中考数学冲刺练习专项试卷22篇汇总

合集下载

2023初中数学中考真题模拟冲刺卷(含解析)

2023初中数学中考真题模拟冲刺卷(含解析)

2023初中数学中考真题模拟冲刺卷(含解析)一、单选题1.用配方法解一元二次方程2640x x -+=,配方正确的是()A .()235x +=-B .()2313x -=C .()235x +=D .()235x -=2.若关于x 的一元二次方程20x x n -+=有两个相等的实数根,则实数n 的值为()A .4B .14C .14-D .-43.已知公式180n rl π=用,l r 表示n ,正确的是()A .180lr n π=B .180n l rπ=C .180r n lπ=D .180l n rπ=4.下列运算中,正确的是()A .3x ÷x=4x B .236()x x =C .3x -2x=1D .222()a b a b -=-5.不等式组2131532123(1)152(1)x x x x x -+⎧-≤-⎪⎨⎪-+>--⎩的解集为()A .102x -<<B .12x -<≤C .12x -≤<D .12x -≤≤6.若y 与x 成反比例,且x=3时,y=7,则比例系数是()A .3B .7C .21D .207.如图,四边形ABCD 是菱形,120ADC ∠=︒,4AB =,扇形BEF 的半径为4,圆心角为60︒,则图中阴影部分的面积是()A .8433π-B .8233π-C .243π-D .223π-8.如图是一个组合烟花的横截面,其中16个圆的半径相同,点A 、B 、C 、D 分别是四个角上的圆的圆心,且四边形ABCD 为正方形.若圆的半径为r ,组合烟花的高为h ,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)..二、填空题11.在平面直角坐标系中,将二次函数()211y x =-+的图像向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为______.12.如图,ABC 的顶点均在坐标轴上,AE BC ⊥于点E ,交y 轴于点D ,已知点B ,C 的坐标分别为()0,6B ,()2,0C ,若AD BC =,则AOD △的面积为_______.13.如图,双骄制衣厂在厂房O 的周围租了三幢楼A 、B 、C 作为职工宿舍,每幢宿舍楼之间均有笔直的公路相连,并且厂房O 与每幢宿舍楼之间也有笔直公路相连,且BC AC AB >>.已知厂房O 到每条公路的距离相等.(1)则点O 为ABC 三条_____的交点(填写:角平分线或中线或高线);(2)如图,设BC a =,AC b =,AB c =,OA x =,OB y =,OC z =,现要用汽车每天接送职工上下班后,返回厂房停放,那么最短路线长是_____.14.如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧 ABC 上不与点A 、点C 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是_____.15.如图,在△ABC 中,AB =AC═12,AD ⊥BC ,BE ⊥AC ,F 为AC 中点,连接BF 、DE ,当BE 2﹣DE 2最大时,则DE 长为_______.三、解答题19.