数学中考冲刺训练(一)
【中考卷】广东省2022届中考数学第一次冲刺模拟考试(一)含答案与解析

广东省2022年中考第一次冲刺模拟考试(一)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中,比3-小的数是( ) A .π-B 5C .2D .83-2.京张高铁,京礼高速两条北京冬奥会重要交通保障设施投入使用后,将张家口、崇礼、延庆与北京城区串成一线.京张高铁开通运营一年累计发送旅客6 800 000人,大幅提升了京张两地通行能力,将6 800 000用科学记数法表示为( ) A .56.810⨯B .66.810⨯C .56810⨯D .70.6810⨯3.看了《田忌赛马》故事后,数学兴趣小组用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6、4、2,若田忌的三匹马随机出场,则田忌能赢得比赛的概率为( )马匹等级 下等马 中等马 上等马 齐王 2 4 6 田忌135A .13B .16C .19D .1124.下列计算正确的是( ) A .x 7÷x =x 7B .(﹣3x 2)2=﹣9x 4C .x 3•x 3=2x 6D .(x 3)2=x 65.已知a 是方程22210x x -+=的一个根.则221a a+的值为( )A .4B .6C .42D .626.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再拼接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,在如图所示的A ,B ,C ,D 四个位置中,能够选择的位置有( )A .1个B .2个C .3个D .4个7.如图,AB 为⊙O 的一条弦,C 为⊙O 上一点,OC ∥AB .将劣弧AB 沿弦AB 翻折,交翻折后的弧AB 交AC 于点D .若D 为翻折后弧AB 的中点,则∠ABC =( )A .110°B .112.5°C .115°D .117.5°8.阅读理解:如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由MOx ∠的度数θ与OM 的长度m 确定,有序数对(,)m θ称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为4,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为( )A .()60,8︒B .()45,8︒C .()60,42︒D .()45,22︒9.如图,在平面直角坐标系中,二次函数234y x x =+-的图象与x 轴交于A 、C 两点,与y 轴交于点B ,若P 是x 轴上一动点,点Q (0,2)在y 轴上,连接PQ ,则22PQ PC +的最小值是( )A .6B .3222+C .232+D .3210.如图,矩形ABCD 的边CD 上有一点E ,67.5DEA ∠=︒,EF AB ⊥,垂足为F ,将AFE △绕点F 顺时针旋转,点E 恰好落在点B 处,点A 落在EF 上的点G 处.下列结论:①BG AE ⊥;②2EG AF =;③2217ADE BCEGS S -=四边形△;④若M 为BG 中点,则OFM △为等腰直角三角形;⑤B 、G 、O 三点共线.正确的个数是( )A .5B .4C .3D .2第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分)11.设抛物线2(1)y x a x a =+++,其中a 为实数.将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是__________12.我国古代很早就对二元一次方程组进行了研究,古著《九章算术》记载用算筹表示二元一次方程组,发展到现代就是用矩阵式111222c a b x a b y c ⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭来表示二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩,而该方程组的解就是对应两直线(不平行)a 1x +b 1y =c 1与a 2x +b 2y =c 2的交点坐标P (x ,y )据此,则矩阵式315123x y --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所对应两直线交点坐标是_________.13.如图,在扇形OAB 中,∠AOB =105°,OA =4,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在弧AB 的点D 处,折痕BC 交OA 于点C ,则阴影部分的面积为__________.14.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数22y x x c =++有两个相异的不动点1x ,2x ,则222112x x x --=______ 15.已知二次函数2(2)23y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下列说法在确的有:_____.(填序号)①该二次函数的图象一定过定点(1,3)--;②若该函数图象开口向下,则m 的取值范围为:625m <<;③当2m >且02x 时,y 的最小值为3m -;④当2m >,且该函数图象与x 轴两交点的横坐标12x x 、满足124310x x -<<--<<,时,m 的取值范围为:352194m <<. 16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 边上的中点,连接BE 交AD 于F ,将△AFE 沿若AC 翻折到△AGE ,若四边形AFEG 恰好为菱形,连接BG ,则tan ∠ABG =________.17.如图,在ABC 中,AB AC =,6BC =,tan 23ACB ∠=,点P 在边AC 上运动(可与点A ,C 重合),将线段BP 绕点P 逆时针旋转120°,得到线段DP ,连接BD ,CD ,则CD 长的最小值为______. 三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18.(本题满分6分)(1)计算:()10120214sin 60122π-⎛⎫---︒+ ⎪⎝⎭;(2)解不等式组:()523532x xx ⎧--≤⎪⎨-<⎪⎩19.(本题满分6分)距离2022年中招体育考试的时间已经越来越近,某校初三年级为了了解本校学生在平时体育训练的效果,随机抽取了男、女各60名考生的体考成绩,并将数据进行整理分析,给出了下面部分信息:数据分为A ,B ,C ,D 四个等级分别是:A :4850x ≤≤,B :4548x ≤<,C :4045x ≤<,D :040x ≤<60名男生成绩的条形统计图以及60名女生成绩的扇形统计图如图: 男生成绩在B 组的前10名考生的分数为:47.5,47.5,47.5,47,47,47,46,45.5,45,45. 60名男生和60名女生成绩的平均数,中位数,众数如下:性别 平均数 中位数 众数 男生 47.5 a 47 女生47.54747.5根据以上信息,解答下列问题:(1)填空:=a ______,b =______,并补全条形统计图.(2)根据以上数据,你认为在此次考试中,男生成绩好还是女生成绩好?请说明理由(说明一条理由即可). (3)若该年级有800名学生,请估计该年级所有参加体考的考生中,成绩为A 等级的考生人数.20.(本题满分6分)如图,四边形ABCD 为平行四边形,连接AC 、BD 交于点O .(1)请用尺规完成基本作图:过点A 作直线BD 的垂线,垂足为E ;在直线AE 上作点G 使得=BG BA ,连接BG (保留作图痕迹,不写作法)(2)在(1)的条件下,若3DE BE =,求证:BG CO =.21.(本题满分8分)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x =>的图象经过BC 边上的中点D ,交AB于点E . (1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.22.(本题满分8分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如表(用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同). 运动鞋款式 甲 乙 进价(元/双) m m ﹣20 售价(元/双)240160(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行每双优惠a (50<a <70)元的优惠促销活动,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?23.(本题满分8分)如图1,CD 是O 的弦,半径OA CD ⊥,垂足为B ,过点C 作O 的切线l .(1)若点E 在O 上,且CE CA =,连接OE .①连接AE ,求证:AE l ∥;②如图2,若B 是OA 的中点,连接OD ,求证:DE 是O 的直径;(2)如图3,过点B 作BF l ⊥,垂足为F ,若O 的半径是4,求BC BF -的最大值.24.(本题满分10分)如图,在正方形ABCD中,点E在直线AD右侧,且AE=1,以DE为边作正方形DEFG,射线DF与边BC交于点M,连接ME,MG.(1)如图1,求证:ME=MG;(2)若正方形ABCD的边长为4,①如图2,当G,C,M三点共线时,设EF与BC交于点N,求MNEM的值;②如图3,取AD中点P,连接PF,求PF长度的最大值.25.(本题满分10分)抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是32,直接写出点A,D的坐标.②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.数学参考答案1 2 3 4 5 6 7 8 9 10A B B D B D B A D A一个选项是符合题目要求的)1.【答案】A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案. 【详解】解:A. π-<-3,故A正确;B. 5,故B错误;C. 2->-3,故C错误;D.83->-3,故D错误. 故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.2.【答案】B【分析】把数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数的形式.【详解】解:6800000=6.8×106,故选:B.【点睛】此题主要考查了科学记数法表示较大的数,关键是掌握把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n=原来的整数位数−1.3.【答案】B【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.【详解】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为6,4,2时,田忌的马按1,5,3的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵如下:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为6.故选:B.【点睛】此题考查的是用列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】D【分析】利用幂的运算法则逐个选项进行排除即可.【详解】x7÷x=x6,选项A错误;(﹣3x2)2=9x4,选项B错误;x3•x3=x6,选项C错误;(x3)2=x6,选项D正确.故选:D.【点睛】本题考查了幂的运算法则,熟练掌握各运算法则是解题的关键.5.【答案】B【分析】把x a =代入方程22210x x -+=,得22210a a -+=,用完全平方公式将221a a +变形,即可解答.【详解】解:把x a =代入方程22210x x -+=,得22210a a -+=,∴等式两边同时除以a 得:122a a+= 222211()2(22)2826a a a a+=+-=-=-=.故选:B 【点睛】本题考查了一元二次方程的解的概念,分式的化简求值,完全平方公式,解题关键是明确题意,求出1a a+的值. 6.【答案】D【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可. 【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A 的位置接正方形.故选:C .【点睛】此题主要考查应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背. 7.【答案】B【分析】如图,取 AB 中点M ,连接OM ,连接DB OB OA AM 、、、,由题意知OM AB ⊥,且O D M 、、在一条直线上,AD AM BD ==,OA OB OC ==,知90MOC ∠=︒,根据圆周角定理,等边对等角,三角形内角和定理等可求MAC ∠,BAC ∠,BOC ∠,OAC ∠,OBA ∠,OBC ∠的值,进而求解ABC ∠的值.【详解】解:如图,取 AB 中点M ,连接OM ,连接DB OB OA AM 、、、由题意知OM AB ⊥,且O D M 、、在一条直线上,AD AM BD ==,OA OB OC ==∴90MOC ∠=︒∴1452MAC MOC ∠=∠=︒∵AD AM BD ==,OM AB ⊥∴122.52MAB DAB MAD ∠=∠=∠=︒∴245BOC BAC ∠=∠=︒∵OC AB ∥∴OAC OCA DAB ∠=∠=∠∴45OAB OBA OAC DAB ∠=∠=∠+∠=︒ ∴18067.52BOCOBC OCB ︒-∠∠=∠==︒∴112.5ABC OBA OBC ∠=∠+∠=︒故选B .【点睛】本题考查了垂径定理,圆周角,等边对等角,三角形内角和定理,折叠性质等知识.解题的关键在于对知识的灵活运用. 8.【答案】A【分析】设正六边形的中心为D ,连接AD ,判断出△AOD 是等边三角形,根据等边三角形的性质可得OD =OA ,∠AOD =60°,再求出OC ,然后根据“极坐标”的定义写出即可. 【详解】解:如图,设正六边形的中心为D ,连接AD ,∵∠ADO =360°÷6=60°,OD =AD ,∴△AOD 是等边三角形, ∴OD =OA =4,∠AOD =60°,∴OC =2OD =2×4=8, ∴正六边形的顶点C 的极坐标应记为()60,8︒.故选A .【点睛】本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键. 9.【答案】D【分析】连接BC ,过点P 作PD ⊥BC 于D ,过点Q 作QH ⊥BC 于H .根据22PQ PC PQ PD +=+,可得DQ PD +的最小值为QH 的长,即可解决问题. 【详解】如图,连接BC ,过点P 作PD ⊥BC 于D ,过点Q 作QH ⊥BC 于H .