(易错题)高中数学高中数学选修2-2第三章《导数应用》检测(含答案解析)(1)

合集下载

新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(含答案解析)

新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(含答案解析)

一、选择题1.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞- B .(,1] -∞-C .[1,) -+∞D .[,)e2.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是( ) A .-1≤m ≤1 B .-1<m ≤1C .-1<m <1D .-1≤m <13.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞4.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1635.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-6.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r7.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)8.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 9.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃10.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-11.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .202012.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( ) A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.函数()f x 在(0,+∞)上有定义,对于给定的正数K ,定义函数()()()(),,K f x f x K f x K f x K⎧≤⎪=⎨>⎪⎩,取函数()2253ln 2f x x x x =-,若对任意x ∈(0,+∞),恒有()()K f x f x =,则K 的最小值为______. 18.函数()3212132a f x x x x =-++的递减区间为()2,1--,则实数a 的值________. 19.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________. 20.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____.三、解答题21.已知函数()()()3222110f x ax a x a =--+≠.(1)讨论()f x 的单调性;(2)当2a =时,若α∀、R β∈,()()sin sin f f m αβ-<,求m 的取值范围.22.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭.(1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立. 23.已知函数()32122f x ax x x =+-,其导函数为()f x ',且(1)0f '-=. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程 (Ⅱ)求函数()f x 在[1,1]-上的最大值和最小值. 24.设函数()(1)f x lnx m x =-+,2()2m g x x =,(0,)x m R >∈. (Ⅰ)若对任意121x x >>,1212()()1f x f x x x -<--恒成立,求m 的取值范围;(Ⅱ)()()()h x f x g x =+,讨论函数()y h x =的单调性. 25.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x≥-在(]0,1x ∈内恒成立,求t 的取值范围. 26.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果.【详解】函数()xf x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.2.D解析:D 【解析】因为f ′(x)=3x 2-12=3(x +2)(x -2),令f ′(x)<0⇒-2<x<2,所以函数f(x)=x 3-12x 的单调递减区间为(-2,2),要使f(x)在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以221212m m m m ≥-⎧⎪+≤⎨⎪+>⎩从中解得-1≤m<1,选D.点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x ---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x-+在[]1,2上单调递减,所以724x x -+的最小值为271288-+=-,因此18a ≥-,选A. 【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==,()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.5.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ',则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=, 整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.6.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.7.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g =因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>;当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.8.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C . 9.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.10.A解析:A 【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论. 【详解】设函数()()()2ln 0=-=->y f x g x x x x ,()212120-'∴=-=>x y x x x x,令0y '<,0x,0∴<<x ,函数在⎛ ⎝⎭上为单调减函数;令0y '>,0x,2∴>x ,函数在2⎛⎫+∞ ⎪ ⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+.故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+. 故选:A. 【点睛】本题主要考查利用导数研究函数的最值,属于中档题.11.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=,因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 12.