甲、乙两人相约一起去登山,乙两人距地面的高度y(米)与登山时间据图象所提供的信息解答下列问题:参考答案与解析有三条路线可走:1d x c a =+++在BC 上截取BE BA =,连接OE ∵点O 为ABC 三条角平分线的交点,∴ABO OBE ∠=∠,在ABO 和EBO 中,AB BE ABO OBE BO BO =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO EBO ≌,∴1252ADC AOP∠=∠=︒,故答案为:25︒CD如图所示:(2)线段'(3)将线段B C'绕C点旋转180︒(2)()()150********x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩(3)甲、乙相遇后,甲再经过1.5分或10.5分与乙相距30米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度⨯时间即可算出乙在A 地时距地面的高度b 的值;(2)分02x ≤≤和2x >两种情况,根据高度=初始高度+速度⨯时间即可得出y 关于x 的函数关系;(3)先求出甲、乙相遇时所用时间,在路程之间的关系列出方程求解即可.【详解】(1)解:()3001002010-÷=(米/分钟),151230b =÷⨯=.故答案为:10;30;(2)解:当02x ≤≤时15y x =;当2x >时,()3010323030y x x =+⨯-=-.当3030300y x =-=时,11x =.∴乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为()()150********x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩;(3)解:甲登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为()10100011y x x =+≤≤.当101003030+=-x x 时,解得: 6.5x =;∴()()30 6.510 6.530x x ---=,解得8x =,∴ 6.5 1.5x -=;当甲距离山顶30米时,此时203 6.510.5--=(分),18【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,等腰直角三角形的性质,含30°直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于压轴题.23.(1)y=5x+30;(2)第23天去掉捐款后的利润是6235元;(3)W=﹣5(x﹣30)2+6480,第30天的利润最大,最大利润是6480元.【分析】(1)设函数解析式为y=kx+b(k≠0),从表中取两个点(1,35),(3,45),把两点坐标代入函数解析式中,求得k、b即可解决;(2)设第x天去掉捐款后的利润为6235元,根据等量关系:一件的利润×销量=总利润,列出方程,解方程即可;(3)根据:总利润=一件的利润×销量,即可得出W与x之间的二次函数关系式,然后求出此二次函数最大值即可.【详解】(1)设y与x满足的一次函数数关系式为y=kx+b(k≠0),将(1,35),(3,45)分别代入y=kx+b中,得:35453k bk b=+⎧⎨=+⎩,解得:530 kb=⎧⎨=⎩,∴y与x的函数关系式为y=5x+30;(2)设第x天去掉捐款后的利润为6235元根据题意得:(130﹣x﹣60﹣4)(5x+30)=6235,整理得:x2﹣60x+851=0,解得:x=23或x=37(舍),∴在这30天内,第23天去掉捐款后的利润是6235元;(3)由题意得:W=(130﹣x﹣60﹣4)(5x+30)=﹣5x2+300x+1980即W与x之间的函数关系式为W=﹣5x2+300x+1980∵W=﹣5x2+300x+1980=﹣5(x﹣30)2+6480,且a=﹣5<0,∴当x=30时,W有最大值,最大值为6480元.∴W与x之间的函数关系式是W=﹣5x2+300x+1980,第30天的利润最大,最大利润是6480元.【点睛】本题是函数与方程的综合性问题,考查了待定系数法求函数解析式,解一元二次方程,求二次函数的最值等知识,本题首先要正确理解题意,熟悉售价、进价、利润三者间的关系,其次要求有较好的运算能力.。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