由234y x x =+-,令0y =,则2340x x +-=,解得1241x x =-=,,()()4,0,1,0C A ∴-, 令0x =,解得0y =,()0,4B ∴-,4OB OC ∴==,90BOC ∠=︒,45OCB OBC ∴∠=∠=︒,2PC PD ∴,∴2PQ PQ PD QH =+≥,当P 为QH 与x 轴交点时2PQ 最小,最小值为QH 的长, Q (0,2),()0,4B -,4BQ ∴=,设QH x =,则BH x =, ∵222DH BH Q B +=,∴2226x x +=,∴32x =32QH = 则22PQ PC +的最小值是32.故选D . 【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题. 10.【答案】A【分析】若△ABE 是个等腰三角形则容易判断①⑤两个选项,考虑先从等腰三角形入手;若EG 2,则EG 与AF 所在的正方形对角线相等,过G 作GK ⊥AD 于K ,连接正方形AFGK 的对角线KF ,KF 和KD 在△KFD 中可从等腰三角形证明相等;由EG 2AF 可得出两正方形的边长关系从而求出面积比;由FM =BM ,∠FBM =22.5,可证④; 【详解】解:作GK ⊥AD 于K ,连接KF ,连接MF由旋转可知AF =FG ,EF =BF ,∵EF ⊥AB ,ABCD 是矩形,∴四边形AFGK 和FBCE 都是正方形;∠DEA =67.5°,∴∠AEF =22.5°,∠EAF =67.5°,∠AEB =22.5°+45°=67.5°,∴∠AEB =∠EAB ,BE =AB ;∵∠ABG =∠AEF =22.5°,∠FBE =45°,∴BG 是∠ABE 的角平分线,O 为矩形AFED 的对角线交点,∴OE =OA ,△BAE 为等腰三角形,三线合一,∴BO 也是是∠ABE 的角平分线, ∴B 、G 、O 三点共线,故①⑤说法正确;三角形KFD 中,∠KFD =∠KDF =22.5°,∴KF =KD =EG 2,故②说法正确; 设AF =x ,则S △ADE =)2121212x x x +⨯⨯=, 四边形BCEG 的面积=正方形BCEF 的面积-三角形BGF 的面积, ∴S 四边形BCEG =)2222121x +2532x +,21221532ADE BCEGS S +-=+四边形△确;△BGF 中M 为BG 中点,∠BFG =90°,直角三角形斜边中线为斜边一半,∴MF =MB ,∠MFB =22.5°∴∠OMF =∠MBF +∠MFB =45°,∠MFO =180°-∠AFD -∠MFB =90°,∴OFM △为等腰直角三角形;故④正确;综上所述①②③④⑤正确;故答案选:A 【点睛】本题综合考查等腰三角形的性质和判定,旋转的性质,矩形的性质,角平分线的性质,作出辅助线证明三点共线是个关键步骤.第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.【答案】2【分析】先将抛物线配方为顶点式,然后根据(左加右减,上加下减)将抛物线平移,得出解析式()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭,求出顶点的纵坐标()2124a a +-++配方得出()()221121244a a a +-++=--+即可. 【详解】解:抛物线()22211(1)24a a y x a x a x a ++⎛⎫=+++=+-+ ⎪⎝⎭, 将抛物线2(1)y x a x a =+++向上平移2个单位,解析式为()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭, ∴顶点纵坐标为:()()221121244a a a +-++=--+, ∵104-<,∴a =1时,最大值为2.故答案为2.【点睛】本题考查抛物线配方顶点式,抛物线平移,顶点的纵坐标,掌握抛物线配方顶点式,抛物线平移,顶点的纵坐标是解题关键. 12.【答案】(﹣1,2)【分析】根据题意即可列出关于x 、y 的二元一次方程组,解出x 、y ,即为所求.【详解】依题意,得3523x y x y -=-⎧⎨+=⎩,解得12x y =-⎧⎨=⎩,∴矩阵式315123x y --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所对应两直线交点坐标是(-1,2).故答案为:(-1,2).【点睛】本题考查二元一次方程组的实际应用,两直线的交点与二元一次方程组的解的关系.读懂题意,掌握解二元一次方程组的方法是解答本题的关键. 13.【答案】2π-4【分析】连接OD ,交BC 于E ,根据对折得出BC ⊥OD ,DE =OE =2,∠DBE =∠OBE ,OB =BD =4,求出△DOB 是等边三角形,根据等边三角形的性质得出∠DOB =∠DBO =60°,求出∠COD =∠AOB -∠DOB =45°,求出CE =OE =2,再分别求出扇形AOD 和△COD 的面积即可. 【详解】解:连接OD ,交BC 于E ,∵延BC 对折O 和D 重合,OD =4,∴BC ⊥OD ,DE =OE =2,∠DBE =∠OBE ,OB =BD =4, ∴∠BEO =90°,△DOB 是等边三角形,∴∠DOB =∠DBO =60°,∵∠AOB =105°,∴∠COD =∠AOB -∠DOB =45°,∵∠OEC =90°,∴CE =OE =2,∴阴影部分的面积=S 扇形AOD -S △COD 24541423602π⨯=-⨯⨯=2π-4,故答案为:2π-4.【点睛】本题考查了等边三角形的性质和判定,直角三角形的性质,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:圆心角为n °,半径为r 的扇形的面积为2360n r S π=.14.【答案】1【分析】由函数的不动点概念得出x 1、x 2是方程22x x c x ++=的两个实数根,根据根与系数的关系可以求出.【详解】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点, 当,x a y a ==时,a 称为不动点,即x y =时,方程有两个相等的实数根 ∵22x x x c =++∴20x x c ++=222112x x x +-22211211x x x =---+ ()222111x x =-++()()2121111x x x x =++--+由根与系数的关系可知:121x x +=- 将其代入上式中可得2221121x x x +-=故答案为:1.【点睛】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念. 15. 【答案】②③④【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①y =(m -2)x 2+2mx +m -3=m (x +1)2-2x 2-3,当x =-1时,y =-5,故该函数图象一定过定点(-1,-5),故①错误; ②若该函数图象开口向下,则m -2<0,且△>0,△=b 2-4ac =20m -24>0,解得:m >65,且m <2,故m 的取值范围为:65<m <2,故②正确;③当m >2,函数的对称轴在y 轴左侧,当0≤x ≤2时,y 的最小值在x =0处取得, 故y 的最小值为:(m -2)×0+2m ×0+m -3=m -3,故③正确; ④当m >2,x =-4时,y =9m -35,x =-3时,y =4m -21,x =0时,y =m -3,当x =-1时,y =-5, 当-4<x 1<-3时,则(9m -35)(4m -21)<0,解得:352194m <<; 同理-1<x 2<0时,m >3,故m 的取值范围为:352194m <<,故④正确;故答案为:②③④. 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 16.2【分析】过点G 作GH ⊥AB ,交BA 延长线于H ,设AE =x ,则AC =2x ,由菱形的性质得出AF =EF ,再证AF =BF =EF 与△BAE ∽△CAB ,求出AB =2x ,BE =3x ,AF =EF =32x ,然后由菱形性质得AG =12BE ,证△BAE ∽△AHG ,求出AH =22x ,HG =2x ,最后由锐角三角函数定义即可得出结果.【详解】解:过点G 作GH ⊥AB ,交BA 延长线于H ,如图所示:设AE =x ,则AC =2x ,∵四边形AFEG 为菱形,∴AF =EF ,∴∠F AE =∠FEA , ∵∠BAE =90°,∴∠F AE +∠F AB =∠FEA +∠FBA =90°, ∴∠F AB =∠FBA ,∴AF =BF ,∴AF =BF =EF ,∵∠FBA +∠AEB =90°,∠F AB +∠ABD =90°,∴∠ABD =∠AEB , 又∵∠BAE =∠BAC =90°,∴△BAE ∽△CAB ,∴AB ACAE AB=, ∴AB 2=AE •AC =2x 2,∴AB 2,∴BE 222223AB AE x x x ++,∴AF =EF 3, ∵四边形AFEG 是菱形,∴AG ∥BE ,AG =AF =BF =EF ,∴∠HAG =∠ABE ,AG =12BE ,又∵∠H =∠BAE =90°,∴△BAE ∽△AHG ,∴12AG HG AH BE AE AB ===, ∴AH =12AB 2,HG =12AE =2x ,∴BH =AH +AB 22x 32, ∴22tan 632xHG ABG BH x∠===2 【点睛】本题考查了折叠的性质、菱形的性质、平行线的性质、相似三角形的判定与性质、锐角三角函数等知识,作辅助线并证明△BAE ∽△AHG 是解题的关键. 17.1513【分析】如图,作120,,BCN BC CN 连接,,BN CD 再证明,,BPD BCN PBCDBN ∽ 可得,BP BDBC BN证明,PBC DBN ∽ 可得,BND BCP则D 在直线ND 上运动,如图,当CD DN 时,CD 最短,过A 作AT BC ⊥于,T 求解313,ABAC作120,313,BAQ ABAQ 则Q 在直线DN 上,过A 作AGBQ 于,G 求解339,BQ 证明,ABC QBN ∽ ,339,QBNQNB QB QN可得QC 是BN 的垂直平分线,延长QC 交BN 于,H 求解18,QH 再利用11,22QC NHQN CD 从而可得答案.【详解】解:如图,作120,,BCN BC CN 连接,,BN CD30,CBN CNB,120,PB PD BPD 30,120,PBD CBN BCN BPD,,BPD BCN PBCDBN ∽,BP BDBC BN,PBC DBN ∽,BNDBCPD ∴在直线ND 上运动,如图,当CD DN 时,CD 最短,过A 作AT BC ⊥于,T 6,,BC AB AC 3,BT CT而tan 3ACB ∠=23,3AT 即63,AT 22363313,AB AC作120,313,BAQ AB AQ 则Q 在直线DN 上,30,ABQ AQB过A 作AGBQ 于,G339,339,2BG QGBQ 同理可得:,ABC QBN ∽ ,,ABCQBN ACBQNB 而,AB AC = 则,ABC ACB ∠=∠,339,QBNQNB QB QNQC ∴是BN 的垂直平分线,延长QC 交BN 于,H90,BHCNHC 而6BC =,同理可得:3,33,CHBHNH223393318,QH11,22QC NH QN CD 18333339,CD 1513.13CD所以CD 1513.13 1513.13【点睛】本题考查的是等腰三角形的判定与性质,旋转的性质,相似三角形的判定与性质,锐角的正切的应用,勾股定理的应用,证明“,BND BCP 得到D 在直线ND 上运动”是解本题的关键.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤) 18.(本题满分6分) 【答案】(1)1(2)x ≥3【分析】对于(1),先根据11()22-=,0(2021)1π-=,3sin 60︒=123=即可;对于(2),分别求出①和②式的解集,再确定公共部分得出答案. 【详解】(1)原式=321423--⨯+=12323-=1;(2)52(3)532x x x --≤⎧⎪⎨-⎪⎩①<②,解不等式①,得x ≥3; 解不等式②,得x >1. 所以不等式组的解集式x ≥3.【点睛】本题主要考查了实数的计算和解一元一次不等式组,掌握解题步骤是解题的关键. 19.(本题满分6分)【答案】(1)作图见解析,46.5a =,30b = (2)女生体考成绩好,理由见解析 (3)该年级所有参加体考的考生中,成绩为A 等级的考生人数为320人【分析】(1)由602415516---=,可知男生的体考成绩在B 等级的人数,可补全统计图,查找男生B 等级前10的分数可知第6与第7位数分别为47,46,计算二者的平均数可得中位数a ,由10040201030---=%%%%%,可知b 的值;(2)在体考成绩平均数相同的情况下,女生成绩的中位数47大于男生体考成绩的中位数46.5,可判断女生成绩更好;(3)由题意知,计算2424800120+⨯即可. 【解析】(1)解:∵602415516---= ∴男生的体考成绩在B 等级的人数为16 补全条形统计图,如图:男生的体考成绩中位数落在B 等级,是第6与第7位数的平均数 查找男生B 等级前10的分数可知第6与第7位数分别为47,46 ∴平均数为474646.52+= ∴46.5a = ∵10040201030---=%%%%%∴30b =故答案为:46.5,30. (2)解:女生体考成绩好因为在体考成绩平均数相同的情况下,女生成绩的中位数47大于男生体考成绩的中位数46.5∴女生体考成绩好.(3)解:∵604024⨯=%(人) ∴2424800320120+⨯=(人) ∴该年级所有参加体考的考生中,成绩为A 等级的考生人数为320人.【点睛】本题考查了条形统计图,扇形统计图,中位数,样本估计总体等知识.解题的关键在于对知识的灵活运用. 20.(本题满分6分)【答案】(1)见详解; (2)见详解.【分析】(1)以点A 为圆心,AO 为半径画弧,交OB 于H ,作OH 的垂直平分线IJ 交BD 于E ,以点B 为圆心,AB 长为半径画弧交直线AE 于G ,连结BG ;(2)根据平行四边形性质得出OB =OD ,AO =CO ,根据3DE BE =,得出OE =BE ,根据AG 为OB 的垂直平分线,得出AB =AO 即可.(1)解:以点A 为圆心,AO 为半径画弧,交OB 于H ,分别以O 、H 为圆心,大于OH 12为半径画弧,两弧交于两点I 、J ,过I 、J 作直线IJ 交BD 于E ,以点B 为圆心,AB 长为半径画弧交直线AE 于G ,连结BG ;(2)证明:∵四边形ABCD 为平行四边形,∴OB =OD ,AO =CO ,∵3DE BE =,∴OE +OD =3BE ,∴OE +BE +OE =3BE ,∴OE =BE ,∵AG 为OB 的垂直平分线,∴AB =AO ,∵AB =BG ,∴BG =AO =OC .【点睛】本题考查尺规作图,过点A 作线段BD 的垂线,作线段BG =AB ,平行四边形性质,垂直平分线性质,线段中点,掌握查尺规作图,平行四边形性质,垂直平分线性质,线段中点是解题关键.21.(本题满分8分)【答案】(1)6k =;(2)OCD OBE S S ∆∆=,见解析;(3)63S x =-,(02)x <<;36S x =-,(2)x >【分析】(1)根据矩形的性质及三角函数可得cos ∠OBC 的值,设BC =4x ,OB =5x ,由勾股定理及中点的定义可得D (2,3),再利用待定系数法可得答案;(2)利用三角形的面积公式及中点定义可得答案;(3)分当0<x <2时,当x >2时,进行分类讨论可得答案.