初二 平行四边形与菱形

合集下载

魏县第九中学八年级数学下册 第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形第1课

魏县第九中学八年级数学下册 第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形第1课

( 3) 30 m 5mn 24 n ( 4n2 )
请计算 : 25 36
类比分数的通分与约分你能联想 分式的通分与约分是怎样的吗 ?
∴菱形的周长=4×5=20(cm).
课堂小结
菱形的性质:
1.菱形的四条边都相等. 2.菱形的对角都相等. 3.菱形的两条对角线互相垂直平分,并 且每一条对角线平分一组对角. S菱形= 对角线乘积的一半F. 求证: ∠AEF=∠AFE.
证明:如图,连接AC, ∵四边形ABCD为菱形, ∴BC=CD,∠ECA=∠FCA. 又∵BE=DF,∴EC=FC. ∴△AEC≌△AFC, ∴AE=AF,∴∠AEF=∠AFE.
结束
语 八年级数学下册 第十八章 平行四边形18.2 特殊
的平行四边形18.2.2 菱形第1课时 菱形的性质课 件 (新版)新人教版-八年级数学下册第十八章平 行四边形18.2特殊的平行四边形18.2.2菱形第1课 时菱形的性质课件新版新人教版
八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形18.2.2 菱形第1 课时 菱形的性质课件 (新版)新人教
版同-学八年们级,数下学课下休册息第十十分八钟章。平现行在四是边休形 18.2息特时殊的间平,行你四们边休形息1一8.2下.2眼菱睛形,第1课
时菱形的性质课件新版新人教版
看看远处,要保护好眼睛哦~站起来
知识点 2 菱形性质的应用
比较菱形的对角线和平行四边形的对角 线,我们发现,菱形的对角线把菱形分成4个 全等的直角三角形,而平行四边形通常只被 分成两对全等三角形.
由菱形两条对角线的长 ,你能求出它的面积吗?
1 S菱形ABCD=2 AC ·BD
例3 如图,菱形花坛ABCD的边长为20 m, ∠ABC=60°,沿着菱形的对角线修建了两条小路 AC和BD.求两条小路的长(结果保留小数点后两 位)和花坛的面积(结果保留小数点后一位).

平行四边形与菱形的性质

平行四边形与菱形的性质

平行四边形与菱形的性质平行四边形与菱形是初中数学中常见的两个几何形体,它们具有一些共同的性质,也有一些不同之处。

本文将重点介绍平行四边形与菱形的性质,并对其进行比较分析。

一、平行四边形的性质1. 定义:平行四边形是四边形的一种特殊形式,具有两对对边平行的特点。

2. 对角线性质:平行四边形的对角线互相平分,即对角线相等,且交点连线中点。

3. 边角性质:平行四边形的对边相等,对角线上的内角互补,对角线外角相等。

4. 平行边性质:平行四边形中,对边相等的两条边是平行的。

通过以上性质的分析,我们可以得出平行四边形具有对角线平分、对边相等、内角互补等特点。

二、菱形的性质1. 定义:菱形是四边形的一种特殊形式,具有两对对边相等的特点。

2. 对角线性质:菱形的对角线相等,且交点连线垂直。

3. 边角性质:菱形的边相等,内角都是锐角或直角。

4. 对称性质:菱形具有对称性,通过对角线进行对称时,图形保持不变。

通过以上性质的分析,我们可以得出菱形具有对角线相等、边相等、对称等特点。

三、平行四边形与菱形的比较1. 对角线性质:平行四边形和菱形在对角线性质上相似,都具有对角线相等的特点。

2. 边角性质:平行四边形的对边相等,对角线上的内角互补;而菱形的边相等,内角都是锐角或直角。

3. 平行性质:平行四边形中的对边是平行的,而菱形没有平行性质。

4. 对称性质:菱形具有对称性,而平行四边形没有明显的对称性。

通过以上比较,我们可以看出平行四边形和菱形在对角线性质上相似,但在边角性质、平行性质和对称性质上存在一定的区别。

综上所述,平行四边形和菱形是具有不同性质的几何形体,对于初中数学学习而言,了解它们的性质和特点是基础知识。

掌握了平行四边形和菱形的性质,有助于我们更好地理解和应用于解题中。

因此,在学习数学几何时,我们应该注重对平行四边形和菱形的性质进行深入理解,并通过实际练习来提高对它们的掌握程度。

这样,在解题过程中,我们能够准确运用这些性质,提高数学的应用能力。

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。

第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。

第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。

平行四边形的这四个点有可能是定序的,也有可能没有定序。

在解决这些问题时,容易出现遗漏或方法不当或错解的情况。

因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。

可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。

对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。

这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。

对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。

如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。

如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。

此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。

平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。

最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。

除了平行四边形,矩形、菱形和正方形也有存在性问题。

对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。

对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。

03 要正确认识菱形与平行四边形的关系

03  要正确认识菱形与平行四边形的关系

要正确认识菱形与平行四边形的关系(1)菱形是特殊的平行四边形,即有一组邻边相等的平行四边形,因而它具有平行四边形的一切性质.
(2)菱形有它自己独特的而一般平行四边形没有的性质:四边相等,对角线互相垂直,每条对角线分别平分一组对角.在学习过程中要避免将菱形的特殊性质用到平行四边形上,还要注意不要将矩形与菱形的特殊性质混在一起.(3)菱形的判定也需要三个条件,实际上三个条件中有两个是判定平行四边形的,另一个是菱形的特殊条件.。

