, x 必为第四项,则 x = ,于是可得s pq 1 2 2 74 等差数列为 1 , 3 ,5 , 7 ,4 4 4 4∴m = 7 , n = 15 , 16 16 ∴|m - n |=1.2 5. B2 5 =243 a 5 3 243 ,解析:∵ a = 9, a , = q = = 27 a 2 9 ∴q = 3, a 1q =9 , a1= 3,∴S4 = 3-35 = 240 = 120.1-3 26. B解析:解法 1:由 a 2 003+ a 2 004 > 0,a2 003 ·a < 0,知 a 2 003和a 2 004 两项中有一正数一负数,又 a > 0,则公差为负数,2 004 1否则各项总为正数,故 a 2 003> a2 004 ,即 a2 003 >0 , a2 004< 0.4 006( a 1+ ) 4 +)a 006( a a4 006=4 006=2 0032004 >0,∴S2 24 007 =4 007 14007)=4 0072004<0 ,∴S2 ·(a +a ·2a2故 4006 为 Sn> 0 的最大自然数 . 选B...解法 2:由 a 1> 0, a2 003+ a2 004> 0, a2 003·a2 004< 0,同解法 1 的分析得a2 003 >0,a2 004 <0,∴S 为 S 中的最大值.2003 n∵Sn 是关于 n 的二次函数,如草图所示,∴2 003 到对称轴的距离比(第6题)2 004 到对称轴的距离小,∴4 007 在对称轴的右侧.2根据已知条件及图象的对称性可得 4 006 在图象中右侧零点B 的左侧, 4 007 , 4 008 都在其右侧,Sn> 0 的最大自然数是 4 006 .7. B解析:∵ {a n}是等差数列,∴ a3= a1+ 4, a4= a1+ 6,又由 a1,a 3, a4 成等比数列,∴( a1 + 4) 2= a1 (a 1+ 6) ,解得 a 1=- 8,∴a 2=- 8+ 2=- 6 .8. A9(a1a9 )S9=2 9 a59 5解析:∵5(a1==·= 1,∴选 A.S5a5 )5 a35 929. A解析:设 d 和 q 分别为公差和公比,则-4=- 1+ 3d 且- 4= (-1)q4,∴d =- 1, q2= 2,∴a2 a1 = d2=1.b2q 210.C解析:∵ {a n}为等差数列,∴ a n2= an-1+ a n+ 1,∴ a n2= 2an,又 an≠0,∴an= 2, {an}为常数数列,..而an=S2 n 1,即2n 1∴n = 10.二、填空题11.3 2.解析:∵ f( x)=x2∴f (1 - x)=1 1 x 2∴f (x)+ f (1 - x)=2n- 1=38= 19,21,21 x=2x=2 2,2 2x2x2 2 211 2 x 1 12x 1 ( 2 2x )2 +2=2=2=.2 2x 2 2 x 2 2 x 2 2x 2设S=f (- 5) + f( - 4) ++ f (0) ++ f (5) + f (6) ,则S=f (6) +f (5) ++ f(0) ++ f (- 4) + f (- 5) ,∴2S= [f (6) + f (-5)] + [f (5) + f (- 4)] ++ [f (- 5) + f (6)] = 62 ,∴S= f (- 5) +f (- 4) ++ f (0) ++ f(5) + f(6) = 3 2 .12.( 1)32;( 2) 4;( 3)32.解析:( 1)由 a3·a5= a42,得 a4= 2 ,∴a 2·a3 ·a4·a5·a6= a45= 32.( 2)a1a2324q2 1,1 2 29 ( a a )q 36∴a 5+ a6 =(a1+ a2) q4= 4.( 3)S4= a1+ a2+ a3+a 4=2q4=2 ,S8= a1+a 2++ a8= S4+ S4 q416.∴a + a + a + a = S q =3217 18 19 20 4 13. 216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与中间数为8 27=6,插入的三个3 2```8,27同号,由等比中项的3 2..14. 26.解析:∵ a3+ a 5= 2a4 , a7+ a13= 2a 10,∴6(a 4+ a10)= 24, a4 + a10= 4,13( a1+a13 )=13( a4+a10 )13 4 =26.∴S13==22 215.- 49.解析:∵ d= a6 - a5=- 5,∴a 4+ a5 ++ a10=7( a4+a10)2=7( a5-d+a5+5d)2=7(a5 + 2d)=- 49.116. 5,(n + 1)( n- 2) .解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f (k-1) +(k- 1) .由f(3) = 2,f (4) = f(3) + 3= 2+ 3= 5,f(5) = f(4) + 4= 2+ 3+ 4= 9,f (n) = f( n- 1) + (n- 1) ,相加得 f (n)= 2+ 3+ 4++ (n - 1)=1 ( n+ 1)( n - 2) .2三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第 2 项开始每项与其前一项差为常数.证明:( 1)n = 1 时, a1= S1= 3- 2= 1,..当n ≥2 时, an = Sn - Sn- 1= 3n 2- 2n- [3( n- 1) 2- 2(n - 1)] = 6n- 5,n= 1 时,亦满足,∴ an= 6n- 5(n∈N*) .