【解析】(1)解:四边形OABC 是矩形,90OCB ∴∠=︒,4cos 5BC OBC OB ∴∠==, 设4BC x =,5OB x =,由勾股定理得,222OC BC OB +=, 3OC =,2291625x x ∴+=,1x ∴=,4BC ∴=,5OB =,D 是BC 的中点,122CD BC ∴==,(2,3)D ∴,设k y x =,把(2,3)D 代入得,6k =.(2)解:OCD OBE S S ∆∆=,由题意可知,32OCD k S ∆==,D 是BC 的中点,12OCD OBD BDC S S S ∆∆∆∴==, OBC OBA ∆≅∆,6OBA OBC S S ∆∆∴==,E 在反比例函数图象上,32OAE k S ∆∴==,3OBE OBA OAE S S S ∆∆∆∴=-=,OCD OBE S S ∆∆∴=.(3)解:当02x <<时,如图所示:QCRP S CQ PQ =⋅矩形,6(3)63S x x x∴=-=-,当2x >时,如图所示:QCRP S CQ PQ =⋅矩形,∴6(3)36S x x x=-=-, 综上所述,63S x =-,(02)x <<;36S x =-(2)x >【点睛】此题考查的反比例函数,利用面积公式进行解答是解决此题关键.22.(本题满分8分)【答案】(1)m =100;(2)6种方案;(3)50<a <60时,应购进甲种运动鞋100双,购进乙种运动鞋100双;a =60时,所有方案获利都一样;60<a <70时,应购进甲种运动鞋95双,购进乙种运动鞋105双【分析】(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,列出方程求解即可;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,然后根据要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,列出不等式求解即可;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤100),然后利用一次函数的性质求解即可.【详解】解:(1)依题意得,3000240020m m =-, 整理得,3000(m ﹣20)=2400m ,解得m =100,经检验,m =100是原分式方程的解,∴m =100;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,根据题意得,()()()2401001601002020021700100x x x ⎧-+-+-≥⎨≤⎩, 整理得140160008021700100x x x +-≥⎧⎨≤⎩解得95≤x ≤100,∵x 是正整数,∴x 的值可以为95,96,97,98,99,100,∴一共有6种方案;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤100),①当50<a <60时,60﹣a >0,W 随x 的增大而增大,所以,当x =100时,W 有最大值,W 最大=22000﹣100a ,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a =60时,60﹣a =0,W =16000,(2)中所有方案获利都一样;W 最大=16000; ③当60<a <70时,60﹣a <0,W 随x 的增大而减小,所以,当x =95时,W 有最大值,W 最大=21700﹣95a ;即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题主要考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,解题的关键在于准确理解题意,列出式子求解.23.(本题满分8分)【答案】(1)见解析;②见解析 (2)1【分析】(1)①如图4,连接OC , 由 l 是O 的切线,OC 是半径,得到 OC l ⊥,由CE CA =,得 COE COA ∠=∠证得 OE OA =,进一步得到OC AE ⊥,即可得到结论;② 如 图 5,连接OC ,AD ,由 B 是OA 的中点, OA CD ⊥得到OD AD =,AD AC =,又由 OD OA =得OAD △是等边三角形,证得60DOA ∠=︒,所以 AD AC EC ==,所以60DOA AOC EOC ∠=∠=∠=︒,得到180DOE ∠=︒,即得到结论;(2)如图6,连接OC ,由 l 是O 的切线,得 到 OC l ⊥, 又由 BF l ⊥可以证明OC BF ∥,证得OCB CBF ∠=∠,又由 90OBC CFB ∠=∠=︒得OCB CBF △△∽,得到OC CB CB BF=,设BC x =,求得BF ,得()22112144BC BF x x x -=-=--+,从而求得—BC BF 的最大值. 【解析】(1)① 证明:如图4,连接OC∵ l 是O 的切线,OC 是半径,∴ OC l ⊥∵ CE CA =∴ COE COA ∠=∠ ∵ OE OA =∴ OC AE ⊥ ∴ AE l ∥;② 证明:如图5,连接OC ,AD ∵ B 是OA 的中点, OA CD ⊥∴ OD AD =,AD AC = 又∵ OD OA =∴ OD AD OA ==∴ OAD △是等边三角形∴ 60DOA ∠=︒∵ AD AC EC ==∴60DOA AOC EOC ∠=∠=∠=︒∴ 180DOE ∠=︒∴ DE 是O 的直径;(2)解:如图6,连接OC∵ l 是O 的切线,OC 是半径,∴OC l ⊥ ∵BF l ⊥∴OC BF ∥∴OCB CBF ∠=∠∵ 90OBC CFB ∠=∠=︒∴ OCB CBF △△∽∴ OC CB CB BF= 设BC x =,则2214CB BF x OC ==∴ ()22112144BC BF x x x -=-=--+ 当2BC x ==时,—BC BF 有最大值1∴BC BF -的最大值为1.【点睛】本题以圆的知识为载体,考查了平行线的性质和判定、等边三角形、相似三角形、二次函数的最值等知识,综合性较强,灵活应用所学知识是解决此题的关键.24.(本题满分10分)【答案】(1)见解析 (2)①4;②252【分析】(1)根据正方形的性质可得,45DE DG EDM GDM =∠=∠=︒,公共边DM ,即可证明DEM DGM ≌,即可得ME MG =;(2)①先证明点E 在AB 上,进而求得DAE EBN ∽求得BN ,根据NF DG ∥可得NMF GMD ∽,又ME MG =,进而即可求得EM MN的值;②连接,BD BF ,证明ADE BDF ∽,求出相似比,进而可得点F 在以B 为圆心2【解析】(1)四边形DEFG 是正方形45,EDF GDF GD GE ∴∠=∠=︒=∴45EDM GDM ∠=∠=︒DM DM =∴DEM DGM ≌∴ME MG =(2)①如图2,当G ,C ,M 三点共线时,四边形,ABCD EDFG 是正方形90ADC EDG ∴∠=∠=︒,,AD CD ED GD ==,90DEF ∠=︒ ADE CGD ∴∠=∠ADE CDG ∴△≌△DAE DCG ∴∠=∠G ,C ,M 三点共线时,90DCG DCB ∴∠=∠=︒90DAE ∴∠=︒E ∴在线段AB 上90DEF ∠=︒ 又90EDA DAE DAE NEB ∠+∠=∠+∠=︒∴EDA NEB ∠=∠又A B ∠=∠ADE BEN ∴∽=AE AD DE NB EB EN ∴= 正方形ABCD 的边长为4,1AE = 413BE AB AE ∴=-=-=,22224117DE AD AE ++134NB ⨯=34= 317341714DE NB EN AE ⋅∴===3174144GN BC CG BN =+-=+-=3117171744NF EF EN ∴=-==四边形DEFG 是正方形EF DG ∴∥,17DG DE ==DMG FMN ∴∽NF NM DG MG ∴=即NF MN DG GN MN =-∴117417174MN MN =-解得1720MN = 1717174205MG GN MN ∴=-=-= 由(1)可知EM GM = 1745417120EM GM MN MN ∴==== ②连接,BD BF ,如图,四边形,ABCD EDFG 是正方形∴45ADB EDF ∠=∠=︒,2DB =,2DF DEADE BDF ∴∠=∠,2DF DB DE AD==ADE BDF ∽2AE AD EB DB ∴== 1AE = 2BF ∴=即点F 在以B 2。
(名师整理)最新数学中考专题冲刺《函数》压轴真题训练(含答案)

冲刺中考《函数》压轴真题训练第Ⅰ卷(选择题)一.选择题1.(2019•兴安盟)如图,反比例函数y =的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.82.(2019•恩施州)函数y =﹣中,自变量x的取值范围是()A.x ≤B.x ≥C.x <且x≠﹣1 D.x ≤且x≠﹣1 3.(2019•济南)函数y=﹣ax+a与y =(a≠0)在同一坐标系中的图象可能是()A .B .1C .D .4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)5.(2019•铁岭)如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A .B .C .D .6.(2019•盘锦)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()2A .B .C .D .7.(2019•恩施州)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个38.(2019•朝阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.49.(2019•营口)如图,A,B是反比例函数y =(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED =,则k的值为()A.5 B.4 C.3 D .10.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y =(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()4A.1 B.2 C.3 D.411.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.(2019•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取5值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个6第Ⅱ卷(非选择题)二.填空题13.(2019•无锡)如图,已知A(0,3)、B(4,0),一次函数y =﹣x+b的图象为直线l,点O关于直线l的对称点O′恰好落在∠ABO的平分线上,则b的值为.14.(2019•无锡)如图,A为反比例函数y=(k<0)的图象上一点,AP⊥y轴,垂足为P.点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,则k的值为.15.(2019•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.717.(2019•朝阳)如图,直线y =x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.(2019•营口)如图,在平面直角坐标系中,直线l1:y=x+与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.8三.解答题19.(2019•无锡)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD =,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.20.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y =﹣(x<0)的图象过点B(﹣3,a),反比例函数y =(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y =交于点C.求△OAC的面积.21.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y =(x>0)9的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E ,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx ﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.1023.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E 的坐标和的值.(3)点F(0,y)是y轴上一动点,当y 为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H ,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.24.(2019•兴安盟)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.11(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.25.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON =,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.1226.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y =(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.27.(2019•丹东)如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y =﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC =时,求点F的坐标.13(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t ≤),请直接写出S与t的函数关系式.14参考答案一.选择1.解:∵反比例函数y =,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.2.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x ≤且x≠﹣1.故选:D.3.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y =在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y =(a≠0)在二、四象限,只有D符合;故选:D.4.