中考数学冲刺考题整理(终极版)

中考数学冲刺考题整理(终极版)

中考冲刺题目集锦 姓名122,0.21211211127,,,sin60°,-20.2中无理数的个数是 个 2.判断2 ( ) (2) 12是144的平方根( ) (3)2a 的算术平方根是a ( ) (4)相等的圆心角所对的弧相等( ) (5)对角线互相垂直且相等的四边形是正方形( ) (6)圆的任意一条直径都是它的对称轴( ) (7)确定性事件发生的概率为1( ) (8)平分弦的直径垂直于弦( ) (9)相似图形是位似图形( )(10)位似图形一定有位似中心( ) (11)位似图形上任意两点与位似中心的距离之比等于位似比( )3.(-1)2 018+(-12)-2-|2-12|+4sin 60° -23+2 0190-(-8)2 019×(-0.125)2 018+|π-3.14|.4.因式分解(1) xy y x y x --322= (2) 4-12(x-y)+9(x-y)2 = (3)若x 2-2mx +1是完全平方式,则m 的值为8.先化简再求值:(1)(x -1x -x -2x +1)÷2x -xx 2+2x +1,其中x 满足x 2-2x -2=0.(2) (x 2-2x +4x -1-x +2)÷x 2+4x +41-x ,其中x 满足x 2-4x +3=0.(3)(﹣)÷,且x 为满足﹣3<x <2的整数.9. 解分式方程:(1)﹣1=. (2)+=10.求不等式组(1)34523x x x x ++⎧⎪--⎨≤⎪⎩4>的正整数解.11.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为136,则输入的最小正整数是_____.12.反比例函数y =(b 为常数),当x >0时,y 随x 的增大而增大,则一次函数y =x ﹣b 的图象不经过的象限为 13.如图,在反比例函数y =﹣的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数y =的图象上运动.若tan ∠CAB =2,则k 的值为14.如图,一次函数y =kx +b(k ,b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数,且n ≠0)的图象在第二象限交于点C.CD ⊥x 轴,垂足为点D ,若OB =2OA =3OD =12. (1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积; (3)直接写出不等式kx +b≤nx<0的解集.15.22x -+抛物线y=-2x 与坐标轴的交点个数是16.若函数()2142y a x x a =--+的图像与x 轴有且只有一个交点,则a 的值为17. 如图抛物线y =ax 2+bx +c(a≠0),下列结论错误的是( )A .abc<0 B .a +c<bC .b 2+8a>4acD .2a +b>0 18.如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC ,CD ,测得BC =6米,CD =4米,∠BCD =150°,在D 处测得电线杆顶端A 的仰角为30°,试求电线杆AB 的高度(结果保留根号).19.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),B(3,0).下列结论:①2a-b =0;②(a+c)2<b 2;③当-1<x <3时,y <0;④当a =1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y =(x -2)2-2.其中正确的是( )A .①③ B .②③C .②④D .③④20.已知二次函数y =-(x -h)2(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6 B .1或6 C .1或3 D .4或621.在Rt △ABC 中,∠C=90°,AB=2,sin2A= 22.如图1,四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠C =120°,AB =3,CD =1,则边BC =__________. 23.如图2,无人机从A 处飞行至B 处需要8s ,在地面C 处同一方向上分别测得A 处的仰角为75°, B 处的仰角为30°,已知无人机的飞行速度为4m/s,则这架无人机的飞行高度为 (结果保留根号)24. 如图3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①;②;③;④,其中正确的结论是有 个25. 如图4,矩形ABCD 中,AB =8,AD =6,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形A ′BC ′D ′.若边A ′B 交线段CD 于H ,且BH =DH ,则DH 的值是图1 图 2 图3 图4 26.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是______________. 27.等腰三角形一腰上的高与另一腰所在直线的夹角为60°,则其顶角为 .28.在平行四边形ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则平行四边形ABCD 的周长是 29.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA ,PB 与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则AB 的最小值为( )A .3 B .4 C .6 D .830.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是( )A .12π+183B .12π+363C .6π+183D .6π+363 31.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是 ________________.32.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB +∠PBA =90°,则线段CP 长的最小值为 .33.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD的最小值为34.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是35.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.36.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是37.如图,边长为1的正方形ABCD绕点A逆时针旋转30°得正方形AB′C′D′,边B′C′与CD交于点E,则四边形AB′ED的面积是38.如图,对角线长分别为6和8的菱形ABCD,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN 是折痕.若B′M=1,则CN的长为( )A.7 B.6 C.5 D.439.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( ) A.(5,2) B.(2,5) C.(2,-5) D.(5,-2)40.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为41如图,在△ABC中,B,C两个顶点在x轴的上方,点A的坐标是(1,0),以点A为位似图形,并把△ABC的边长缩小为原来的倍,记所得的位似图形为△ADE.设点C的对应点E的横坐标为a,则点C的横坐标为42.下列属于确定性事件的为(1)任意买一张电影票,座位号是2的倍数(2)13人中至少有两人的生肖相同(3)车辆到达某路口,恰好是红灯(4)任意一个五边形的外角和为540°43.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?44.有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距水面4m.(1)如图所示的直角坐标系中,求出该抛物线的关系式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d 表示为h的函数关系式.(3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?45.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?46.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,每个支干长出多少小分支?47.如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B 两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.48.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.49.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.50.如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC 于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.51.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,且c=5,若关于x的方程(5+b)x2+2ax+5﹣b=0有两个相等的实数根.(1)试判断△ABC的形状;(2)若sin A=,求△ABC的面积.52.关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sin A的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.。

