受弯构件的正截面承载力计算

合集下载

03受弯构件正截面承载力计算

03受弯构件正截面承载力计算
越显
0.4
著,受压区应力图形逐渐呈曲线分
Mcr
xn=xn/h0
布。
0 0.1 0.2 0.3 0.4 0.5
15
3.2 梁的受弯性能
第三章 钢筋混凝土受弯构件正截面承载力
带裂缝工作阶段(Ⅱ阶段) ◆ 荷载继续增加,钢筋拉应力、挠度 变形不断增大,裂缝宽度也不断开展, 但中和轴位置没有显著变化。
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
3.2 梁的受弯性能
fu f
18
第三章 钢筋混凝土受弯构件正截面承载力
屈服阶段(Ⅲ阶段)
◆ 由于混凝土受压具有很长的下
降段,因此梁的变形可持续较长,
但有一个最大弯矩Mu。
◆ 超过Mu后,承载力将有所降低,
直至压区混凝土压酥。Mu称为极
增大,混凝土受压的塑性特征表现的更为充分。
◆ 同时,受压区高度xn的减少使得钢筋拉力 T 与混凝土压力C
之间的力臂有所增大,截面弯矩也略有增加。
◆ 由于在该阶段钢筋的拉应变和 受压区混凝土的压应变都发展很
快,截面曲率f 和梁的挠度变形f 也迅速增大,曲率f 和梁的挠度变
形f的曲线斜率变得非常平缓,这 种现象可以称为“截面屈服”。
限弯矩,此时的受压边缘混凝土
的压应变称为极限压应变ecu,对
应截面受力状态为“Ⅲa状态”。
M/Mu
1.0
Mu
◆ ecu约在0.003 ~ 0.005范围,超过
0.8 My
0.6
该应变值,压区混凝土即开始压
0.4
第三章 钢筋混凝土受弯构件正截面承载力
h0
分布筋