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB ==5,15∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.5.解:∵AB=AC,AG⊥BC,∴BG=GC =,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FD=CD,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x =4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.16故选:A.6.解:tan∠DBC ===,tan∠DAH ====﹣x,y=EF﹣EM﹣NF=2﹣BF tan∠DBC﹣AE tan∠DAH=2﹣x ×﹣x ()=x2﹣x+2,故选:B.7.解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a<0,∴b<0,c>0,∴ab>0且c>0,故①错误,∵抛物线对称轴x=﹣1,经过(1,0),∴(﹣2,0)和(0,0)关于对称轴对称,∴x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴x=﹣4时,y<0,17∵b=2a,∴16a﹣8a+c<0,即8a+c<0,故③错误,∵c=﹣3a=3a﹣6a,b=2a,∴c=3a﹣3b,故④正确,∵直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,∴方程ax2+(b﹣2)x+c﹣2=0的两个根分别为x1,x2,∴x1+x2=﹣,x1•x2=,∴x1+x2+x1x2=﹣+=﹣+=﹣5,故⑤错误,故选:D.8.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,18即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.9.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED ==,∴设DE=3a,BE=5a,∴BD ===4a,∵点B的横坐标为5,∴4a=5,则a =,∴DE =,设AC=b,则CD=3b,∵AC∥BD,∴===,19∴EC =b,∴ED=3b +b =,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y =(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k =,故选:D.10.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA =,∵CD∥OB,AB=BC,∴OD=OA =,CD=2OB=2a,20∴C (,2a),∵反比例函数y =(x>0)的图象经过点C,∴k =×2a=4.故选:D.11.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,21∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,22即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:延长OO'交AB于点C,交l于点E,过点O'作DG⊥x轴交于G,过点E作EF⊥x轴于点F;∵A(0,3)、B(4,0),∴直线AB的解析式为y =﹣x+3,∵直线l的解析式为y =﹣x+b,∴AB∥l,∵OO'⊥l,∴OC⊥AB,∵OA=3,OB=4,由等积法可求,OC =,∵∠COB+∠AOC=∠BAO+∠AOC=90°,∴∠BOC=∠BAO,∵BO'是∠ABO的角平分线,∴CO'=GO',23∴sin∠BAO ====,∴OO'=,∴O'G =﹣=,在Rt△OO'G中,GO =,∵E、F是△OO'G的中位线,∴E (,),∵E点在直线l上,∴=﹣×+b,∴b =,故答案为.14.解:当B点在P点右侧,如图,设A(t ,),∵PB=3PA,24∴B(﹣3t ,),∵BC∥y轴,∴C(﹣3t ,﹣),∵△PAC的面积为4,∴×(﹣t )×(+)=4,解得k=﹣6;当B点在P点左侧,设A(t ,),∵PB=3PA,∴B(3t ,),∵BC∥y轴,∴C(3t ,),∵△PAC的面积为4,∴×(﹣t )×(﹣)=4,解得k=﹣12;综上所述,k的值为﹣6或﹣12.故答案为﹣6或﹣12.2515.解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:在直线y =x+1中,当x=0时,y=1;当y=0时,x=﹣3;26∴OA=1,OM=3,∴tan∠AMO =,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB =,∴OB =.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.18.解:∵y =x +与x轴交于点A1,与y轴交于点A2,∴,27在y =中,当x=﹣1时,y =﹣,∴,设直线A2B1的解析式为:y=kx+b,可得:,解得:,∴直线A2B1的解析式为:,令y=0,可得:x =﹣,∴C1(﹣,0),∴=,∵△A1B1B2∽△A2B2B3,∴△C1B1B2∽△C2B2B3,∴,∴,同理可得:…,∴△C2019B2019B2020的面积=,28故答案为:.三.解答题(共9小题)19.解:(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x =,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH =,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,29∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a =;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,30∴AB=OB•tan30°=2×=,∴|﹣4a﹣2|=,∴或.综上,a =﹣或或.20.解:(1)∵比例函数y =﹣(x<0)的图象过点B(﹣3,a),∴a =﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD31∴===,∴AD =•OE ==3,OD =•BE ==∴A (,3),∵反比例函数y =(x>0)的图象过点A,∴k =×=9;(2)由(1)可知AD=3,OD =,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y =上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.3221.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y =(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y =,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),33∵DF⊥x轴于点F,交反比例函数y =的图象于点E,∴E(5,),∴DE=4﹣=,EF =,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC =,∴=m,34∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.22.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx 中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx ﹣中,得0=﹣4k ﹣,解得k =,∴直线l解析式为y =x ﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,35∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m =•(﹣2m )﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB ===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB =,在x轴下方过点O作OH⊥OE,在OH上截取OH =OE =,36过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y =﹣x,解方程组,得,,∴点P 的横坐标为:或.3723.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x2﹣x﹣2;(2)如图1,∠AOC=90°,AC =,AB=4,设直线AC的解析式为:y=kx+b ,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时38=()2=()2=,∵S△AOC=1,∴S△AEB =,∴AB×|y E|=,AB=4,则y E =﹣,则点E (﹣,﹣);由△AOC∽△AEB 得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,39则FG=CF sin∠FCG =CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y =﹣时,即点F(0,﹣),CF+BF 有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),40∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m +),解得:m =,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).24.解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)41∴抛物线W 的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b 得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S 有最大值,最大值为∴当时,;42(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0).25.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.43(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON =.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y =.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q 的坐标为:,,44(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC =,AD =,CD =,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE =,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).45Ⅱ.PC=AD,PE=AC,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).26.解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y =(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y =,∵点A的纵坐标是4,∴4=,得x=1,46∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.27.解:(1)直线y =﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y =﹣x2+bx+2,将点C坐标代入上式并解得:b =,故抛物线的表达式为:y =﹣x2+x+2…①;(2)抛物线的对称轴为:x =,47点N 的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO ==tan∠FAC =,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r =,即点R 的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n 得:,解得:,故直线AR的表达式为:y =﹣x+2…②,48联立①②并解得:x =,故点F (,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tan α==,则sin α=,cos α=;①当0≤t ≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT ====t,DS =,S=S△DST =DT×DS =t2;②当<t ≤时(右侧图),49同理可得:S=S梯形DGS′T′=×DG×(GS′+DT ′)=3+(+﹣)=t ﹣;③当<t ≤时,同理可得:S =t +;综上,S =.50。
中考数学冲刺专题训练(附答案):三角形与四边形

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°, 故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt △CEF 中,OC =12EF =22x , △EAF 中,∠EAO =∠FAO =22.5°=∠BAE =22.5°, ∴OE =BE , ∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ), ∴AO =AB =1, ∴AC =2=AO+OC ,∴1+22x =2, x =2﹣2,∴BE EC =1(22)22---=(21)(22)2-+=22; 故②不正确; ③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH , ∵∠EAF =45°=∠DAF+∠BAE =∠HAE , ∵∠ABE =∠ABH =90°, ∴H 、B 、E 三点共线, 在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a =-=-=. 在ADB '∆与B CE '∆中,90A 90B AD EBC B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩, ADB B CE ''∴∆⋃∆,DB AB CE B E'''∴=,即2112355a a a -=,解得153a =,20a =(舍去). 综上,所求a 的值为53或53. 故答案为53或53. 11.如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90°得ABG ∆,则CF 的长为_____.【答案】6-25 【解析】作FM AD M FN AG N ⊥⊥于,于 ,如图,易得四边形CFMD 为矩形,则4FM =∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴425254GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=32,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。