初三冲刺数学试题及答案

初三冲刺数学试题及答案

初三冲刺数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ =b² - 4ac小于0,那么这个方程:A. 有唯一解B. 有两组实数解C. 无实数解D. 无法确定3. 一个圆的半径为5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π4. 已知函数f(x) = 2x - 3,求f(-1)的值:A. 1B. -5C. -1D. 55. 下列哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 - (n-1)dD. an = a1 - nd二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是________。

7. 一个数的平方根是4,那么这个数是________。

8. 一个数的立方根是2,那么这个数是________。

9. 一个数的绝对值是5,那么这个数可以是________或________。

10. 如果一个数的相反数是-7,那么这个数是________。

三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + √5)² - 2√5。

12. 解方程:2x + 5 = 15。

13. 计算下列数列的前5项和:1, 3, 5, 7, 9。

四、解答题(每题10分,共20分)14. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边的长度。

15. 已知一个等差数列的前三项分别为3,7,11,求这个数列的第20项。

五、证明题(每题15分,共15分)16. 证明:直角三角形的斜边的平方等于两直角边的平方和。

答案一、选择题1. C2. C3. B4. B5. A二、填空题6. 57. 168. 89. 5, -510. 7三、计算题11. 1412. x = 513. 25四、解答题14. 另一个直角边的长度是12。

初三冲刺数学试题及答案

初三冲刺数学试题及答案

初三冲刺数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. πB. 0.5C. 0.33333D. √42. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 203. 如果一个数的立方等于8,那么这个数是多少?A. 2B. -2C. 1D. -14. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 105. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(-2)^26. 一个数的绝对值是5,那么这个数可能是多少?A. 5B. -5C. 10D. 以上都是7. 一个直角三角形的两条直角边长分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 88. 一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -29. 一个数的立方根是3,那么这个数是多少?A. 27B. -27C. 9D. -910. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 0二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是______。

2. 一个数的立方是-27,那么这个数是______。

3. 一个数的绝对值是4,那么这个数可能是______或______。

4. 一个数的相反数是-3,那么这个数是______。

5. 一个数的倒数是2,那么这个数是______。

三、解答题(每题10分,共50分)1. 计算:(2x + 3)(2x - 3)。

2. 解方程:2x + 5 = 11。

3. 一个数的平方减去这个数等于0,求这个数。

4. 一个数的立方加上这个数的平方等于64,求这个数。

5. 一个数的平方根是4,求这个数。

答案:一、选择题1. A2. A3. A4. A5. A6. D7. A8. A9. A10. A二、填空题1. ±52. -33. 4, -44. 35. 1/2三、解答题1. (2x + 3)(2x - 3) = 4x^2 - 92. 2x + 5 = 11 → 2x = 6 → x = 33. x^2 - x = 0 → x(x - 1) = 0 → x = 0 或 x = 14. x^3 + x^2 = 64 → x^2(x + 1) = 64 → x = 4 或 x = -45. √4 = 2 或 -√4 = -2。

数学冲刺班中考试题及答案

数学冲刺班中考试题及答案

数学冲刺班中考试题及答案中考临近,许多学生都在寻找有效的复习方法和资料。

数学冲刺班就是其中一种帮助学生快速提高成绩的方式。

以下是一份数学冲刺班中考试题及答案,供同学们参考和练习。

一、选择题1. 下列哪个数是无理数?A. 2.5B. 3.14C. πD. √2答案:C2. 如果一个三角形的两边长分别为3和4,且这两边夹角为90°,那么第三边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知一个圆的半径为5,那么这个圆的面积是_________(答案:25π)。