受弯构件正截面承载力计算

受弯构件正截面承载力计算

受弯构件正截面承载力计算受弯构件的正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

弯矩的大小可以通过施加在构件上的外部荷载和构件的几何形状来计算。

有了弯矩的大小后,下一步就是确定截面形状。

截面形状是影响受弯构件强度的一个重要因素,常见的截面形状有矩形、圆形、T形等。

不同的截面形状对受弯构件的承载力有着不同的影响,因此需要根据实际情况选择合适的截面形状。

确定了弯矩和截面形状后,接下来就是计算材料的强度。

材料的强度是指材料在承受外部荷载作用下所能承受的最大应力。

常见的材料强度有抗拉强度、抗压强度和屈服强度等。

在进行正截面承载力计算时,需要根据材料的强度来确定构件的极限状态。

最后,根据弯矩、截面形状和材料的强度,可以计算出受弯构件的正截面承载力。

计算的过程包括确定应力分布、求解最大应力和计算承载力。

根据不同的截面形状和材料的特性,计算方法也有所不同。

总的来说,受弯构件正截面承载力计算是一项综合性的工作,需要考虑多个因素的综合作用。

在实际工程设计中,需要准确计算受弯构件的承载力,以确保结构的安全性和可靠性。

因此,在进行计算时,需要充分考虑强度设计的要求和计算方法,以保证计算结果的准确性。

受弯构件正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

第三讲受弯构件正截面承载力计算精选全文

第三讲受弯构件正截面承载力计算精选全文

Mu
1.0
砼退出工作,拉力主要由钢筋 承担,单钢筋未屈服;
b. 受压区砼已有塑性变形,但 不充分;
c. 弯距-曲率关系为曲线,曲
0.8 My
0.6
0.4
II
M cr
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
率与挠度增长加快。
(三)屈服阶段(钢筋屈服至破坏): 纵向受力钢筋屈服后,截面曲率
和梁的挠度也突然增大,裂缝宽度随 My 之扩展并沿梁高向上延伸,中和轴继 续上移,受压区高度进一步减小。弯 矩再增大直至极限弯矩实验值Mu时, 称为第Ⅲ阶段(Ⅲa)。
截面每排受力钢筋最好相同,不同时,直径差≥2mm,但 不超过4~6mm。
钢筋根数至少≥2,一排钢筋宜用3~4根,两排5~8根。 钢筋间的距离: ≥d,且≥30mm、且≥1.25倍最大骨料粒径。 自下而上布置钢筋,且要求上下对齐。
五.板内钢筋的直径和间距
❖钢筋直径通常为6~12mm;
板厚度较大时,直径可用16~25mm,特殊的用32、36mm ; 同一板中钢筋直径宜相差2mm以上,以便识别。
第二节 试验研究与分析
一、适筋受弯构件正截面的受力过程
1.梁的布置及特点 通常采用两点对称集中加荷,加载点位于梁跨度的
1/3处,如下图所示。这样,在两个对称集中荷载间的区 段(称“纯弯段”)上,不仅可以基本上排除剪力的影响 (忽略自重),同时也有利于在这一较长的区段上(L/3)布 置仪表,以观察粱受荷后变形和裂缝出现与开展的情况。 在“纯弯段”内,沿梁高两侧布置多排测点,用仪表量 测梁的纵向变形。
前无明显预兆,属脆性破坏。
第3种破坏情况——少筋破坏
配筋量过少: 拉区砼一出现裂缝,钢筋很快达到屈服,可能经

受弯构件的正截面承载力计算资料

受弯构件的正截面承载力计算资料

槽形板
二、截面尺寸 高跨比h/l0=1/8~1/12
矩形截面梁高宽比h/b=2.0~3.5 T形截面梁高宽比h/b=2.5~4.0。(b为梁肋) b=120、150、180、200、220、250、300、…(mm),
250以上的级差为50mm。 h=250、300、350、……、750、800、900、
4.3.1 正截面承载力计算的基本假定
(1) 截面的应变沿截面高度保持线性分布-简称平截面假定
ec
f e ec es
y xc h0 xx
f xc
h0
(2) 不考虑混凝土的抗拉强度
y
es
M xc
C
Tc T
(3) 混凝土的压应力-压应变之间的关系为:
σ
fc
上升段
c

f
c
[1

(1

e e0
M0
C 超筋梁ρ>ρmax
My B
Mu
适筋梁 ρmin<ρ<ρmax
A少筋梁ρ>ρmax
0
f0
超筋破坏形态
> b
特点:受压区混凝土先压碎,纵向受拉钢筋 不屈服。
钢筋破坏之前仍处于弹性工作阶段,裂缝开 展不宽,延伸不高,梁的挠度不大。破坏带 有突然性,没有明显的破坏预兆,属于脆性 破坏类型。
M0
a
≥30
纵向受拉钢筋的配筋百分率
截面上所有纵向受拉钢筋的合力点到受拉边缘的竖向距离
为a,则到受压边缘的距离为h0=h-a,称为截面有效高度。
d=10~32mm(常用) 单排 a= c+d/2=25+20/2=35mm 双排 a= c+d+e/2=25+20+30/2=60mm

第4章-受弯构件正截面承载力计算精选全文

第4章-受弯构件正截面承载力计算精选全文

适筋梁的判别条件
max b
第4章 受弯构件正截面承载力计算
习题:矩形截面梁,b=250mm,h=500mm,承受 弯矩设计值M=160kN·m,采用C20级混凝土, HRB400级钢筋,截面配筋如图。复核该截面是否 安全。
第4章 受弯构件正截面承载力计算
超筋梁的极限承载力
关键在于求出钢筋的应力
m
应取:
in
m m
in in
0.002 0.45 ft
/
fy
第4章 受弯构件正截面承载力计算
回顾
的定义:
x
h0
x
M
C
h0
Ts
相对受压区高度
第4章 受弯构件正截面承载力计算
相对界限受压区高度b
xnb 根据右图三角形相似可得xnb
xnb
cu cu y
h0
回顾
cu
h0
y
根据的定义可得b(有屈服点的钢筋)
(1) 计算跨度l0
单跨板的l0可按有关规定等于板的净跨加板的厚度。有:
l0=l n+h=(2500-120×2)+80=2340mm
(P349)
(2)荷载设计值
恒载标准值g K:水磨石地面0.03×22×1=0.66KN/m 板的钢筋砼自重0.08×25×1=2.0KN/m
白灰砂浆粉刷0.012×17×1=0.204KN/m
任意位置处钢筋的 应变和应力
cu
xnb=x/b1
h0i h0
si s
si
h0i xnb xnb
cu
cu
(
h0i b1
x
1)
cu
(
h0i b1 h0