2023年初中数学中考冲刺模拟卷一(含解析)

2023年初中数学中考冲刺模拟卷(含解析)一、单选题1.下列四个数中,最大的数是().A .0B .2C .3-D .42.技术融合打破时空限制,2020服贸会全面上“云”,据悉本届服贸会共有境内外5372家企业搭建了线上电子展台,共举办32场纯线上会议和173场线上直播会议,线上发布项目1870个,发起在线洽谈550000次,将550000用科学记数法表示为()A .45510⨯B .55.510⨯C .65.510⨯D .60.5510⨯3.如图,在O 中,弦,AB CD 相交于点P ,若48,80A APD ∠=︒∠=︒,则B ∠的大小为()A .32︒B .42︒C .52︒D .62︒4.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同.从中任意摸出一个球,是红球的概率为()A .B .C .D .5.在平面直角坐标系中,若抛物线2211y x =-+()先向右平移3个单位长度,再向上平移2个单位长度,则所得到的抛物线的解析式为()A .2243y x =+(-)B .2242y x =++()C .2242y x =+(-)D .2241y x =+()-6.如图,正方形ABCDAC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是()A.B.C.D.7.如图,在直角坐标系中,点A,B分别在x轴和y轴上,点A的坐标为(﹣2,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果3P点运动一周时,点Q运动的总路程是()A.3B.6C.3D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是()A.B.C.D.二、填空题9.因式分解:22ab ac -=_______________10.小华家客厅有一张直径为1.2,m 高为0.8m 的圆桌,AB 有一盏灯E 到地面垂直距离EF 为2,m 圆桌的影子为,2CD FC =,则点D 到点F 的距离为_______.11.不等式组240431x x -<⎧⎨-≤⎩的解集是______.12.把多项式2x 3﹣8x 分解因式的结果是_____.13.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是DE 延长线上的一点,若∠AFC =90°,AC =6,BC =10,则DF 的长为________.14.在平面直角坐标系中,ABC 和111A B C △的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为()2,4,则其对应点1A 的坐标是________.15.如图,在△ABC 中,∠A =45°,∠B =60°,AB =4,P 是BC 边上的动点(不与B ,C 重合),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是_____.16.如图,Rt ABC 中,90ACB ∠=︒,2AB AC =,3BC =,点E 是AB 上的点,将ACE △沿CE 翻折,得到'A CE ,过点B 作BF AC ∥交BAC ∠的平分线于点F ,连接'A F ,则'A F 长度的最小值为______.三、解答题17.化简或化简求值:212(1)211a a a a +÷+-+-,其中3a =18.如图,△ABC 是等腰三角形,AB =BC ,点D 为BC 的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B 作AC 的平行线BP ;②过点D 作BP 的垂线,分别交AC ,BP ,BQ 于点E ,F ,G .(2)在(1)所作的图中,连接BE ,CF .求证:四边形BFCE 是平行四边形.19.为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业.张大爷计划明年承租村民部分土地种植某种经济作物,考虑各种因素,预计明年种植该作物的总成本y (元)与种植面积x (亩)之间满足一次函数关系,且部分数据如下:种植面积x (亩)4060种植该作物的总成本y (元)880012800(1)求y 与x 之间的函数关系式;(2)如果张大爷计划种植该作物120亩,请你帮张大爷计算一下种植该作物的总成本是多少?20.计算:()()3425284+-⨯--÷.21.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P的坐标.22.(1)化简求值:222442111x x x x x x++++÷+--,其中x 是一元二次方程x (x ﹣1)=2x ﹣2的解.(2)解不等式组:23(3)9212135x x x x --≥⎧⎪⎨+-->-⎪⎩①②,并求其整数解的和.23.先化简,再求值:23193m m m ⎛⎫÷+ ⎪--⎝⎭,其中4m =-.24.如图,拋物线2y x bx c =-++交y 轴于点(02)A ,,交x 轴于点(40)B ,、C 两点,点D为线段OB 上的一个动点(不与O B 、重合),过点D 作DM x ⊥轴,交AB 于点M ,交抛物线于点N.(1)求抛物线的解析式;(2)连接AN 和BN ,当ABN 的面积最大时,求出点D 的坐标及ABN 的最大面积;(3)在平面内是否存在一点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系xOy 中,二次函数2223y x bx =+-的图像与x 轴交于点()3,0A ,B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b =______;(2)将AOC 平移到EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若180CPT DAC ∠+∠=︒,求AHT △与CPT △的面积之比.参考答案与解析1.D【详解】试题分析:根据正数大于0,0大于负数,正数大于一切负数,给出的数中,最大的数是4,故选D.考点:有理数比较大小.2.B【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵550000=55.510⨯,故选:B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.3.A【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得32C ∠=︒,再根据同弧所对的圆周角相等,即可得到答案.【详解】C A APD ∠+∠=∠ ,48,80A APD ∠=︒∠=︒,32C ∴∠=︒32B C ∴∠=∠=︒故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.4.C【详解】试题分析:根据概率公式可得,摸到红球的概率为,故答案选C.考点:概率公式.5.A【分析】先根据二次函数的性质得到抛物线2211y x =-+()的顶点坐标为(1,1),再利用点平移的规律得到点(1,1)平移后所得对应点的坐标为43(,),然后利用顶点式写出平移后抛物线的解析式.【详解】解:∵抛物线2211y x =-+()的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位长度,再向上平移2个单位长度所得对应点的坐标为43(,),∴所得到的抛物线的解析式为2243y x =+(-);故选:A .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.A【分析】证明△BEF ∽△CFH ,可得BF BECH CF=,由此构建函数关系式即可解决问题.【详解】∵四边形ABCD 是正方形,∴∠EBF =∠ECG =45°,AC ⊥BD ,EB =EC ,∵EF ⊥EG ,∴∠BEC =∠FEG =90°,∴∠BEF =∠CEG ,∴△BEF ≌△CEG (ASA ),∴EF =EG ,∴∠EFG =45°,∵∠EFC =45°+∠CFH =45°+∠BEF ,∴∠CFH =∠BEF ,∴△BEF ∽△CFH ,∴BF BECH CF =,∴x y=∴y =2(0x x -+<<,故选A .【点睛】本题考查动点问题的函数图象,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.7.D【详解】在Rt △AOB 中,∵∠ABO=30°,AO=2,∴AB=4,BO=①当点P 从O→B 时,点Q 刚好从原位置移动到点O 处,如图2所示,此时点Q 运动的路程为PQ=②如图3所示,作QC ⊥AB ,则∠ACQ=90°,即PQ 运动到与AB 垂直时,垂足为P ,当点P 从B→C 运动到P 与C 重合时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°,∴cos30°=CQAQ,∴AQ=4cos 30CQ,∴OQ=4﹣2=2,∴此时点Q 运动的路程为QO=2,③当点P 从C→A 运动到点P 与点A 重合时,如图3所示,点Q 运动的路程为QQ′=4﹣④当点P 从A→O 运动到P 与点O 重合时,点Q 运动的路程为AO=2,∴点Q 运动的总路程为:﹣.故选D .8.A【详解】解:分析题中所给函数图像,O E -段,AP 随x 的增大而增大,长度与点P 的运动时间成正比.E F -段,AP 逐渐减小,到达最小值时又逐渐增大,排除C 、D 选项,F G -段,AP 逐渐减小直至为0,排除B 选项.故选A .【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.9.()()a b c b c +-##()()a b c b c -+【分析】先提取公因式,再用平方差公式进行因式分解.【详解】解:22ab ac -=22()a b c -=()()a b c b c +-,故答案为:()()a b c b c +-.【点睛】本题主要考查因式分解——提公因式法与公式法的综合运用,找准公因式是解题的关键.10.4【分析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵AB ∥CD ,∴△ABE ∽△CDE ,∴AB CD =20.82-.∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.11.12x ≤<【分析】分别求出各个不等式的解,再取各个解的公共部分,即可求解.【详解】解:240431x x -<⎧⎨-≤⎩①②,由①得:x <2,由②得:x≥1,∴不等式组的解:12x ≤<.故答案是:12x ≤<.【点睛】本题主要考查解一元一次不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.12.2x (x +2)(x ﹣2)【分析】先提取公因式2x ,再运用平方差公式分解因式即可.【详解】解:原式=2x (x 2﹣4)=2x (x +2)(x ﹣2),故答案为:2x (x +2)(x ﹣2).【点睛】本题考查分解因式,能够熟练应用乘法公式进行分解因式是解决本题的关键.13.8【分析】根据直角三角形斜边上的中线等于斜边的一半求出EF ,根据三角形中位线定理求得DE ,则DF =DE +EF .【详解】解:在直角△AEC 中,EF 是斜边AC 上的中线,AC =6,则EF =12AC =3.在△ABC 中,DE 是中位线,BC =10,则DE =12BC =5.则DF =DE +EF =3+5=8.故答案是:8.【点睛】本题考查的是三角形中位线定理、三角形的三边关系,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(4,8)或(﹣4,﹣8)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k ,即可求得答案.【详解】解:在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(4,8),不在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(﹣4,﹣8),故答案为:(4,8)或(﹣4,﹣8).【点睛】此题考查了位似图形的性质,此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .15.≤MN <【详解】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,如图所示.∵点P 关于直线AB ,AC 的对称点分别为M ,N ,∴AM=AP=AN ,∠MAB=∠PAB ,∠NAC=∠PAC ,∴△MAN 等腰直角三角形,∴∠AMD=45°,∴AD=MD=2AM ,AM .∵AB=4,∠B=60°,∴,∵AM=AP ,∴故答案为≤MN <.【点睛】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,由对称性可知AM=AP=AN 、△MAN 等腰直角三角形,进而即可得出AP ,再根据AP 的取值范围即可得出线段MN 长的取值范围.16【分析】先求出ACAB =AB =BF =由勾股定理可求CF 的长,由点A '在以点C 为圆心,AC 为半径的圆上,则当点A '在FC 上时,A 'F 有最小值,即可求解.【详解】解:如图,90ACB ∠=︒ ,2AB AC =,1cos 2AC CAB AB ∴∠==,60CAB ∴∠=︒,tan BC CAB AC∴∠==AC ∴=AB ∴=,AF 平分BAC ∠,30BAF CAF ∴∠=∠=︒,//BF AC ,30BFA FAC ∴∠=∠=︒,90FBC BCA ∠=∠=︒,AB BF ∴==FC ∴===将ACE △沿CE 翻折,得到'A CE ,'AC A C ∴==∴点'A 在以点C 为圆心,AC 为半径的圆上,则当点'A 在FC 上时,'A F 有最小值,'A F ∴,.【点睛】本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF 的长是本题的关键.17.11a -,12.【分析】根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式=()21111a a a a ++÷--=()21111a a a a +-⋅+-=11a -,当a=3时,原式=131-=12.【点睛】本题考查分式的化简求值,熟知分式混合运算的法则是解题的关键.18.(1)作图见解析;(2)证明见解析.【详解】试题分析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;由BP//CE ,可得∠ECD=∠FBD ,∠CED=∠BFD ,又CD=BD ,从而△CDE ≌△BDF ,可得CE=BF ,从而可得BF//CE ,BF=CE ,判定出四边形BFCE 是平行四边形.