首项 a1=1, a n- an- 1= 6n - 5- [6( n - 1) - 5] =6( 常数 )(n ∈ N*) ,∴数列{an}成等差数列且 a1 =1 ,公差为 6.111( 2)∵,,成等差数列,∴2=1+1化简得 2ac= b( a+c). b a cb+ c a+ b bc+ c2+a2+ab b( a+ c)+ a2+ c2( a+c) 2( a+c)2a+ ca +c=ac=ac=ac=( + ) = 2 ·,b ac b2∴b+c,c+a,a+b也成等差数列.a b c18.解:( 1)由题设3 1 22a1 2 1 1 2a = a +a ,即q = a+ aq,∵a 1≠0,∴2q 2- q- 1= 0,1∴q = 1 或-.2( 2)若 q =1,则 Sn= 2n+n( n-1)=n+3n.2 2当n ≥2 时, Sn-bn= Sn-1=( n-1)( n+2)> 0,故 Sn>bn . 21 n=2n+n( n-1)1 - n2+ 9n若 q =-,则 S (-)=.2 2 2 4当n ≥2 时, Sn-bn= Sn-1=( n-1)( 10-n), 4故对于 n∈ N+,当 2≤n ≤9 时, Sn>b n;当 n= 10 时, Sn= b n;当 n≥11 时, Sn< b n.n+219.证明:∵ an+1= Sn+1 - Sn ,an+1=Sn,∴( n+ 2)Sn = n( Sn+ 1- Sn),整理得nSn + 1= 2(n+ 1) Sn,所以Sn+1 = 2 Sn .n+1 n故 { Sn }是以 2为公比的等比数列.n20.证明:由 a ,2a,3a成等差数列,得4a= a +3a,即 4 a6 3,747q =a + 3a q1 1 4 1 1 13 +3-1)= 0,变形得 (4q 1)(q∴q 3=-1或 q 3= 1( 舍 ).4..由S612S3S12S6S6a1 (1 q6 )=1 q 3= 1 q312a1(1q ) 121qa1 (1q12 )=S12- 1=1 qS6a1 (1q6 )1 q= 1 ;16- 1= 1+ q 6- 1=1;得 S6 =S12 S6.1612S3S6,S,S -S 成等比数列.∴12S3 6 12 6 单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
高二数学数列综合测试题(解析版)

7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有
苏教版(理科数学) 数列的综合问题 单元测试(含答案)

2020届苏教版(理数)数列的综合问题单元测试一、选择题(每小题5分,共25分)1.若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则= ( )A.-1B.1C.D.-2【解析】选B.设等差数列{a n}的公差为d,等比数列{b n}的公比为q,则a4=-1+3d=8,解得d=3;b4=-1·q3=8,解得q=-2.所以a2=-1+3=2,b2=-1×(-2)=2,所以=1.2.我国古代数名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,,,,…,.①第二步:将数列①的各项乘以,得到一个新数列a1,a2,a3,…,a n.则a1a2+a2a3+a3a4+…+a n-1a n= ( )A. B.C. D.【解析】选 C.由题意知所得新数列为1×,×,×,…,×,所以a1a2+a2a3+a3a4+…+a n-1a n==+==.3.已知数列{a n}满足a1=1,P(a n,a n+1)(n∈N*)在直线x-y+1=0上,如果函数f(n)=++…+(n∈N*,n≥2),那么函数f(n)的最小值为( ) A. B. C. D.【解析】选C.将点P的坐标代入直线方程,得a n+1-a n=1,所以{a n}是首项为1,公差为1的等差数列,所以a n=n,所以f(n)=++…+,f(n+1)=++…+,所以f(n+1)-f(n)=+->+-=0,所以f(n)单调递增,故f(n)的最小值为f(2)=.4.已知a,b,c成等比数列,a,m,b和b,n,c分别成两个等差数列,则+等于 ( )A.4B.3C.2D.1【解析】选C.由题意得b2=ac,2m=a+b,2n=b+c,则+====2.【一题多解】解答本题,还有以下解法:特殊值法:选C.因为a,b,c成等比数列,所以令a=2,b=4,c=8,又a,m,b和b,n,c分别成两个等差数列,则m==3,n==6,因此+=+=2.5.数列{a n}满足a1=,a n+1=,若不等式++…+<n+λ对任何正整数n 恒成立,则实数λ的最小值为( )A. B. C. D.【解析】选A.因为数列{a n}满足a1=,a n+1=,所以反复代入计算可得a2=,a3=,a4=,a5=,…,由此可归纳出通项公式a n=,经验证,成立.所以=1+=1+,所以++…+=n+1+=n+-.因为要求++…+<n+λ对任何正整数n恒成立,所以λ≥.6.已知数列的前项和为,若,则________.【答案】7.对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________.【答案】100.【解析】设序列的首项为,则序列,则它的第n项为,因此序列A的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故.8.将正整数分解成两个正整数的乘积有三种,其中是这三种分解中两数差的绝对值最小的,我们称为的最佳分解.当(且)是正整数的最佳分解时,我们定义函数,例如.则______,数列()的前项和为______.【答案】09.数列{}n a 的递推公式为2{ n nn na a n =,为奇数时,为偶数时(*n N ∈),可以求得这个数列中的每一项都是奇数,则1215a a +=__________;研究发现,该数列中的奇数都会重复出现,那么第8个3是该数列的第________项.【答案】 18 384【解析】由题得:这个数列各项的值分别为1,1,3,1,5,3,7,1,9,5,11,3… ∴121531518a a +=+=.又因为3612243333a a a a ====⋯,,, 即项的值为3时,下角码是首项为3,公比为2的等比数列. 