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算
在进行受弯构件正截面受弯承载力计算时,首先需要了解构件的几何尺寸和材料特性。

几何尺寸包括构件的宽度、高度和长度,材料特性包括材料的抗弯强度和弹性模量等。

在进行受弯构件正截面受弯承载力计算时,一般采用等效应力法。

根据等效应力法,构件的正截面受弯承载力可以通过以下公式计算:M=σ×S
其中,M是受弯构件所受弯矩,σ是构件截面上的应力,S是截面的抵抗矩。

在计算截面上的应力时,可以使用以下公式:
σ=M×y/I
其中,M是受弯构件所受弯矩,y是距离截面中性轴距离,I是截面的惯性矩。

在计算截面的抵抗矩时,可以使用以下公式:
S=y×A×f
其中,y是距离截面中性轴距离,A是截面的面积,f是材料的抗弯强度。

综合以上公式,可以得到受弯构件的正截面受弯承载力公式:
N=σ×S=(M×y/I)×(y×A×f)
根据构件的几何尺寸和材料特性,可以计算出受弯构件的正截面受弯
承载力。

需要注意的是,在实际工程中,受弯构件的应力和截面的抵抗矩常常
不是均匀分布的,需要进行更加详细的计算和分析。

此外,由于材料的塑
性变形和结构的不完美性等因素的存在,实际承载能力可能小于理论计算值。

综上所述,受弯构件正截面受弯承载力计算是结构工程中的重要任务,它通过等效应力法来确定构件在受弯状态下的承载能力。

在实际工程中,
应该考虑到材料和结构的各种因素,进行更加精细的分析和计算。

第4章受弯构件的正截面受弯承载力精选全文

第4章受弯构件的正截面受弯承载力精选全文
图形在第I阶段前期是直线,后期是曲线。 3)弯矩与截面曲率基本上是直线关系。 #Ia阶段可作为受弯构件抗裂度的计算依据。
*第II阶段:混凝土开裂后至钢筋屈服前的裂缝阶段
M0=Mcr0时,在纯弯段抗拉能力最薄弱的某一截面处, 当受拉区边缘纤维的拉应变值到达混凝土极限拉应变实验
值εtu0时,将首先出现第一条裂缝,一旦开裂,梁即由第
3
结构和构件要满足承载能力极限状态和正常使用极 限状态的要求。梁、板正截面受弯承载力计算就是从满 足承载能力极限状态出发的,即要求满足
M≤Mu
(4—1)
式中的M是受弯构件正截面的弯矩设计值,它是由结构 上的作用所产生的内力设计值;Mu是受弯构件正截面受
弯承载力的设计值,它是由正截面上材料所产生的抗力。
侧面构造钢筋—用以增强钢筋骨架的刚性,提高梁的抗 扭能力,并承受因温度变化和混凝土收缩所产生的拉应力 ,抑制梁侧裂缝开展。
2)梁纵向受力钢筋应采用HRB400、HRB500、HRBF400、
HRBF500钢筋 ,常用直径为12mm、14mm、16mm、18mm、
20mm、22mm和25mm。根数最好不少于3(或4)根。
4
因此,进行钢筋混凝土构件设计时,除了计算满足以外, 还必须满足有关构造要求。
4.1.1截面形状与尺寸
1.截面形状:梁、板常用矩形、T形、I字形、槽形、空心 板和倒L形梁等对称和不对称截面。
(a)
(b)
(c)
(d)
(e)
(f)
(g)
5
2.截面尺寸 确定原则:A.考虑模板模数;B.尽量统一、方便施工。
1000mm等尺寸。800mm以下的级差为50mm,以上的为l00mm。 (3)现浇板的宽度一般较大,设计时可取单位宽度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章受弯构件的正截面承载力计算1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点?答:第Ⅰ阶段:混凝土开裂前的未裂阶段当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。

由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。

随着荷载的增加,截面上的应力和应变逐渐增大。

受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。

当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。

此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。

第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。

在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。

随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。

在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。

还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。

但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。

这与平截面假定发生了矛盾。

但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。

因此,各受力阶段的截面应变均假定呈三角形分布。

第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。

当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。

这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。

我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。

在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。

在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。

这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。

至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。

2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系?答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。