试题解析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;(2)∵BP//CE ,∴∠ECD=∠FBD ,∠CED=∠BFD ,∵点D 是BC 的中点,∴CD=BD ,∴△CDE ≌△BDF ,∴CE=BF ,∵BF//CE ,BF=CE ,∴四边形BFCE 是平行四边形.考点:1.尺规作图;2.平行四边形的判定.19.(1)200800y x =+(2)张大爷种植该作物的总成本是24800元【分析】(1)根据题意设y 与x 之间的函数关系式()0y kx b k =+≠,利用待定系数法即可求得函数关系式.(2)将120x =代入函数关系式即可解出.(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:880040,1280060,k b k b =+⎧⎨=+⎩解得200,800.k b =⎧⎨=⎩∴y 与x 之间的函数关系式为200800y x =+.(2)当120x =时,20080020012080024800y x =+=⨯+=,∴张大爷种植该作物的总成本是24800元.【点睛】本题考查了一次函数的应用,掌握待定系数法求函数关系式是解答本题的关键.20.29-【分析】根据有理数的运算法则计算即可,注意运算顺序.【详解】()()3425284+-⨯--÷485(7)=-⨯--1140=-29=-【点睛】本题考查了含乘方的有理数的混合运算,掌握运算法则是解题的关键.21.(1)a=﹣1,b=2;(2)P 的坐标为(1,0)或(﹣1,0).【分析】(1)直接利用待定系数法把A (a ,3)代入反比例函数3y x=-中即可求出a 的值,然后把A 的坐标代入y=-x+b 即可求得b 的值;(2)根据直线解析式求得B 的坐标,然后根据题意即可求得P 的坐标.【详解】(1)∵直线y=-x+b 与反比例函数3y x =-的图象相交于点A (a ,3),∴3=-3a ,∴a=-1.∴A (-1,3).把A 的坐标代入y=-x+b 得,3=1+b ,∴b=2;(2)直线y=-x+2与x 轴相交于点B .∴B (2,0),∵点P 在x 轴上,△AOP 的面积是△AOB 的面积的12,∴OB=2PO ,∴P 的坐标为(1,0)或(-1,0).22.(1)﹣23;(2)﹣6.【分析】(1)原式利用除法法则变形,计算得到最简结果,求出方程的解得到x 的值,代入计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出解集,即可求出整数和.【详解】(1)原式=()()()2221•1112x x x x x x +--++-+=2211x x x +-++=1x x -+,已知方程整理得:(x-2)(x-1)=0,解得:x=2或x=1(舍去),当x=2时,原式=-23;(2)由①得:x≤0,由②得:x >-267,∴不等式组的解集为-267<x≤0,即整数解为-3,-2,-1,0,之和为-6.【点睛】此题考查了分式的化简求值,一元二次方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.23.13m +,1-【分析】先算括号内的加法,把除法变成乘法,算乘法,最后代入4m =-求出答案即可.【详解】解:23193m m m ⎛⎫÷+ ⎪--⎝⎭233933m m m m m -⎛⎫=÷+ ⎪---⎝⎭293m m m m =÷--()()333m m m m m -=⋅+-13m =+当4m =-时代入得,原式1143==--+.【点睛】本题考查分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.24.(1)2722y x x =-++;(2)当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)P 3(0)4+,或(6)2,.【分析】(1)将A ,B 的坐标代入抛物线的解析式组成二元一次方程组,求解即可;(2)设D (0)(04)t t <<,,根据坐标的特点,可得出点M ,N 的坐标,再根据三角形的面积公式可表达ABN 的面积,根据二次函数的性质可得出结论;(3)根据题意,易证AEM AOB ∽,由此得出AE 和AM 的长,再根据题意需要分两种情况讨论:①当AM MN =时,②当AM AN =时,分别求解即可.【详解】(1)解:将点(02)A ,,点(40)B ,代入抛物线2y x bx c =-++,∴21640c b c =⎧⎨-++=⎩,∴722b c ⎧=⎪⎨⎪=⎩.∴抛物线的解析式为:2722y x x =-++;(2)解:∵点(02)A ,,点(40)B ,,∴直线AB 的解析式为:122y x =-+;设D (0)(04)t t <<,,∵DM x ⊥轴,点M 在直线AB 上,点N 在抛物线上,∴217(t,t 2),N(t,t 2)22M t -+-++,∴2271t 2(t 2)t 422MN t t =-++--+=-+,∴ABN 的面积2211()(4)42(2)822B A MN x x t t t =⋅⋅-=⋅-+⋅=--+,∵2004t -<<<,,∴当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)解:存在,如图,过点M 作ME y ⊥轴于点E ,∴ME OB ∥,∴90AEM AOB AME ABO ∠=∠=︒∠=∠,,∴AEM AOB ∽,∴:::AE AO AM AB ME OB ==,Rt AOB ∆中,24OA OB ==,,∴AB =∴24AE t ==,∴12AE t AM ==,.根据题意,需要分两种情况讨论:①AM MN =时,如图,24(04)t t t =-+<<,解得82t =或t =0(舍),∴54AM =,∴54AP AM ==,∵AP MN ∥,∴点P 在y 轴上,∴53244OP =+=,∴P (0;②当AM AN =时,如图,此时AP 与MN 互相垂直平分,设AP 与MN 交于点F ,∴211(4)22MF MN t t ==-+,∵12MF AE t ==,∴211(4)22t t t -+=,解得3t =或0=t (舍),∴26AP t ==,∴P (6)2,.综上,存在点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形,此时P 3(0)4,或(6)2,.【点睛】此题主要考查了二次函数解析式的确定、菱形的判定和性质、分类讨论的思想等知识,能力要求较高,难度较大,关键是掌握菱形的对称性和进行正确的分类讨论.25.(1)43b =-(2)()3,8E -,104,3E ⎛⎫ ⎪⎝⎭(3)8147【分析】(1)由题意,将点(3,0)A 代入2223y x bx =+-中,即可解得b 的值;(2)令0x =,可求得点C 的坐标,再由点D 与点C 关于x 轴对称可求得D 的坐标,求出直线AD 的表达式,由于EFG 是由AOC 平移得到,若设224(,2)33E m m m --,则224(3,4)33G m m m ---,将点G 代入直线AD 的表达式中,即可求得m ,从而得E 的坐标;(3)过C 作CK AD ⊥于K ,作CQ PH ⊥于Q ,先由勾股定理求出AD 的长,再利用等面积法求出CK 的长,再用勾股定理求AK 的长,由180CPT DAC ∠+∠=︒可得CPQ DAC ∠=∠,故tan CK CQ DAC AK PQ ∠==,设出点224(,2)33P n n n --,则可利用上式求出n 的值,由此可进一步计算出PT 与HT 的值,求出两个三角形的面积之比.(1)解: 二次函数2223y x bx =+-的图像经过点(3,0)A ,∴2203323b =⨯+-,解得43b =-.故答案是:43-;(2)解:如图1,对于二次函数224233y x x =--,当0x =时,=2y -.∴()0,2C -.点D 与点C 关于x 轴对称,∴()0,2D .设直线AD 的函数表达式是2y kx =+.()3,0A ,∴320k +=.解得23k =-.∴直线AD 的函数表达式为223y x =-+.设点224(,2)33E m m m --,则点224(3,4)33G m m m ---.点G 在直线223y x =-+上,∴22424(3)2333m m m --=--+,整理得2120m m --=,解得13m =-,24m =.∴()3,8E -,10(4,3E .(3)解:如图2,过点C 作CK AD ⊥,垂足为K .2OD =,3OA =,∴AD =AO CD AD CK ⋅=⋅,∴13CK =.∴13DK =.∴13AK AD DK =-=.∴12tan 5CK CAK AK ∠==.过点C 作CQ PH ⊥,垂足为Q .180CPT DAC ∠+∠=︒,∴CPQ CAK ∠=∠.∴125CQ PQ =.设点224(,2)33P n n n --,则22433PQ n n =-,CQ n =.∴25241233n n n =-.解得218n =,∴2129(,)832P -.∴218CQ =,213388AH =-=. 2tan 3TH OC OAC AH OA ∠===,∴22313384TH AH ==⨯=,∴2912132432TP PH TH =-=-=.∴13118284211212114722328AHT CPT AH TH S S TP CQ ⨯⨯⨯⨯===⨯⨯⨯⨯△△.【点睛】本题考查了二次函数的综合应用、一次函数表达式的求法、三角函数的性质与应用、相似三角形的性质与判定(本题答案中应用三角函数的步骤也可以改用相似三角形的知识解答)、勾股定理的应用,解决本题的关键在于将各模块知识点融会贯通,并作出正确的辅助线.。
2022年中考数学冲刺密卷一含答案解析

2022一诊(指标到校)考试数学冲刺密卷一一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.比﹣2小的数是()A.2B.0C.﹣22D.﹣(﹣1)【解答】解:﹣22=﹣4,﹣(﹣1)=1,∵﹣4<﹣2<0<1<2,∴比﹣2小的数是﹣22.故选:C.2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.计算(﹣2ab2)3,结果正确的是()A.﹣2a3b6B.﹣6a3b6C.﹣8a3b5D.﹣8a3b6【解答】解:(﹣2ab2)3=﹣8a3b6.故选:D.4.如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A是OA'的中点,△ABC的面积是6,则△A'B'C'的面积为()A.9B.12C.18D.24【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点A 是OA'的中点,∴△ABC∽△A′B′C′,且相似比为1:2,∵△ABC的面积为6,∴△A′B′C′的面积为24,故选:D.5.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:×=,∵4<<5,即×的值在4和5之间.故选:B.6.下列命题是真命题的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直且相等的四边形是菱形D.有一组对边平行且相等的四边形是菱形【解答】解:A、对角线相等的平行四边形是矩形,故错误,不符合题意;B、有一组邻边相等的平行四边形是菱形,正确,符合题意;C、对角线互相垂直平分的四边是四菱形,故错误,不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故错误,不符合题意;故选:B.7.如图,AB是圆O的直径,C、D在圆上,连接AD、CD、AC、BC.若∠CAB=35°,则∠ADC的度数为()A.35°B.45°C.55°D.65°【解答】解:∵AB是圆O的直径,∴∠ACB=90°,∵∠CAB=35°,∴∠B=90°﹣∠CAB=55°,∴∠ADC=∠B=55°,故选:C.8.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行八十步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”把这道题翻译成现代文,意思就是:走路快的人走了80步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?设走路快的人走x步就能追上走路慢的人,则下面所列方程正确的是()A.B.C.D.【解答】解:设走路快的人走x步就能追上走路慢的人,根据题意,得=,故选:B.9.春节前,某加工厂接到面粉加工任务,要求5天内加工完220吨面粉.加工厂安排甲、乙两组共同完成加工任务.乙组加工中途停工一段时间维修设备,然后提高加工效率继续加工,直到与甲队同时完成加工任务为止.设甲、乙两组各自加工面粉数量y(吨)与甲组加工时间x(天)之间的关系如图所示,结合图象,下列结论错误的是()A.乙组中途休息了1天B.甲组每天加工面粉20吨C.加工3天后完成总任务的一半D.3.5天后甲乙两组加工面粉数量相等【解答】解:由图象可得:2﹣1=1,即乙组加工中途停工1天,故选项A是正确的,甲组每天加工面粉数量为:=20(吨),故选项B是正确的,甲组加工3天的面粉数量为20×3=60(吨),乙组第一天加工15吨,第三天加工面粉数量为:=35(吨),∴加工3天后面粉数量为:60+15+35=110(吨),完成总任务的一半,故C选项正确,3.5天后甲组加工面粉数量为20×3.5=70(吨),乙组加工面粉数量为15+35×1.5=67.5(吨),D选项错误,故选:D.10.如图所示,正方形ABCD中,AB=4,点E为BC中点,BF⊥AE于点G,交CD边于点F,连接DG,则DG长为()A.B.4C.D.【解答】解:如图,作DL⊥AE于点H,交AB于点L,∵BF⊥AE,∴DL∥BF,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD,∠ABE=∠C=90°,∴BL∥DF,∴四边形BFDL是平行四边形,∵∠AGB=90°,∠BAE=90°﹣∠ABG=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵E为BC中点,∴BE=CF=BC=CD,∴DF=CF=CD,∴BL=DF=CD=AB,∴AL=BL=AB,∴==1,∴AH=GH,∵DA=AB=4,∴DG=DA=4,故选:B.11.若关于x的不等式组无解,且关于y的分式方程有正整数解,则所有符合条件的整数a之和为()A.﹣5B.﹣8C.﹣6D.﹣4【解答】解:解不等式组得∵不等式组无解,∴a≤﹣1,解分式方程得y=(a≠1),∵分式方程有正整数解,a是整数,∴a=0,﹣1,﹣5,∴所有符合条件的整数a的值之和是﹣5+(﹣2)+(﹣1)+0=﹣8.故选:C.12.若定义一种新的取整符号[ㅤ],即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.6]=﹣2,则下列结论正确的是①[﹣3.1]+[2]=﹣2;②[x]+[﹣x]=0;③方程x﹣[x]=的解有无数多个;④若[x﹣1]=3,则x的取值范围是4≤x<5;⑤当﹣1≤x<1时,则[x+1]+[﹣x+1]的值为0、1或2.A.①②③B.①②④C.①③⑤D.①③④【解答】解:对于①,[﹣3.1]+[2]=﹣4+2=2,正确;对于②,由[﹣0.5]+[0.5]=﹣1+0=﹣1,不正确;对于③,当x=0.5,1.5,2.5,...时,方程均成立,正确;对于④,由[x﹣1]=3,得3≤x﹣1<4,即4≤x<5,正确;对于⑤,当x=﹣1或0时,[x+1]+[﹣x+1]=2;当﹣1<x<0时,[x+1]+[﹣x+1]=0+1=1;当0<x<1时,[x+1]+[﹣x+1]=1+0=1.故[x+1]+[﹣x+1]的值为1或2,⑤不正确.故选:D.二.填空题:(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上。