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解. 【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a << 故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不解析:16 【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】 因为()ln 2xg x x=+,()0,x ∈+∞, 所以()21ln xg x x-'=,令()0g x '=得x e =,所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增; 当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减, 又()12g e e=+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =,所以121022t t e<<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16. 【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+(x =+2x =<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值故答案为:【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④ 【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x xf x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案. 【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x xf x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x xf x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =, ()3313130g e e =--<,()4414200g e e =-->, 则方程2()2f x x x =+有一根在(3,4)之间, 故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立,令()x xh x e ekx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立, 若0x x e e k -+->,即1x xx x k e ee e-<+=+恒成立, 而12x xe e +,若有2k <,故④正确;综合可得:①②④正确; 故答案为:①②④. 【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】根据题意利用导数求出函数的最大值即可【详解】由得当时函数单调递减当时函数单调递增所以函数的最大值为:即所以要想恒有只需所以的最小值为故答案为:【点睛】本题考查了利用导数求函数最大值问题考查了解析:2332e【分析】根据题意,利用导数求出函数()2253ln 2f x x x x =-的最大值即可. 【详解】 由()2253ln 2f x x x x =-得()()213ln f x x x '=-, 当13x e >时,()0f x '<,函数()f x 单调递减, 当130x e <<时,()0f x '>,函数()f x 单调递增,所以函数()y f x =的最大值为:231332e f e ⎛⎫= ⎪⎝⎭,即()2332f x e ≤,所以要想恒有()()K f x f x =,只需2332K e ≥,所以K 的最小值为2332e .故答案为:2332e【点睛】本题考查了利用导数求函数最大值问题,考查了学生的数学阅读和运算求解能力.18.【分析】根据题意求出函数的导函数则方程的两根为和利用韦达定理即可得到结论【详解】由题意因函数的递减区间为所以方程的两根为和由韦达定理可得:即故答案为:【点睛】本题考查了导函数的运算法则一元二次方程根 解析:3-【分析】根据题意,求出函数的导函数,则方程220x ax -+=的两根为2-和1-,利用韦达定理即可得到结论. 【详解】由题意,()22f x x ax =-+',因函数()f x 的递减区间为()2,1--,所以,方程220x ax -+=的两根为2-和1-, 由韦达定理可得:21a --=,即3a =-. 故答案为:3-. 【点睛】本题考查了导函数的运算法则,一元二次方程根与系数的关系,属于基础题.19.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x a-<<-时,()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f a f ⎧⎛≥⎪ ⎨⎝⎭⎪-≥⎩,即3320320a a a a ⎧⎛⎛⎫⎪-+≥ ⎪ ⎪⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.20.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤ 【分析】①通过导数研究函数的单调性可得结论正确; ②利用导数可知函数为增函数,函数最多一个零点;③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围. 【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的;对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()xf x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()xf x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的. 故答案为:①③⑤ 【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.三、解答题21.(1)答案见解析;(2)()8,+∞. 【分析】(1)求得()2163a f x ax x a -⎛⎫'=-⎪⎝⎭,分0a <、102a <<、12a =、12a >四种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间; (2)由题意可知,当[]1,1x ∈-时,()()max min m f x f x >-,由(1)中的结论求得()f x 在区间[]1,1-上的最大值和最小值,即可求得实数m 的取值范围. 