3.何谓配筋率?配筋率对梁破坏形态有什么的影响?答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即bh A s=ρ 式中A s —— 受拉钢筋截面面积; b —— 梁截面宽度;h 0 —— 梁截面有效高度,h 0=h-a ; h —— 梁截面高度;a —— 纵向受拉钢筋合力点至截面受拉边缘的距离。

随着配筋率不同,钢筋混凝土梁可能出现下面三种不同的破坏形态: 1) 适筋破坏形态适筋梁从开始加荷直至破坏,面所能承担的弯矩增加甚微,时裂缝开展较宽,挠度较大,题4-2a )都能得到充分利用,符合安全、经济的要求,故在实际工程中,受弯构件都应设计成适筋梁。

2) 超筋破坏形态配筋率过大的梁称为“超筋梁”。

试验表明,由于超筋梁内钢筋配置过多,抗拉能力过强,当荷载加到一定程度后,在钢筋的拉应力尚未达到屈服强度之前,受压区混凝土已先被压碎,致使构件破坏(图4-4b )。

由于超筋梁在破坏前钢筋尚未屈服而仍处于弹性工作阶段,裂缝开展不宽,延伸不高,梁的挠度较小,如图题3-2b 所示。

由于它在没有明显预兆的情况下突然破坏,故其破坏类型属脆性破坏。

超筋梁虽然配置有很多受拉钢筋,但其强度不能充分利用,这是不经济的,同时破坏前又无明显预兆,所以在实际工程中应避免设计成超筋梁。

3) 少筋破坏形态配筋率过低的梁称为“少筋梁”。

这种梁在开裂以前受拉区的拉力主要由混凝土承担,钢筋承担的拉力占很少一部分。

到了第Ⅰ阶段末,受拉区一旦开裂,拉力就几乎全部转由钢筋承担。

由于钢筋数量太少,使裂缝截面的钢筋拉应力突然剧增至超过屈服强度而进入强化阶段,此时钢筋塑性伸长已很大,裂缝开展过宽,梁将严重下垂,即使受压区混凝土暂未压碎,但过大的变形及裂缝已经不适于继续承载,从而标志着梁的破坏(图题3-2c ),在个别情况题-3-1配筋率题3-2 梁正截面的三种破坏形式 a )适筋梁b )超筋梁c )少筋梁下,钢筋甚至可能被拉断。

上述破坏过程一般是在梁出现第一条裂缝后突然发生,所以也属脆性破坏。

因此,少筋梁也是不安全的。

少筋梁虽然配了钢筋,但不能起到提高纯混凝土梁承载能力的作用,同时,混凝土的抗压强度也不能充分利用,因此在实际工程设计中也应避免。

不同配筋量梁的M 0—Ø0关系如图题3-3所示。

4.正截面承载力计算有哪些基本假定? 答:正截面承载力计算的基本假定有:1)平截面假定:在构件受荷以后,截面应变沿截面高度保持线性分布。

是指梁的变形规律符合“平均应变平截面假定”。

2)不考虑混凝土的抗拉强度。

对处于承载能力极限状态下的正截面,其受拉区混凝土的绝大部分因开裂已经退出工作,而中和轴以下可能残留很小的未开裂部分,其合力小且离中和轴较近,作用相对很小,为简化计算,完全可以忽略其抗拉强度的影响。

3)混凝土的压应力与压应变之间的关系曲线按抛物线上升段和水平段取用,对于正截面处于非均匀受压时的混凝土,极限压应变的取值最大不超过0.0033。

如图题4-1所示。

混凝土受压应力-应变关系曲线方程为: 当εc ≤ε0时(上升段)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=ncc c f 011εεσ 当ε0<εc ≤εcu 时(水平段)c c f =σ4)钢筋应力取钢筋应变与其弹性模量的乘积,但不大于其强度设计值。