九年级数学中考提升冲刺训练(一)(含答案)

九年级数学中考提升冲刺训练(一)姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.|﹣|的值是()A.2020 B.﹣2020 C.﹣D.2.2019年末到2020年3月16日截止,世界各国感染新冠状肺炎病毒患者达到15万人,将数据15万用科学记数表示为()A.1.5×104B.1.5×103C.1.5×105D.1.5×1023.如图,这是一个机械模具,则它的左视图是()A.B.C.D.4.下列运算中,错误的是()A.x2•x3=x6B.x2+x2=2x2C.(x2)3=x6D.(﹣3x)2=9x2 5.下列图形中,是轴对称图形,也是中心对称图形的是()A.B.C.D.6.一组数据:3、6、7、5、4,则这组数据的中位数是()A.4 B.4.5 C.5 D.67.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|c|>|a| B.ac>0 C.c﹣b>0 D.b+c<08.已知3+m=n,则m可能是()A.3B.C.D.9.若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,则m等于()A.﹣2 B.﹣3 C.2 D.310.如图,E、F分别是正方形ABCD的边BC、CD的中点,连接AF、DE交于点P,过B作BG ∥DE交AD于G,BG与AF交于点M.对于下列结论:①AF⊥DE;②G是AD的中点;③∠GBP=∠BPE;④S△AGM :S△DEC=1:4.正确的个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题11.计算:(﹣3)﹣1+(﹣4)0=.12.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=.13.一个n边形的内角和等于720°,则n=.14.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为.15.某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题17.解不等式组:18.先化简,再求值:(+)÷,其中x=6.19.如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.20.今年3月,某集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B b70≤n<80 C15n<70 D 6根据以上信息解答下列问题:(1)求m,b的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(3)从评估成绩不少于80分的连锁店中,任选2家介绍营销经验,用树状图或列表法求其中至少有一家是A等级的概率.21.某商场购进一批LED灯泡与普通白炽灯泡,其进价与标价如下表.该商场购进LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡按标价打九折销售,销售完这批灯泡后可以获利3200元.(1)求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,并在不打折的情况下销售完.若销售完这两批灯泡的获利不超过总进货价的28%,则最多再次购进LED灯泡多少个?LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 3022.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.23.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)相交于A,B 两点,点A坐标为(﹣3,2),点B坐标为(n,﹣3).(1)求一次函数和反比例函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是5,求点P的坐标.(3)利用函数图象直接写出关于x的不等式kx+b<的解集.24.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.25.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.参考答案一.选择题1.解:,故选:D.2.解:15万=15×104=1.5×105.故选:C.3.解:从左边看,得到的图形只有一列两层,第一层是正方形,第二层的正方形里面有实心的圆圈,故选:B.4.解:A.x2•x3=x5,故本选项符合题意;B.x2+x2=2x2,故本选项不合题意;C.(x2)3=x6,故本选项不合题意;D.(﹣3x)2=9x2,故本选项不合题意.故选:A.5.解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、是中心对称图形,也是轴对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不合题意;D、不是中心对称图形,是轴对称图形,故本选项不合题意.故选:B.6.解:把数据按从小到大的顺序排列为:3,4,5,6,7,则中位数是5.故选:C.7.解:由数轴可知,﹣4<a<﹣3,﹣1<b<0,2<c<3,∴|c|<|a|,A错误;ac<0,B错误;c﹣b>0,C正确;b+c>0,D错误;故选:C.8.解:根据3+m=n,得到3与m为同类二次根式,则m可能是3,故选:A.9.解:α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,∴α+β=2,αβ=m,∵+===﹣,∴m=﹣3;故选:B.10.解:∵正方形ABCD,E,F均为中点∴AD=BC=DC,EC=DF=BC,∵在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∵∠DEC+∠CDE=90°,∴∠AFD+∠CDE=90°=∠DGF,∴AF⊥DE,故①正确,∵BG∥DE,GD∥BE,∴四边形GBED为平行四边形,∴GD=BE,∵BE=BC,∴GD=AD,即G是AD的中点,故②正确,∵BG∥DE,∴∠GBP=∠BPE,故③正确.∵BG∥DG,AF⊥DE,∴AF⊥BG,∴∠ANG=∠ADF=90°,∵∠GAM=∠FAD,∴△AGM∽△AFD,设AG=a,则AD=2a,AF=a,∴=.∵△ADF≌△DCE,∴S△AGM :S△DEC=1:5.故④错误.故选:C.二.填空题11.解:原式=+1=,故答案为:12.解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴==1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FG=6.故答案为6.13.解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.14.解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=2019时,原式=﹣2019.故答案为:﹣201915.解:根据题意可知:∠ABC=90°,CD=10,在Rt△ABC中,∠ACB=45°,∴AB=CB,在Rt△ABD中,∠ADB=30°,BD=CD+BC=10+AB,∴tan30°=,即=,解得AB≈13.7(米).答:树高约为13.7米.故答案为:13.716.解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b 故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.三.解答题17.解:解不等式①,得x<2,解不等式②,得x≥﹣,∴原不等式组的解集为﹣5≤x<2.18.解:(+)÷==﹣=,当x=6时,原式===.19.(1)解:如图,∠BAD为所作;(2)证明:∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD•BC.20.解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;∴b=25﹣15﹣2﹣6=2;(2)∵B等级频数为2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵由图可知,共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴P(至少有一家是A等级)==.21.解:(1)设该商场购进LED灯泡x个,普通白炽灯泡y个.根据题意,得:,解得,答:该商场购进LED灯泡200个,普通白炽灯泡100个.(2)设再次购进LED灯泡m个.(60﹣45)m+(30﹣25)(120﹣m)+3200≤28%[45×200+25×100+45m+25(120﹣m)] 解得:m≤59,∵m取正整数,∴m的最大值为59则最多再次购进LED灯泡59个.22.解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.23.解:(1)∵双曲线y=(m≠0)过点A(﹣3,2),∴m=﹣3×2=﹣6,∴反比例函数表达式为y=﹣,∵点B(n,﹣3)在反比例函数y=﹣的图象上,∴n=2,∴B(2,﹣3).∵点A(﹣3,2)与点B(2,﹣3)在直线y=kx+b上,∴解得∴一次函数表达式为y=﹣x﹣1;(2)如图,在x轴上任取一点P,连接AP,BP,由(1)知点B的坐标是(2,﹣3).在y=﹣x﹣1中令y=0,解得x=﹣1,则直线与x轴的交点是(﹣1,0).设点P的坐标是(a,0).∵△ABP的面积是5,∴•|a+1|•(2+3)=5,则|a+1|=2,解得a=﹣3或1.则点P的坐标是(﹣3,0)或(1,0);(3)关于x的不等式kx+b<的解集是﹣3<x<0或x>2.24.(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.在Rt△ABC中,∵AB=5,BC=3,∴AC===4,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°∴∠A=∠CBE,∴△ABC∽△BEC,∴=,∴CE==,(2)∵AB是直径,∴∠ADB=90°,∵AD=5,AB=13,∴BD===12,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°∴∠C=∠ABF,∴△FAB∽△FBC,∴=,即=,∴AC=.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴=,即=,∴CD=(AC+5),在Rt△ADC中,CD2+AD2=AC2,∴AC=(舍去负值),综上所述,当△ABC是“类直角三角形”时,AC的长为或.25.解:(1)将A(﹣3,0)、B(2,0)、C(0,3)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x+3;(2)①将E(m,2)代入y=﹣x+3中,得﹣m+3=0,解得m=﹣2或1(舍去),∴E(﹣2,2),∵A(﹣3,0)、B(2,0),∴AB=5,AE=,BE=2,∴AB2=AE2+BE2,∴∠AEB=∠DOB=90°,∴∠EAB+∠EBA=∠ODB+∠EBA=90°,∴∠EAB=∠ODB,(Ⅰ)当△FEA∽△BOD时,∴∠AEF=∠DOB=90°,∴F与B点重合,∴EF=BE=2,(Ⅱ)当△EFA∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为2或2;②点H的坐标为(﹣,)或(﹣,),(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=x+3,∴P(﹣6,0),∴EP=EB=2,∴∠APE=∠EBA,∵∠GCH=∠EBA,∴∠GCH=∠APE=∠EBA=∠CHN=∠MGH,∴GC∥PB,又C(0,3),∴G点的纵坐标为3,代入y=﹣x+3中,得:x=﹣1或0(舍去),∴MN=1,∵∠AEB=90°,AE=,BE=2,∴tan∠EBA=tan∠CHN=tan∠MGH=,设CN=MG=m,则HN=2m,MH=m,∴MH+HN=2m+m=1,解得,m=,∴H点的橫坐标为﹣,代入y=x+3,得:y=,∴点H的坐标为(﹣,).(Ⅱ)过点H作MN⊥PB,过点C作CN⊥MH于点N,过点G作GM⊥HM于点M,∴CN∥PB,∴∠NCH=∠APE,由(Ⅰ)知:∠APE=∠EBA,则∠NCH=∠EBA,∵∠GMN=∠CNH=90°,又∠GHC=90°,∴∠HCN+∠NHC=∠MHG+∠NHC=90°,∴∠HCN=∠MHG,∵∠GCH=∠EBA,∴∠GCH=∠EBA=∠HCN=∠MHG,由(Ⅰ)知:tan∠EBA=,则tan∠MHG==tan∠GCH=,设MG=a,则MH=2a,∵∠NCH=∠MHG,∠N=∠M,∴△HMG∽△CNH,∴,∴NH=2a,CN=4a,又C(0,3),∴G(﹣3a,3﹣4a),代入y=﹣x+3中,得,a=或0(舍去),∴CN=,∴H点的橫坐标为﹣,代入y=x+3,得,y=.∴点H的坐标为(﹣).综合以上可得点H的坐标为(﹣,)或(﹣).。
中考初三数学冲刺拔高专题训练(含答案)

图Z3-4
按照这种规律摆下去,第n个图形用的棋子个数为(D)
A.3nB.6n
C.3n+6D.3n+3
【解析】∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n个图需棋子(3n+3)个.
6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.
(x-y)2=(x+y)2-4xy=32-4×1=5.
【思想方法】利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.
完全平方公式的一些主要变形有:(a+b)2+(a-b)2=2(a2+b2),(a+b)2-(a-b)2=4ab,a2+b2=(a+b)2-2ab=(a-b)2+2ab,在四个量a+b,a-b,ab和a2+b2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.
【解析】根据所给的数据发现:第n个三角形数是1+2+3+…+n,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n=
2 016,得 =2 016,解得n=63(负数舍去).
7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报 ,第2位同学报 ,第3位同学报 ,…这样得到的100个数的积为__101__.
C.-a<bD.a+b<0
【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.