【详解】(1)()()221622163a f x ax a x ax x a -⎛⎫'=--=-⎪⎝⎭. ①当0a <时,2103a a ->,由()0f x '>,得2103a x a -<<,则()f x 在210,3a a -⎛⎫⎪⎝⎭上单调递增;由()0f x '<,得0x <或213a x a ->,则()f x 在(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭上单调递减; ②当102a <<时,2103a a-<, 由()0f x '<,可得2103a x a -<<;由()0f x '>,可得213a x a-<或0x >. ()f x 在21,03a a -⎛⎫ ⎪⎝⎭上单调递减,在21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增;③当12a =时,()230f x x '=≥,()f x 在R 上单调递增; ④当12a >时,2103a a ->, 由()0f x '<可得2103a x a -<<;由()0f x '>可得0x <或213a x a->. ()f x 在210,3a a -⎛⎫ ⎪⎝⎭上单调递减,在(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a <时,函数()f x 的单调递增区间为210,3a a -⎛⎫⎪⎝⎭,单调递减区间为(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭;当102a <<时,函数()f x 的单调递减区间为21,03a a -⎛⎫⎪⎝⎭,单调递增区间为21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+;当12a =时,函数()f x 在R 上单调递增; 当12a >时,函数()f x 的单调递减区间为210,3a a -⎛⎫ ⎪⎝⎭,单调递增区间为(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭;(2)因为[]sin 1,1x ∈-,所以α∀、R β∈,()()sin sin f f m αβ-<等价于()f x 在[]1,1-上的最大值与最小值的差小于m ,即()()max min m f x f x >-.当2a =时,()32431f x x x =-+,由(1)知,()f x 在[)1,0-,1,12⎛⎤⎥⎝⎦上单调递增,在10,2⎛⎫ ⎪⎝⎭上单调递减.因为()16f -=-,()01f =,1324f ⎛⎫=⎪⎝⎭,()12f =,所以()min 6f x =-,()max 2f x =,所以()268m >--=,即m 的取值范围为()8,+∞. 【点睛】本题考查利用导数求解含参函数的单调区间,同时也考查了利用导数求解函数不等式问题,解本题的关键在于利用下面的结论:1x ∀、2x D ∈,()()()()12max min f x f x m m f x f x -<⇔>-.22.(1)1,1a b ==;(2)证明见解析. 【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos xf x ae xg x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()xh x e x x =+-,则()21xh x e x '=+-. 易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减,当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增.∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到. ∴不等式()()f x g x >恒成立. 【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题. 23.(1) 4250x y --=. (2) ()max 32f x =,min 22()27f x =-. 【解析】分析:(1)先由'(1)0f -=求出a 的值,再求出函数()y f x =在点(1,(1))f 的切线方程;(2)先求出函数的极值,列表格,根据单调性求出最大值和最小值. 详解: (Ⅰ)()232f x ax x '=+-∵()10f '-=,∴3120a --=.解得1a = ∴()32122f x x x x =+-,()232f x x x '=+- ∴()1f 12=-,()12f '=. ∴曲线()y f x =在点()()1,1f 处的切线方程为4250x y --=(Ⅱ)出(Ⅰ),当()0f x '=时,解得1x =-或23x =当x 变化时,()f x ,()f x '的变化情况如下表:∴()f x 的极小值为327f ⎛⎫=- ⎪⎝⎭又()312f -=,()112f =- ∴()()max 312f x f =-=,()min 222327f x f ⎛⎫==-⎪⎝⎭. 点睛:本题主要考查了导数的几何意义,利用导数求函数最值的步骤等,属于中档题.求出a 的值是解题的关键.24.(Ⅰ)1m ;(Ⅱ)答案见解析. 【分析】(Ⅰ)依题意,1122()()f x x f x x +<+,构造函数()()(1)k x f x x lnx mx x =+=->,则1()0(1)k x m x x'=->恒成立,由此即可求得m 的取值范围; (Ⅱ)表示出()h x ,求导,分类讨论即可得出其单调性情况. 【详解】(Ⅰ)依题意,121x x >>,1212()()1f x f x x x -<--,即1212()()()f x f x x x -<--,亦即1122()()f x x f x x +<+,令()()(1)k x f x x lnx mx x =+=->,由题意即知函数()y k x =在区间(1,)+∞上单调递减,则1()0(1)k x m x x'=->恒成立, ∴1m x在区间(1,)+∞上恒成立,故1m . (Ⅱ)2()(1)(0)2m h x lnx m x x m =-++>,1(1)(1)()(1)mx x h x m mx x x--'=-++=, 当0m =时,1()xh x x-'=,(0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当0m <时,101m<<, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当1m =时,()0h x ',()h x 的单调递增区间为(0,)+∞, 当1m 时,令()0h x '=,得1x =或1x m =;101m<<,当x 变化,()h x ',()h x 变化如下表即单调增区间为1(0,)m,(1,)+∞,减区间为(,1)m . 当01m <<时,令()0h x '=,得1x =或1x m =;11m>,当x 变化,()h x ',()h x 变化如下表即单调增区间为(0,1),1(,)m+∞,减区间为(1,)m. 综上:当0m 时,单调增区间为(0,1),减区间为(1,)+∞,当01m <<时,单调增区间为(0,1),1(,)m+∞,减区间为1(1,)m, 当1m =时,()h x 的单调递增区间为(0,)+∞, 当1m 时,单调增区间为1(0,)m,(1,)+∞,减区间为1(,1)m. 【点睛】本题主要考查利用导数研究函数的单调性,考查构造思想及分类讨论思想,考查运算求解能力,属于中档题. 25.(1)1 ;(2)(],1-∞. 【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可.(2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2xt x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()xh x x x x=+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x xh x x --+'=,因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >, 所以()0h x '<,可得()h x 在()0,1上单调递减, 所以当1x =时,312ln ()xh x x x x=+-有最小值2, 得22t ≤,所以1t ≤, 故t 的取值范围是(],1-∞, 【点睛】本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 26.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(1)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(1)