2. 如果一个多项式f(x) = x^2 - 5x + 6,那么f(2)的值是_________(答案:0)。

三、解答题1. 解不等式:2x + 5 > 3x - 2。

首先,将不等式中的项进行整理,得到2x - 3x > -2 - 5,即-x > -7。

解得x < 7。

2. 已知一个直角三角形的两个直角边分别为6和8,求斜边的长度。

根据勾股定理,斜边的长度为√(6^2 + 8^2) = √(36 + 64) =√100 = 10。

四、证明题1. 证明:对于任意一个直角三角形,其斜边的平方等于两个直角边的平方和。

设直角三角形的两个直角边分别为a和b,斜边为c。

根据勾股定理,我们有c^2 = a^2 + b^2。

这就是需要证明的结论。

五、应用题1. 一个农场主想要围成一个矩形的鸡舍,他有120米的围栏。

如果鸡舍的长是宽的两倍,那么鸡舍的长和宽各是多少?设鸡舍的宽为x米,那么长为2x米。

根据题意,我们有2(x + 2x) = 120,解得x = 15,所以宽为15米,长为30米。

结束语通过以上的数学冲刺班中考试题及答案,同学们可以检验自己的数学知识掌握情况,同时也能够对中考的题型有一个大致的了解。

希望同学们能够通过不断的练习,提高自己的数学解题能力,为中考做好充分的准备。

祝所有考生中考顺利,取得优异的成绩!。

初三数学冲刺典型练习题

初三数学冲刺典型练习题

初三数学冲刺典型练习题在初三数学冲刺阶段,做一些典型练习题对于检测自己的学习成果和提高解题能力是非常有效的。

下面我们将介绍一些初三数学冲刺阶段常见的典型练习题,并附上详细的解题方法,希望对同学们的数学学习有所帮助。

一、整式的加减例题1:化简下列各式并写出最高次项的系数。

(2x^2 - 3x + 1) - (-x^2 + 5x - 2)解题方法:首先,将括号中的符号分别与括号内的各项相乘,然后将结果进行合并同类项,最后得出化简后的整式。

(2x^2 - 3x + 1) - (-x^2 + 5x - 2)= 2x^2 - 3x + 1 + x^2 - 5x + 2= 3x^2 - 8x + 3所以,化简后的整式为3x^2 - 8x + 3。

二、平方与平方根例题2:求下列算式的值:(A) √(9 + √(8 + 12))(B) (0.25)^2 + (0.2)^2 + (0.125)^2解题方法:(A) 首先,从内至外进行计算。

先计算括号内的算式,然后再算外面的算式。

√(9 + √(8 + 12)) = √(9 + √20)= √(9 + 2√5)= √(4 + 2 + 2√5)= √(2 + 2√5)^2= 2 + 2√5所以,(A)的值为2 + 2√5。

(B) 直接将指数为2的各项平方后相加。

(0.25)^2 + (0.2)^2 + (0.125)^2= 0.0625 + 0.04 + 0.015625= 0.117125所以,(B)的值为0.117125。