2023年上海市中考数学考前冲刺试卷(含解析)

上海市2023年中考数学考前冲刺试卷一、单选题(共6题;共24分)1.(4分)若单项式―4x m―2y3与23y7―2n的和仍是单项式,则n2―m2的值为3x( )A.21B.-21C.29D.-29 2.(4分)实数a、b在数轴上的位置如图所示,那么化简|a﹣b|﹣a2的结果是( )A.2a﹣b B.b C.﹣b D.﹣2a+b 3.(4分)下列调查中,适合用全面调查的是()A.了解20万只节能灯的使用寿命B.了解某班35名学生的视力情况C.了解某条河流的水质情况D.了解全国居民对“垃圾分类”有关内容的认识程度4.(4分)若点A(m―1,y1),B(m+1,y2)在反比例函数y=k(k<0)的图象上,且xy1>y2,则m的取值范围是( )A.m<―1B.―1<m<1C.m>1D.m<―1或m>15.(4分)若两圆的圆心距为3,两圆的半径分别是方程x2-4x+3=0的两个根,则两圆的位置关系是( )A.相交B.外离C.内含D.外切6.(4分)下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1×|﹣1|×1是最简二次根式B.12C.只有一个角等于60°的三角形是等边三角形D.三角形内角和等于180度二、填空题(共12题;共48分)的相反数是 .7.(4分)―458.(4分)分解因式:ab﹣ab2= .9.(4分)方程x―1⋅x―3=0的根是 .10.(4分)一枚质地均匀的正方体骰子,六个面分别刻有1到6的点数,小涛同学掷一次骰子,骰子的正面朝上的点数是2的倍数的概率是 .11.(4分)已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.12.(4分)在实数范围内分解因式a2―3= .13.(4分)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,→AB=→m,→AC =→n,那么向量→DE用向量→m,→n表示为 . 14.(4分)为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的6名同学捐书册数分别是:5,7,x,8,4,6.已知他们平均每人捐6本,则这组数据的中位数是 .15.(4分)为鼓励大学生创业,某市为在开发区创业的每位大学生提供贷款1500000 元,这个数据用科学记数法表示为 元.16.(4分)如图,以CD为直径的半圆与AB,AC相切于E,C两点,C,D,B三点共线,若弧DE的长为1π,CD=2,则阴影部分的面积为 .317.(4分)如图,直线y=﹣x+4与两坐标轴交A 、B 两点,点P 为线段OA 上的动点,连接BP ,过点A 作AM 垂直于直线BP ,垂足为M ,当点P 从点O 运动到点A 时,则点M 运动路径的长为 .18.(4分)如图,在⊙O 中,AB 为直径,弦CD ⊥AB 于点H ,若AH =CD =8,则⊙O 的半径长为 .三、解答题(共7题;共78分)19.(10分)先化简,再求值: x x 2―1 ÷(1+ 1x ―1),其中x= 2 ﹣1. 20.(10分)解不等式组:{5x <3(x +1)x ―32≤2+53x ,并把解集在数轴上表示出来.21.(10分)如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AD 、BC 的延长线交于点F ,点E 在CF 上,且∠DEC =∠BAC .(1)(5分)求证:DE 是⊙O 的切线;(2)(5分)当AB =AC 时,若CE =4,EF =6,求⊙O 的半径.22.(10分)如图,小聪和小明在校园内测量钟楼MN 的高度.小聪在A 处测得钟楼顶端N 的仰角为45°,小明在B 处测得钟楼顶端N 的仰角为60°,并测得A ,B 两点之间的距离为27.3米,已知点A,M,B依次在同一直线上.(1)(5分)求钟楼MN的高度,(结果精确到0.1米)(2)(5分)因为要举办艺术节,学校在钟楼顶端N处拉了一条宣传竖幅,并固定在地面上的C处(点C在线段AM上).小聪测得点C处的仰角∠NCM等于75°,小明测得点C,M之间的距离约为5米,若小聪的仰角数据正确,问小明测得的数据“5米”是否正确?为什么?(参考数据:2≈ 1.41,3≈ 1.73)23.(12分)如图,在Rt△ABC中,∠ACB=90,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE(1)(4分)求证:CE=AD(2)(4分)当点D在AB中点时,四边形BECD是什么特殊四边形?说明理由(3)(4分)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD 是正方形?说明理由.24.(12分)c:y=a x2+bx―10经过点A(1,0)和点B(5,0),与y轴交于点C.1(1)(4分)求抛物线c1的解析式;(2)(4分)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l:y=n.试结合图形回答:当n为何值时l与c1和c2共有:①2个交点;②3个交点;③4个交点;(3)(4分)在直线BC上方的抛物线c1上任取一点P,连接PB,PC,请问:ΔPBC的面积是否存在最大值?若存在,求出取这个最大值时点P的坐标;若不存在,请说明理由.25.(14分)如图1,在⊙O中,AB为弦,CD为直径,且AB⊥CD于点E,过点B作BF⊥AD,交AD的延长线于点F.连接AC,BO.(1)(4分)求证:∠CAE=∠ADC.(2)(4分)若DE=2OE,求DFDE的值.(3)(6分)如图2,若BO的延长线与AC的交点G恰好为AC的中点,若⊙O的半径为r.求图中阴影部分的面积(结果用含r的代数式表示).答案解析部分1.【答案】B【解析】【解答】解:∵单项式―4x m―2y3与23y7―2n的和仍是单项式,3x所以这两个单项式是同类项,∴{m―2=37―2n=3解得{m=5n=2∴n2―m2=―21.故答案为:B.【分析】所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序及系数没有关系,据此可得m-2=3,7-2n=3,求出m、n的值,进而可得n2-m2的值.2.【答案】C【解析】【解答】解:∵a>0,b<0,|a|<|b|,∴原式=a﹣b﹣|a|=a﹣b﹣a=﹣b.故选C.【分析】由数轴可得到a>0,b<0,|a|<|b|,根据a2=|a|和绝对值的性质即可得到答案.3.【答案】B【解析】【解答】解:A.了解20万只节能灯的使用寿命,具有破坏性,适合抽样调查,故本选项不合题意;B.了解某班35名学生的视力情况,人员不多,适合用全面调查,故本选项符合题意;C.了解某条河流的水质情况,范围广,适合抽样调查,故本选项不合题意;D.了解全国居民对“垃圾分类”有关内容的认识程度,范围广,适合抽样调查,故本选项不合题意;故答案为:B.【分析】根据全面调查的定义对每个选项一一判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…数学中考冲刺训练(一)说明:本卷试题针对中考数学卷选择题及填空题较难题进行组题、汇编。
本卷精选、汇编近几年全国中考填空题、选择题中的稍难题、难题。
要求:认真、独立完成。
要具备探索、持之以恒的精神。
1.(2018泉州)已知一组数据54321,,,,a a a a a 的平均数为8,则另一组数据10,10,10321+-+a a a ,10,1054+-a a 的平均数为( )A 、6B 、8C 、10D 、122.(2017福州质检)如图,在平面直角坐标系中,△PQR 可以看作是△ABC 经过下列变换得到:①以点A 为中心,逆时针方向旋转90; ②向右平移2个单位; ③向上平移4个单位.下列选项中,图形正确的是( ).3. (2017鲤城区)已知直线3y x =-与函数2y x=的图象相交于点(a ,b ),则22a b +的值是( ).A .13B .11C .7D .54.(2017年定西)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BD =( ) A .2B .4C.D.5. 如图,在Rt △ABC 中,90∠=A ,AB =AC=,点E 为AC 的 中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .6. 骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A B7.(2017宁夏)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( )C BCA .2+10B .2+210 C .12 D .188.(2017河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形 数”,而把1、4、9、16 … 这样的数称为“正方形数”.CFAE ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4从图中可以发现,任何一个大于1的“正方形数”都 可以看作两个相邻“三角形数”之和.下列等式中, 符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+318.(重庆江津)在△ABC 中,BC =10,B 1 、C 1分别 ① ② ③ 是图①中AB 、AC 的中点,在图②中1B ,2B ,1C ,2C 分别是AB ,AC 的三等分点,在图③中1B ,2B ,……,9B ;1C ,2C ……,9C 分别是AB 、AC 的10等分点,则112299B C B C B C ++⋅⋅⋅+的值是 A . 30 B . 45 C .55 D .609.(2017四川眉山)如图,以点O 为圆心的两个同心圆,半径分别为5和3, 若大圆的弦AB 与小圆相交,则弦长AB 的取值范围是( ) A .8≤AB ≤10 B .AB ≥8 C .8<AB ≤10 D .8<AB <1012.(2017四川眉山)如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( )A .B .5C .D13.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形 ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依此类推. 若各种开本的矩形都相似,那么AB AD 等于( ).BA .0.618 B.C. D. 214.(2017黄冈)已知四条直线y =k x -3,y =-1,y =3和x =1所围成的四积是12,则k 的值为( )BA .2或-1B .1或-2C .3D .4 15.(2017河南)如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A 的坐标为( )D(A )),(b a -- (B ))1.(---b a (C ))1,(+--b a (D ))2,(---b a 16.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形, 点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向 平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形 EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )第17题图x xx xx 3413 15171917.(四川资阳)如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( )A. 563B. 25C. 1123D. 5618.(湖北鄂州)如图,△ABC 中,∠C =90°,AC =8cm ,AB =10cm ,点P 由点C 出发以每秒2 cm 的速度沿线CA 向点A 运动(不运动至A 点), ⊙O 的圆心在BP 上,且⊙O 分别与AB 、AC 相切,当点P 运动2秒钟时, ⊙O 的半径是( ) A.712cm B.512cm C.35cm D.2cm 19.如图所示,在完全重合放置的两张矩形纸片ABCD 中,AB=4,BC=8,将上面的矩形 纸片折叠,使点C 与点A 重合,折痕为EF ,点D 的对应点为G ,连接DG,,则图中阴 影部分的面积为( ).C A.334 B. 6 C .518 D.53620. 抛物线c bx ax y ++=2图像如图所示,则一次函数 24b ac bx y +--=与反比例函数 a b cy x ++=在同一坐标系内的图像大致为() 21. 观察下列三角形数阵:则第50行的最后一个数是( )D A.1225 B.1260 C.1270 D.127522.如图,一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,则该质点到原点O 的距离为 ( ) D A.n 211-B.121-n C . 1)21(+n D.n 2123. 32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) AA 、41B 、39C 、31D 、29 24. 如图,在一块形状为直角梯形的草坪中, 修建了一条由A →M →N →C 的小路(M 、N 分别是AB 、CD 中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了( )B A. 7米 B. 6米 C. 5米 D. 425. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线x a y -=(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧)横坐标最小值为3-,则点D 的横坐标最大值为( )DA .-3B .1C .5D .832 3 5 33 79 111 2 3 4 5 6 7 8 9 10 11 12 13 14 15构 建 和 谐 社 会 图1 第26题图 构 建 和 1 23 图2 第27题图第28题图(第11题图)EAB单位:mml 1l 2O 20o20o) 26. 如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )B A .社 B .会 C .和 D .谐27. 如图,已知EF 是⊙O 的直径,把∠A 为600的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P ,点B 与点O 重合;将三角形ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF=x 0,则x 的取值范围是( ) A B C A .30≤x ≤60 B .30≤x ≤90 C .30≤x ≤120 D .60≤x ≤12028.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A.∠=∠+∠A 12 B.212∠=∠+∠A C.3212∠=∠+∠A D.)21(23∠+∠=∠A 29.如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图像大致是( )30.(绍兴)如图为某机械装置的截面图,相切的两圆⊙O 1,⊙O 2均与⊙O 的弧AB 相切, 且O 1O 2∥l 1( l 1为水平线),⊙O 1,⊙O 2的半径均为30 mm , 弧AB 的最低点到l 1的距离为30 mm ,公切线l 2与l 1间的 距离为100 mm .则⊙O 的半径为( ) BA.70 mmB.80 mmC.85 mmD.100 mm31.如图,小陈从O 点出发,前进5米后向右转20O,再前进5米后又向右转20O ,……,这样一直走下去,他第一次回到出发点O 时一共走了( )C A .60米 B .100米 C .90米 D .120米 32.(2017厦门)药品研究所开发一种抗菌素新药, 经过多年的动物实验之后,首次用于临床人体试验, 测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( )CA . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤1633.(2017长春)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路 返回.点P 在运动过程中速度大小不变.则以点A为圆心,线段AP 长为半径的圆的面 积S 与点P 的运动时间t 之间的函数图象大致为( )ADCBA E H34. 如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC中点, MN ⊥AC 于点N ,则MN 等于( )CA.65 B. 95C. 125D. 16535.(2017贵州)如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低, 且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中, 水位上升后,乌鸦喝到了水。