一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤3.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .4.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a <<B .()()()23log 2af f a f <<C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<5.以下不等式不成立的是( ) A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞6.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()x f x F x e=则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞7.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点 C .0x ≤时,不等式()2xf x e ≤恒成立D .函数()g x 至多有两个零点8.已知可导函数()f x 的定义域为(,0)-∞,其导函数()'f x 满足()2()0xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞-B .(2021,2020)--C .(2021,0)-D .(2020,0)-9.内接于半径为R 的球且体积最大的圆柱体的高为( ) A.3R BC.2R D.2R 10.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞11.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e12.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.函数()21ln 2f x x x ax =+-存在与直线30x y -=平行的切线,则实数a 的取值范围是________. 14.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.15.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 16.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.17.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 18.已知函数()ln g x a x =,若对[1,]x e ∀∈,都有2()(2)g x x a x ≥-++恒成立,则实数a 的取值范围是________.19.若函数()ln 1f x ax x =--有零点,则实数a 的取值范围是___________. 20.已知定义在R 上的连续函数()y f x =对任意实数x 满足(4)()f x f x -=,(()2)0x f x -'>,则下列命题正确的有________.①若(2)(6)0f f <,则函数()y f x =有两个零点; ②函数(2)y f x =+为偶函数;③(sin12cos12)f f >︒+︒; ④若12x x <且124x x +>,则12()()f x f x <.三、解答题21.已知函数()42ln af x ax x x=--. (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求实数a 的取值范围; (3)设函数6()eg x x=,若在区间[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数a 的取值范围. 22.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围. 23.设函数()()()ln 10f x x x =+≥,()()()101x x a g x x x ++=≥+.(1)证明:()2f x x x ≥-. (2)若()()f x xg x +≥恒成立,求a 的取值范围; (3)证明:当*n ∈N 时,()2121ln 149n n n -+>+++. 24.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 25.已知函数()(1)ln f x x x =+. (1)求()y f x =在1x =处的切线方程:(2)已知实数2k >时,求证:函数()y f x =的图象与直线l :(1)y k x =-有3个交点. 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增.∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.3.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<,所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.5.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1xf x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立. 故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.6.B解析:B 【解析】 ∵()()xf x F x e =∴2()()()()()x x x xf x e f x e f x f x F x e e ''--'==∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e=∴不等式()21F x e<等价于()(1)F x F < ∴不等式()21F x e<的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.7.C解析:C 【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】()()xf xg x e =, 则()()()xf x f xg x e '-'=, 2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减,由0(0)(0)2f g e==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.8.B解析:B 【分析】由题可得当(,0)x ∈-∞时,()2()0xf x f x '->,进而构造函数2()()f x g x x=,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集. 【详解】解:构造2()()(0)f x g x x x =<,则243()2()()2()()x f x x f x xf x f x g x x x ''⋅-⋅-'==,因为()2()0xf x f x '->,则()0g x '<∴函数()g x 在(,0)-∞上是减函数,∵不等式2(2020)(2020)(1)0f x x f +-+-<,且()2(1)(1)(1)1f g f --==--,等价于()()()()()2220201120201f x f g x +-<=-+-,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:B 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x =是解决本题的关键,属于中档题. 9.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.10.