三、几何问题例题3:如图所示,在正方形ABCD中,点E、F、G分别是边AB、BC、CD上的点,连结线段DF和BG,求证:线段AC平分线段FG。

[图示省略]证明方法:由于正方形的性质是四边形各个顶点均为直角,所以我们可以利用直角三角形的性质来证明这个问题。

首先,观察图中所示的几何形状,我们可以发现∠ADB = ∠DAB = 45°,∠DFB = ∠GBF = 45°。

初三数学冲刺性试卷及答案

初三数学冲刺性试卷及答案

一、选择题(每题3分,共30分)1. 若实数 \(a\)、\(b\)、\(c\) 满足 \(a+b+c=0\),则 \(a^2+b^2+c^2\) 的值为:A. 0B. 1C. -1D. 22. 在直角坐标系中,点 \(A(2,3)\) 关于原点对称的点的坐标是:A. (2,3)B. (-2,-3)C. (3,2)D. (-3,-2)3. 下列函数中,是反比例函数的是:A. \(y=2x+1\)B. \(y=\frac{1}{x}\)C. \(y=x^2\)D.\(y=\sqrt{x}\)4. 若等腰三角形底边长为6,腰长为8,则其周长为:A. 14B. 20C. 22D. 245. 若 \(x^2-2x+1=0\),则 \(x^2+2x+1\) 的值为:A. 0B. 2C. 4D. 66. 在平面直角坐标系中,点 \(P(3,4)\) 到直线 \(2x+y-10=0\) 的距离为:A. 2B. 3C. 4D. 57. 下列命题中,正确的是:A. 若 \(a^2=b^2\),则 \(a=b\) 或 \(a=-b\)。

B. 若 \(a^2+b^2=0\),则 \(a=0\) 且 \(b=0\)。

C. 若 \(a^2+b^2=1\),则 \(a\) 和 \(b\) 互为倒数。

D. 若 \(a^2=1\),则 \(a=1\) 或 \(a=-1\)。

8. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 梯形D. 圆9. 若 \(a\)、\(b\)、\(c\) 成等差数列,且 \(a+b+c=12\),则 \(abc\) 的最大值为:A. 16B. 18C. 20D. 2210. 若 \(x^2-5x+6=0\),则 \(x^2+5x+6\) 的值为:A. 0B. 2C. 4D. 6二、填空题(每题5分,共25分)11. 若 \(a^2+b^2=10\),\(ab=2\),则 \(a^2+2ab+b^2\) 的值为 _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学冲刺练习专项试卷22篇汇总
2019中考数学冲刺复习专题试卷22篇汇总
本专题是通过对2019年-2019年的中考试卷进行了仔细的研究,对相关重点题型汇总整理,为中考考生提供了一系列的复习专题训练。

2019中考数学冲刺复习专题试卷:解直角三角形
2019中考数学冲刺复习专题试卷:圆
2019中考数学冲刺复习专题试卷:多边形与平行四边形
2019中考数学冲刺复习专题试卷:梯形
2019中考数学冲刺复习专题试卷:特殊的四边形
2019中考数学冲刺复习专题试卷:等腰三角形与直角三角形
2019中考数学冲刺复习专题试卷:三角形
2019中考数学冲刺复习专题试卷:角相交线与平行线
2019中考数学冲刺复习专题试卷:一元一次不等式(组)
2019中考数学冲刺复习专题试卷:方程组
2019中考数学冲刺复习专题试卷:分式方程
2019中考数学冲刺复习专题试卷:整式方程
2019中考数学冲刺复习专题试卷:二次根式
2019中考数学冲刺复习专题试卷:分式
2019中考数学冲刺复习专题试卷:整式
2019中考数学冲刺复习专题试卷:代数式
2019中考数学冲刺复习专题试卷:实数
2019中考数学冲刺复习专题试卷:视图与投影
2019中考数学冲刺复习专题试卷:图形的相似
2019中考数学冲刺复习专题试卷:图形的轴对称平移与旋转
2019中考数学冲刺复习专题试卷:函数及其图象
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底〝记死〞的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一那么名言警句即可。

可以写在后黑板的〝积累专栏〞上每日一
换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多那么名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故〝贮藏〞在学生脑中,自然会出口成章,写作时便会随心所欲地〝提取〞出来,使
文章增色添辉。

一般说来,〝教师〞概念之形成经历了十分漫长的历史。

杨士勋〔唐初学者,四门博士〕«春秋谷梁传疏»曰:〝师者教人以不及,故谓师为师资也〞。

这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

«韩非子»也有云:〝今有不才之子……师长教之弗为变〞其〝师长〞当然也指教师。

这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

2019中考数学冲刺复习专题试卷:分式方程要练说,先练胆。

说话胆小是幼儿语言发展的障碍。

不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆这个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。

二是注重培养幼儿敢于当众说话的习惯。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。

三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。

对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。

长期坚持,不断训练,幼儿说话胆量也在不断提高。

相关文档
最新文档