所以第8个3是该数列的第3×28﹣1=384项.故答案为:18,384.10.在数1和2之间插入n 个正数,使得这n+2个数构成递增等比数列,将这n+2个数的乘积记为n A ,令*2log ,n n a A n N =∈.(1)数列{}n a 的通项公式为n a =____________;(2) 2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋅⋅⋅+⋅=___________.【答案】22n +;()tan 22.tan1n tan n +--()()tan 2tan 1tan 3tan 2tan 4tan 3tan 5tan 41111tan1tan1tan1tan1n n ⎛⎫+-+---⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()tan 2tan 2tan1n n +-=-, *n N ∈故答案为()tan 2tan 2tan1n n +--11.已知数列{}n a 满足: 111n na a +=-, 12a =,记数列{}n a 的前n 项之积为n P ,则2011P =______. 【答案】2【解析】因为1111,2n na a a +=-=,所以211122a =-=, ()34121,112a a =-=-=--=,所以数列{}n a 是以4为周期的周期数列, ()12312112a a a =⨯⨯-=-, 则()67020111232011122P a a a a ==-⋅=.12.已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈恒成立,则实数λ的取值范围为__________. 【答案】[)0,+∞13.已知数列{}n a 满足111,1nn n a a a a +==+,若[]x 表示不超过x 的最大整数,则222122017a a a ⎡⎤+++=⎣⎦__________.【答案】114.已知数列{}n a 中, ()102a a a =<≤, ()()()*122{ 32n n n nna a a n N a a +->=∈-+≤,记12n n S a a a =+++.若2015n S =,则n =__________. 【答案】1343【解析】∵a 1=a (0<a ⩽2), ()()()*122{ 32n n n n n a a a n N a a +->=∈-+≤,∴a 2=−a 1+3=3−a ∈[1,3).①当a ∈[1,2]时,3−a ∈[1,2],∴a 3=−a 2+3=a , ∴当n =2k −1,k ∈N ∗时,a 1+a 2=a +3−a =3,∴S 2k −1=3(k −1)+a =2015,a =1时舍去,a =2时,k =672,此时n =1343;15.已知无穷数列{}()n n a a Z ∈的前n 项和为n S ,记1S , 2S ,…, n S 中奇数的个数为n b . (Ⅰ)若n a = n ,请写出数列{}n b 的前5项;(Ⅱ)求证:"1a 为奇数, i a (i = 2,3,4,...)为偶数”是“数列{}n b 是单调递增数列”的充分不必要条件; (Ⅲ)若i i a b =,i=1, 2, 3,…,求数列{}n a 的通项公式. 【答案】(1)见解析;(2)见解析;(3) 0n a =.【解析】(Ⅰ)解: 1=1b , 2=2b , 3=2b , 4=2b , 5=3b . (Ⅱ)证明:(充分性) 因为1a 为奇数, ()2,3,4,i a i =为偶数,所以,对于任意*i N ∈, i S 都为奇数. 所以n b n =.所以数列{}n b 是单调递增数列. (不必要性)当数列{}n a 中只有2a 是奇数,其余项都是偶数时, 1S 为偶数, ()2,3,4,i S i =均为奇数,16.已知…,.记.(1)求的值;(2)化简的表达式,并证明:对任意的,都能被整除.【答案】(1)30;(2)证明见解析.17.若对任意的正整数n ,总存在正整数m ,使得数列{}n a 的前n 项和n m S a =,则称{}n a 是“回归数列”. (1)①前n 项和为2n n S =的数列{}n a 是否是“回归数列”?并请说明理由.②通项公式为2n b n =的数列{}n b 是否是“回归数列”?并请说明理由;(2)设{}n a 是等差数列,首项11a =,公差0d <,若{}n a 是“回归数列”,求d 的值.(3)是否对任意的等差数列{}n a ,总存在两个“回归数列”{}n b 和{}n c ,使得()*n n n a b c n N =+∈成立,请给出你的结论,并说明理由.【答案】(1)见解析;(2)1d =-;(3)见解析.∴1m =, ∴1d =-.(3)设等差数列{}n a 的公差为d ,令()()11112n b a n a n a =--=-, 对*n N ∀∈, 11n n b b a +-=-,令()()11n c n a d =-+,则对*n N ∀∈, 11n n c c a d +-=+,18.无穷数列{}n a满足:1a为正整数,且对任意正整数n,1n a+为前n项1a,2a,⋯,n a中等于n a 的项的个数.(Ⅰ)若12a=,请写出数列{}n a的前7项;(Ⅱ)求证:对于任意正整数M ,必存在*k N ∈,使得k a M >;(Ⅲ)求证:“11a =”是“存在*m N ∈,当n m ≥时,恒有2n a +≥ n a 成立”的充要条件。
数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。
A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。
A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。
答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。