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立,即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.11.C解析:C 【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.【分析】原命题等价于有解再求的最小值即得解【详解】由题意得故存在切点使得所以有解因为所以(当且仅当时取等号)所以即则实数的取值范围是故答案为:【点睛】方法点睛:形如的有解问题等价于不是所以本题只要求解析:[)1,-+∞. 【分析】原命题等价于13t a t +=+有解,再求1tt +的最小值即得解. 【详解】 由题意,得()1f x x a x'=+-, 故存在切点()(),P t f t ,使得13t a t+-=, 所以13t a t+=+有解,因为0t >,所以12t t+(当且仅当1t =时取等号), 所以32a +, 即1a -,则实数a 的取值范围是[)1,-+∞. 故答案为:[)1,-+∞. 【点睛】方法点睛:形如()a f x =的有解问题,等价于[()]min a f x ≥,不是[()]max a f x ≥,所以本题只要求出1tt +的最小值即得解.14.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根解析:814,16⎛⎫⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可. 【详解】 因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点, 所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠, 所以根据韦达定理有:1212x x ax x b +=-⎧⎨⋅=⎩,故()23939b a b b ab b ++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠, 所以()()22112281334,16x x x x ⎛⎫--∈⎪⎝⎭. 故答案为:814,16⎛⎫⎪⎝⎭.【点睛】思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.15.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可. 【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-, 因为0x >,e 1x >,所以()sin 0x f x e x '=->, 故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数. 因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题.16.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.17.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围. 【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+,令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e ≥, 当()0g x '<,即ln 10x +<,解得10x e<< 所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e⎛⎫==+=- ⎪⎝⎭, 所以11k e≤-故答案为:1,1e⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.18.【分析】由已知条件推导出令由此利用导数性质能求出的取值范围【详解】解:由题意得到:且等号不能同时取所以即因而令又当时从而(仅当时取等号)在上为增函数的最小值为的取值范围是即故答案为:【点睛】本题考查 解析:(],1-∞-【分析】由已知条件推导出22x x a x lnx--,([1,])x e ∈,令22()x x f x x lnx -=-,([1,])x e ∈,由此利用导数性质能求出a 的取值范围. 【详解】解:由题意得到:2()2a x lnx x x --.[]1,x e ∈,1lnx x ∴且等号不能同时取,所以lnx x <,即0x lnx ->,因而22x x a x lnx --,([1,])x e ∈令22()x x f x x lnx-=-,([1,])x e ∈,又2(1)(22)()()x x lnx f x x lnx -+-'=-, 当[]1,x e ∈时,10x -,1lnx ,220x lnx +->, 从而()0f x '(仅当1x =时取等号), ()f x 在[]1,e 上为增函数,()f x ∴的最小值为()11f =-,a ∴的取值范围是1a -,即(],1a ∈-∞-故答案为:(],1-∞-. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意构造法和导数性质的合理运用,属于中档题.19.【分析】变换得到设求导得到单调性画出图像得到答案【详解】由题可知函数的定义域为函数有零点等价于有实数根即设则则函数在上单调递增在上单调递减且画出图像如图所示:根据图像知故答案为:【点睛】本题考查了利 解析:(,1]-∞【分析】 变换得到ln 1x a x+=,设()ln 1x g x x +=,求导得到单调性,画出图像得到答案.【详解】由题可知函数()f x 的定义域为()0,∞+ 函数()ln 1f x ax x =--有零点, 等价于()ln 10f x ax x =--=有实数根()ln 10f x ax x =--=,即ln 1x a x+=, 设()ln 1x g x x +=,则()2ln 'xg x x -=. 则函数在()0,1上单调递增,在[)1,+∞上单调递减,且()11g =, 画出图像,如图所示:根据图像知1a ≤. 故答案为:(,1]-∞. 【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.20.①②④【分析】根据已知条件得到函数的对称轴以及函数的单调性结合题意对选项进行逐一判断即可【详解】因为故关于对称;又故当时单调递增;时单调递减对①:若根据函数单调性显然则根据零点存在定理和函数单调性在解析:①②④ 【分析】根据已知条件得到函数的对称轴,以及函数的单调性,结合题意,对选项进行逐一判断即可. 【详解】因为(4)()f x f x -=,故()f x 关于2x =对称;又(()2)0x f x -'>,故当2x >时,()f x 单调递增;2x <时,()f x 单调递减. 对①:若(2)(6)0f f <,根据函数单调性,显然()()20,60f f ,则()20f -> 根据零点存在定理和函数单调性,()f x 在()()2,2,2,6-上各有1个零点,故①正确; 对②:因为()f x 关于2x =对称,故()2f x +关于0x =对称,故是偶函数,则②正确;对③:121257sin cos ︒+︒=︒<(),2-∞单调递减可知,()1212ff sin cos <︒+︒,故③错误;对④:因为12x x <,故可得1222x x -<-;因为124x x +>,故可得1222x x -<- 故2122x x ->-,又函数关于2x =对称,结合函数单调性, 故可得()()21f x f x >,故④正确. 综上所述:正确的有①②④. 故答案为:①②④. 【点睛】本题考查根据导数的正负判断函数的单调性,函数对称轴的识别,涉及辅助角公式的使用,利用函数单调性比较大小,属综合性中档题.三、解答题21.