八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。

人教版初二数学下册第18章《平行四边形》讲义第11讲菱形及正方形

人教版初二数学下册第18章《平行四边形》讲义第11讲菱形及正方形

人教版初二数学下册第18章《平行四边形》讲义第11讲菱形及正方形1、定义:有一组邻边相等的平行四边形叫做菱形。

2、基本性质:〔1〕边:菱形的四条边都相等;〔2〕角:菱形的对角相等,邻角互补;〔3〕对角线:菱形的对角线相互垂直平分,且每一条对角线平分一组对角: 〔4〕对称性:菱形是轴对称图形,中心对称图形,对称轴有两条;〔5〕面积:S=21ab(其中a 、b 区分是菱形的两条对角线的长). 或 S=底×高。

〔1〕有一组邻边相等的平行四边形是菱形;〔2〕四边都相等的四边形是菱形;〔3〕对角线相互垂直平分的四边形是菱形;〔4〕对角线相互垂直的平行四边形是菱形.1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、基本性质:〔1〕边:正方形四条边都相等;〔2〕角:正方形的四个角都相等;〔3〕对角线:对角线相等且相互垂直平分,并且每条对角线平分一组对角; 〔4〕对称性:是中心对称图形,又是轴对称图形,对称轴有四条;〔1〕有一组邻边相等的矩形是正方形;〔2〕对角线相互垂直的矩形是正方形;〔3〕有一个角是直角的菱形是正方形;〔4〕对角线相等的菱形是正方形。

考点1、菱形的性质例1、菱形的一个内角是120°,一条较短的对角线的长为10,那么菱形的周长是________ 例2、如图,菱形ABCD 的两条对角线区分长6和8,点P 是对角线AC 上的一个动点,点M 、N 区分是边AB 、BC 的中点,那么PM +PN 的最小值是________.例3、菱形的一条对角线长为12cm ,面积为30cm 2,那么这个菱形的另一条对角线长为_______cm 。

例4、如图,菱形ABCD ,E ,F 区分是BC ,CD 上的点,∠B =∠EAF =60°,∠BAE =18°,求∠CEF 的度数。

例5、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延伸线于点E .〔1〕证明:四边形ACDE 是平行四边形;〔2〕假定AC=8,BD=6,求△ADE 的周长.例6、如图,在菱形ABCD 中,F 为对角线BD 上一点,点E 为AB 延伸线上一点,DF=BE ,CE=CF.求证:〔1〕△CFD ≌△CEB ;〔2〕∠CFE=60°.例7、:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.〔1〕、假定CE=1,求BC 的长;〔2〕、求证:AM=DF+ME .1、菱形ABCD 中,∠A =60o ,对角线BD 长为7cm ,那么此菱形周长 cm 。