答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。
解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。
2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。
解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。
证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。
即证明n^2 ≥ (n-1)^2。
展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。
2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。
证明:设等差数列{hn}的首项为h1,公差为d。
根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。
将两项相加得hn + hm = 2h1 + (m + n - 2)d。
由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。
第二章数列单元综合测试(人教A版必修5)

第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列综合测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .32.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.154.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为正偶数时,n 的值可以是( )A .1B .2C .5D .3或115.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-127.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( ) A .24 B .25 C .26D .278.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .89.已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .18910.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006D .100711.设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003=b 2003,则( )A .a 1002>b 1002B .a 1002=b 1002C .a 1002≥b 1002D .a 1002≤b 100212.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( )A .50项B .34项C .6项D .5项第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知数列{a n }满足:a n +1=1-1a n,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011=________.14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.15.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________.16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.三、解答题()17.设数列{a n }的前n 项和为n S =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2 -a 1) =b 1。
(1)求数列{a n }和{b n }的通项公式; (2)设c n =nnb a , 求数列{c n }的前n 项和T n .18.设正数数列{n a }的前n 项和n S 满足2)1(41+=n na S . (I )求数列{n a }的通项公式; (II )设11+⋅=n n n a a b ,求数列{n b }的前n 项和n T19.已知数列{b n }前n 项和为S n ,且b 1=1,b n +1=13S n .(1)求b 2,b 3,b 4的值; (2)求{b n }的通项公式;(3)求b 2+b 4+b 6+…+b 2n 的值.20.已知函数)(x f =157++x x ,数列{}n a 中,2a n +1-2a n +a n +1a n =0,a 1=1,且a n ≠0, 数列{b n }中, b n =f (a n -1)(1)求证:数列{na 1}是等差数列; (2)求数列{b n }的通项公式; (3)求数列{n b }的前n 项和S n .21.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n3n +1,求数列{b n }的通项公式;(3)令c n =a n b n4(n ∈N *),求数列{c n }的前n 项和T n .22.已知数列{n a }满足11=a ,且),2(22*1N n n a a nn n ∈≥+=-且(1)求证:数列{n na 2}是等差数列;(2)求数列{n a }的通项公式; (3)设数列{n a }的前n 项之和n S ,求证:322->n S n n。