(1) 3y x = (2) 1[,)2+∞(3)28(,)41ee +∞- 【分析】(1)求出f (x )的导数,求出f′(1),f (1),代入切线方程即可;(2)求出函数的导数,通过讨论a 的范围结合二次函数的性质得到函数的单调性,从而求出a 的具体范围;(3)构造函数ϕ(x )=f (x )﹣g (x ),x ∈[1,e],只需ϕ(x )max >0,根据函数的单调性求出ϕ(x )max ,从而求出a 的范围. 【详解】(1)解: 当1a =时,()142ln f x x x x =--,()1412ln13f =--=, ()212'4f x x x=+-,曲线()f x 在点()()1,1f 处的斜率为()'13f =, 故曲线()f x 在点()()1,1f 处的切线方程为()331y x -=-,即3y x =(2)解: ()222242'4a ax x a f x a x x x-+=+-=. 令()242h x ax x a =-+,要使()f x 在定义域()0,+∞内是增函数,只需()h x ≥0在区间()0,+∞内恒成立. 依题意0a >,此时()242h x ax x a =-+的图象为开口向上的抛物线,()211444h x a x a a a ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其对称轴方程为()10,4x a =∈+∞,()min 14h x a a =-,则只需14a a -≥0,即a ≥12时,()h x ≥0,()'f x ≥0,所以()f x 定义域内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)解: 构造函数()()()x f x g x φ=-,[]1,x e ∈,依题意()max 0x φ>, 由(2)可知a ≥12时,()()()x f x g x φ=-为单调递增函数, 即()1642ln e x a x x x x φ⎛⎫=--- ⎪⎝⎭在[]1,e 上单调递增, ()()max 1480x e a e e φφ⎛⎫==--> ⎪⎝⎭,则2288214142eea e e e >>=>-,此时,()()()0e f e g e φ=->,即()()f e g e >成立. 当a ≤2841e e -时,因为[]1,x e ∈,140x x->, 故当x 值取定后,()x φ可视为以a 为变量的单调递增函数, 则()x φ≤281642ln 41e ex x e x x ⎛⎫--- ⎪-⎝⎭,[]1,x e ∈, 故()x φ≤281642ln 041e ee e e e e⎛⎫---= ⎪-⎝⎭, 即()f x ≤()g x ,不满足条件. 所以实数a 的取值范围是28,41e e ⎛⎫+∞ ⎪-⎝⎭. 【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.22.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性; (2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果. 【详解】(1)由题意得:()22xf x e a '=-,当0a ≤时,()0f x '>,()f x ∴在R 上单调递增; 当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意; 当0a =时,2()0x f x e =>恒成立,满足题意. 当0a >时,()f x 在1ln 22ax =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭,令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立.综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.23.(1)证明见解析;(2)(],1-∞;(3)证明见解析.【分析】(1)令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,利用导数判断函数单调递增,从而可得()()00h x h ≥=,即证. (2)令()()ln 11axm x x x=+-+,转化为()0m x ≥恒成立,利用导数求出()()11x am x x +-'=+,讨论a 的取值,判断函数的单调性,求出()()()min 100m x m a m =-<=,即求.(3)由(1)()2ln 1x x x +≥-,令1x n =,*n ∈N ,整理可得()21ln 1ln n n n n-+->,然后将不等式相加即可证明. 【详解】(1)证明:令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,()21221011x xh x x x x+'=+-=≥++,所以()h x 为单调递增函数,()()00h x h ≥=, 故()2ln 1x x x +≥-.(2)()()f x x g x +≥,即为()ln 11axx x+≥+, 令()()ln 11axm x x x=+-+,即()0m x ≥恒成立, ()()()()2111111a x ax x a m x x x x +-+-'=-=+++, 令()0m x '>,即10x a +->,得1x a >-.当10a -≤,即1a ≤时,()m x 在[)0,+∞上单调递增,()()00m x m ≥=,所以当1a ≤时,()0m x ≥在[)0,+∞上恒成立;当10a ->,即1a >时,()m x 在()1,a -+∞上单调递增,在[]0,1a -上单调递减, 所以()()()min 100m x m a m =-<=, 所以当1a >,()0m x ≥不恒成立. 综上所述:a 的取值范围为(],1-∞. (3)证明:由(1)知()2ln 1x x x +≥-,令1x n=,*n ∈N ,(]0,1x ∈, 211ln n n n n+->,即()21ln 1ln n n n n -+->,故有ln 2ln10->, 1ln 3ln 24->, ……()21ln 1ln n n n n-+->, 上述各式相加可得()2121ln 149n n n-+>+++. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于中档题.24.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案. 【详解】(1)由题意,得21()(0)kf x x x x '=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题. 25.(1)22y x =-;(2)证明见解析. 【分析】(1)对函数求导,求得()()1,1f f ',利用点斜式即可求得切线方程; (2)构造(1)()ln 1k x h x x x -=-+,将问题转化为证明()h x 有3个零点;再对()h x 求导,根据函数单调性,即可证明. 【详解】(1)因为()(1)ln f x x x =+,所以1()ln x f x x x'+=+, 所以(1)2f '=,又因为(1)0f =,所以()f x 在1x =处的切线方程22y x =-; (2)当2k >时,函数()y f x =的图象与直线l 交点的个数等价于 函数(1)()ln 1k x h x x x -=-+的零点个数, 因为22212(1)2()(1)(1)k x kxh x x x x x +-'=-=++,(0,)x ∈+∞, 设2()(22)1g x x k x =+-+,因为二次函数()g x 在x ∈R 时,(0)10g =>,(1)420g k =-<, 所以存在1(0,1)x ∈,2(1,)x ∈+∞,使得()10g x =,()20g x =, 所以()h x 在()10,x 上单调递增,在()12,x x 上单调递减, 在()2,x +∞上单调递增.