平行四边形与菱形的性质

平行四边形与菱形的性质

平行四边形与菱形的性质平行四边形和菱形是几何学中常见的两种特殊四边形。

它们具有一些独特的性质和特征,下面将逐一探讨。

一、平行四边形的性质1. 对角线性质:平行四边形的对角线互相平分,即两条对角线的交点同时是它们的中点。

2. 相邻角性质:平行四边形中相邻的内角互补,即相邻内角的和为180度。

3. 对边性质:平行四边形的对边相等且平行,即所对的边长相等,且两边互相平行。

4. 同位角性质:平行四边形中同位角相等,即同位角对应的角度相等。

5. 临补角性质:平行四边形的临补角互补,即两对临补角的和为180度。

二、菱形的性质1. 对角线性质:菱形的对角线相互垂直,且互相平分,即两条对角线的交点同时是它们的中点。

2. 边长性质:菱形的四条边长相等。

3. 相邻角性质:菱形中相邻的内角互补,即相邻内角的和为180度。

4. 同位角性质:菱形中同位角相等,即同位角对应的角度相等。

5. 对边性质:菱形的对边平行且相等,即对边的长度相等且互相平行。

综上所述,平行四边形和菱形都有其各自独特的性质和特征。

它们在几何学中应用广泛,不仅仅是理论性质,还可以通过它们的性质来解决实际问题。

因此,对于学习和理解几何学的同学们来说,掌握并熟练运用平行四边形和菱形的性质是非常重要的。

无论是在计算平行四边形和菱形的面积、周长,还是在证明几何定理方面,了解它们的性质都会为我们的解题提供很大的帮助。

因此,在学习几何学的过程中,我们应该充分理解并掌握平行四边形和菱形的性质,灵活运用它们来解决各种问题。

总而言之,平行四边形和菱形作为几何学中的特殊四边形,具有一些独特的性质和特征。

掌握并熟练运用它们的性质,可以帮助我们解决各种几何问题,提高解题能力。

因此,在学习几何学的过程中,我们应该注重对平行四边形和菱形的性质的学习和理解,以便在实际应用中灵活运用。

初中数学人教八年级下册第十八章平行四边形-菱形的判定

初中数学人教八年级下册第十八章平行四边形-菱形的判定

边形EFGH,求证:四边形EFGH是菱形.
证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
F
H
∴AC=BD.
∵点E、F、G、H为各边中点, B
G
C
E FG H 1B D , F G E H 1A C ,
2
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
【变式题】 如图,顺次连接对角线相等的四边形
CD.求证:四边形ADCE是菱形. 证明:∵MN是AC的垂直平分线,
A
∴AE=CE,AD=CD,OA=OC,
∠AOD=∠EOC=90°.
∵CE∥AB,
∴∠DAO=∠ECO,
MD
O E
∴△ADO≌△CEO(ASA).
∴AD=CE,OD=OE,
∵OD=OE,OA=OC,
∴四边形ADCE是平行四边形 B
C
(C
A.一组邻边相等的四边形是菱形
B.三条边相等的四边形是菱形
C.四条边相等的四边形是菱形
D.四个角相等的四边形是菱形
典例精析
例3 如图,在△ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.
证明: ∵ ∠1= ∠2,
又∵AE=AC,AD=AD, ∴ △ACD≌ △AED (SAS).
A
∴四边形ABCD是平行四边形.
C D
又∵AB=BC,
∴四边形ABCD是菱形.
归纳总结 菱形的判定定理:
四条边都相等的四边形是菱形
A
A
D AB=BC=CD=AD
D
B
C
四边形ABCD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形
一、基本训练
1. 如图13,将矩形纸片ABC (D )折叠,使点(D )与点B 重合, 点C 落在点C '处,折痕为EF ,若
20=∠ABE ,那么C EF '∠ 的度数为 度。

2.如图1,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是
BC 上的一点,∠BEG >60°,现沿直线EG 将纸片折叠,使点B 落在纸片上 的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )
A .4
B .3
C .2
D .1
3.如图所示,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,
3
sin 5
A =,则下列结论正确的个数有
①cm DE 3= ②cm BE 1=
③菱形的面积为2
15cm ④cm BD 102= A . 1个 B . 2个 C . 3个 D . 4个
4.如图所示,在菱形ABCD 中,两条对角线 AC =6,BD =8,则此菱形的边长为 A .5
B .6
C .8
D .10
5.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为 A .16 B .8 C .4 D .1
6.如图1,四边形ABCD 是正方形,E 是边CD 上一 点,若△AFB 经过逆时针旋转角θ后与△AED 重合, 则θ的取值可能为( )
A .90°
B .60°
C .45°
D .30°
7. 如图9,点P 是矩形ABCD 的边AD 的一个动点,
矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对 角线AC 和BD 的距离之和是( )
A .125
B .65
C .24
5
D .不确定
B
A
G C
D
H E
A
B
C
D
例题
例1.如图12,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°. (1)求证:AC ∥DE ;
(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.
例2.如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,
矩形ABCD 的周长为32cm ,求AE 的长.
B C A E
D F
D
C
B
A
O
E
例3.如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .
(1) 求∠ABD 的度数; (2)求线段BE 的长.
例4.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .
(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.
7

例5.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF 是什么特殊四边形?并证明你的结论.
例6.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.
自我评价
1. 边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB ′C ′D ′, 两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个 风筝的面积是( )
A .2-33
B .
3
3
2 C .2-
4
3
D .2
2.如图,四边形ABCD 是边长为9的正方形纸片,
将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且 C B '=3,则AM 的长是( )
A .1.5
B .2
C .2.25
D .2.5
3.已知四边形ABCD 中,90A B C ===
∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A .90D =
∠ B .AB CD = C .AD BC = D .BC CD =
4.如图,边长为1的正方形ABCD 绕点A 逆时针
旋转45度后得到正方形'''D C AB ,边''C B 与DC 交于点O ,则四 边形OD AB '的周长..
是( ) A .22 B .3 C .2 D .21+
5.如图,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为( ) A .10° B .12.5° C .15° D .20°
A B
C
D
M
N
A '
B '
'D。

相关文档
最新文档