数列综合测试题答案一 选择题1-6CDADCC 7-12 ACCCCD二 填空题13__2__. 14____255____.15____223+____.16___22_____. 三.解答题17. 解:(1)∵当n=1时 ,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2 -2(n -1)2=4n -2. 故数列{a n }的通项公式a n =4n -2,公差d=4.设{b n }的公比为q ,则b 1qd= b 1,∵d=4,∴q=41.∴b n =b 1q n -1=2×141-⎪⎭⎫ ⎝⎛n =142-n ,即数列{ b n }的通项公式b n =142-n 。
(2)∵114)12(4224---=-==n n nn n n n b a c∴T n =1+3·41+5·42+······+(2n -1)4n-1∴4T n =1·4+3·42+5·43+······+(2n -1)4n两式相减得3T n =-1-2(41+42+43+······+4n -1)+(2n -1)4n =]54)56[(31+-nn∴T n =]54)56[(91+-nn18.解:(Ⅰ)当1=n 时,2111)1(41+==a S a ,∴ 11=a . ∵ 2)1(41+=n n a S , ① ∴ 211)1(41+=--n n a S (n )2≥. ②①-②,得 2121)1(41)1(41+-+=-=--n n n n n a a S S a ,整理得,0)2)((11=--+--n n n n a a a a , ∵ 0>n a ∴ 01>+-n n a a .∴ 021=---n n a a ,即)2(21≥=--n a a n n . 故数列}{n a 是首项为1,公差为2的等差数列.∴ 12-=n a n . (Ⅱ)∵ )121121(21)12)(12(111+--=+-=⋅=+n n n n a a b n n n ,∴ n n b b b T +++= 21)121121(21)5131(21)311(21+--++-+-=n n )1211(21+-=n 12+=n n .19. [解析] (1)b 2=13S 1=13b 1=13,b 3=13S 2=13(b 1+b 2)=49,b 4=13S 3=13(b 1+b 2+b 3)=1627.(2)⎩⎨⎧b n +1=13S n ①b n=13Sn -1 ②①-②解b n +1-b n =13b n ,∴b n +1=43b n ,∵b 2=13,∴b n =13·⎝⎛⎭⎫43n -2(n ≥2)∴b n =⎩⎪⎨⎪⎧1 (n =1)13·⎝⎛⎭⎫43n -2(n ≥2).(3)b 2,b 4,b 6…b 2n 是首项为13,公比⎝⎛⎭⎫432的等比数列, ∴b 2+b 4+b 6+…+b 2n =13[1-(43)2n ]1-⎝⎛⎭⎫432=37[(43)2n -1]. 20.解:(1)2a n+1-2a n +a n+1a n =0 ∵a n ≠0, 两边同除a n+1a n21111=-+n n a a ∴数列{n a 1}是首项为1,公差为21的等差数列(2)∵n a 1=21)1(11+=-+n d n a∴a n -1=)(,11N n n n∈+- ∵b n =f (a n -1)=f (11+-n n)=-n+6 (n ∈N)(3) -n+6 (n≤6, n ∈N)n b = n -6 (n>6, n ∈N)2)11(2)6(1n n n b n -=-+ (n≤6, n ∈N) ∴S n =260112))(6(276+-=+-+n n b b n S n (n>6, n ∈N)21.[解析] (1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n ,知a 1=2满足该式 ∴数列{a n }的通项公式为a n =2n .(2)a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1)①∴a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1②②-①得,b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1),故b n =2(3n +1)(n ∈N *). (3)c n =a nb n4=n (3n +1)=n ·3n +n , ∴T n =c 1+c 2+c 3+…+c n =(1×3+2×32+3×33+…+n ×3n )+(1+2+…+n ) 令H n =1×3+2×32+3×33+…+n ×3n ,① 则3H n =1×32+2×33+3×34+…+n ×3n +1② ①-②得,-2H n=3+32+33+…+3n -n ×3n +1=3(1-3n )1-3-n ×3n +1∴H n =(2n -1)×3n +1+34,∴数列{c n }的前n 项和T n =(2n -1)×3n +1+34+n (n +1)222解.(1)),2(22*1N n n a a n n n∈≥+=-且)2......(..........2)21(2252232212)1....(..........2)21(225223221)3(2)21(,211)1(21)1(212)1()2(,212,1,}{),2(122,12214323211*1111+----⋅-++⋅+⋅+⋅=∴⋅-++⋅+⋅+⋅=⋅-=∴-=⋅-+=-+===∴∈≥=-+=∴n n n n nn n n nn n n n n n n n n n S n S n a n n d n a a d a N n n a a a a 得由首项公差为是等差数列数列且即12)21(22222)21(221)2()1(132132-⋅--++++=⋅-++++=--++n n n n n n S 得322,2)32(32)32(.32)23(12)21(21)21(21->∴⋅->+⋅-=-⋅-=-⋅----=+n S n S n n n nn n n n n n。