受拉钢筋的极限应变取0.01。

这一假定对钢筋的应力应变曲线采用了简化的理想化曲线,如图题4-2所示。

曲线亦分两段组成: 第一段,当0≤εs ≤εy 时σs =εs E s第二段,当εs >εy 时σs = f y5.适筋梁与超筋梁破坏的本质区别是什么?什么是“界限破坏”?单筋矩形截面梁防止超筋破坏的公式有哪些?答:适筋梁与超筋梁破坏的本质区别在于:前者受拉钢筋首先屈服,经过一段塑性变形后,受压区混凝土才被压碎;后者在钢筋屈服前,受压区混凝土首先达到弯曲受压极限压应变,导致构件破坏。

具有某个特定配筋率的梁,当其受拉钢筋开始屈服时,受压区边缘也刚好达到混凝土弯曲受压时的极限压应变。

也就是说,钢筋屈服与受压区混凝土被压碎同时发生。

我们把梁的这种破坏特征称为“界限破坏”。

不难看出,这个特定的配筋率就是适筋梁的界限。

设计时,为使所设计的梁保持在适筋范围内而不致成为超筋梁,单筋矩形截面梁基本公式的适用条题4-2 理想化的钢筋应力应变关系曲线件为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎭⎫ ⎝⎛-=≤=≤=≤≤2 01max 10b bc u yc b b b b bx h bx f M M f f h x x ααξρρξξξ或或或上式中的第四个表达式意味着超过最大配筋率的用钢量并不能提高梁的承载力,M umax 为单筋矩形截面受弯承载力的上限值,这表明超筋梁是不经济的。

6.确定适筋梁的最小配筋率的原则是什么?单筋矩形截面梁防止少筋破坏的公式有哪些? 答:原则上可以用M u =M cu 的条件来确定适筋梁的最小配筋率ρmin ,即按最小配筋率配筋的梁,用基本公式所算得的破坏弯矩不应小于同截面、同强度等级的素混凝土梁所能承担的弯矩。

设计时,为避免设计成少筋梁,单筋矩形截面梁基本公式的适用条件为:A s ≥A s,min =ρmin bh当A s <A s,min 时,应按A s =A s,min 配筋。

7.梁的截面尺寸与纵向受力钢筋有哪些构造要求? 答:(1)梁的截面尺寸的构造要求矩形截面梁的高宽比h/b 一般取2.0~3.5;T 形截面梁的h/b 一般取2.5~4.0(此处b 为梁肋宽)。

为了统一模板尺寸便于施工,建议梁的宽度采用b150、180、200、250、300、350mm 度采用h =250、300、350……750、800、900、等尺寸。

(2)梁的纵向受力钢筋的构造要求梁中常用的纵向受力钢筋直径为根数最好不少于3(或4)根。

同直径的钢筋,钢筋直径相差至少取2mm ,施工中能用肉眼识别。

密实性,纵筋的净间距应满足图题6(a )若钢筋必须排成两排时,上、下两排钢筋应当对齐。

为了保证钢筋不被锈蚀,同时保证钢筋与混凝土紧密粘结,梁内钢筋的两侧和近边都应设有保护层。

梁、板、柱的混凝土保护层厚度与环境类别和混凝土强度等级有关,见附表18。

由该表知,当环境类别为一类时,即在室内正常环境下,其最小厚度应不小于钢筋的公称直径和25mm 。

在梁截面选择配筋计算时,若环境类别为一类,一般可取h 0=h-35mm (一排钢筋时,图题6(b );或h 0=h-60mm (两排钢筋时,图题6(a ))。

此外,为了固定箍筋并与受力钢筋连成钢筋骨架,在梁内应设置架立钢筋,当跨度小于4m 时,其直径不宜小于8mm ;当跨度为4m~6m 时,不宜小于10mm ;当跨度大于6m 时,不宜小于12mm 。

题6 净距、保护层及有效高度8.板的截面尺寸、受力钢筋与分布钢筋有哪些构造要求?答: 1)板的截面尺寸构造要求现浇板的宽度一般较大,设计时可取单位宽度(b=1000mm)进行计算。

其最小厚度除应满足各项功能要求外,尚应满足下表的要求。

现浇板厚度以10mm为模数。

2)板的受力钢筋的构造要求题8 板的配筋为了便于浇注混凝土,保证钢筋周围混凝土的密实性,板内钢筋间距不宜太密;为了正常地分担内力,也不宜过稀。

钢筋的间距一般在70mm~200mm内;当h>150mm时,间距不应大于1.5h,在板的每米宽度内也不得少于3根。

相关文档
最新文档