因为(1)0h =,所以()1(1)0h x h >=,()2(1)0h x h <=, 因此()h x 在()12,x x 上存在一个零点1x =;又因为当ekx -=时,()()()e 12e e 0e 1e 1k k k kkk k h k -------=--=<++,所以()h x 在()1e ,kx -上存在一个零点;当e k x =时,()()e 12e 0e 1e 1k k kk k h k k -⎛⎫=-=> ⎪++⎝⎭, 所以()h x 在()2,e kx 上存在一个零点.所以,函数()y f x =的图象与直线l :(1)y k x =-有3个交点. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程的数学思想方法和分析问题、解决问题的能力. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,. 【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122mx x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解. 【详解】(1)()f x 的定义域为(0,)+∞, ∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=,∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122mx x +=,121x x ⋅=,∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+-2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x---+--=-+='=<, ∴()g x 在1,12⎛⎫⎪⎝⎭上为减函数,又1111544ln 4ln 22424g ⎛⎫=-+=-⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。

新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(有答案解析)(1)

新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(有答案解析)(1)

一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或154.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞5.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭D .222ln ln ln x x xx x x ⎛⎫<<⎪⎝⎭8.已知函数1()ln xf x x ax-=+,若函数()f x 在[1,)+∞上为增函数,则正实数a 的取值范围为( ) A .()0,1B .(01],C .()1,+∞D .[1,)+∞9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知函数10()ln ,0x xf x x x x ⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e-,0) B .(12e-,0) C .(0,12e) D .(0,21e) 11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数22,2()2,2xx xx f x ex x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.14.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.15.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.16.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______. 17.函数()3212132a f x x x x =-++的递减区间为()2,1--,则实数a 的值________. 18.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x '>,则使得()0f x >成立的x 的取值范围是________. 19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.设函数()f x '是奇函数()f x ()x R ∈的导函数, ()20f -=,当0x >时,()()0xf x f x '-<,则不等式()0f x >的解集为______________. 三、解答题21.已知函数()ln f x x =. (1)令()()1axg x f x x =-+,若函数()g x 在其定义域上单调递增,求实数a 的取值范围;(2)求证:()2xf x e <-.22.已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 23.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.24.已知函数()ln f x ax x =-. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.25.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.26.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.3.C解析:C【分析】 由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.4.B解析:B 【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.5.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增, 则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e+=∈+∞, 则2222ln 2ln ()42x xg x x x --'==-,可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x'=+>在区间()1,e 上恒成立,所以函数1()ln f x x a x=-+在区间()1,e 上为增函数,所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.8.D解析:D 【分析】 根据函数1()ln xf x x ax-=+,求导得到()'f x ,然后根据函数()f x 在[1,)+∞上为增函数,转化为()0f x '≥在[1,)+∞上恒成立求解. 【详解】 函数1()ln xf x x ax-=+, ()2211()aax f x x ax ax --'=+=, 因为函数()f x 在[1,)+∞上为增函数, 所以()0f x '≥在[1,)+∞上恒成立, 又0a >,所以 10ax -≥在[1,)+∞上恒成立, 即1a x≥在[1,)+∞上恒成立,令()()max 11g x g x x==,, 所以1a ≥, 故选:D 【点睛】本题主要考查函数的单调性与导数,还考查了运算求解的能力,属于中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x =有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x =有两个交点, 又由()312ln xg x x -'=, 令12ln 0x -=,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,则()g x 单调递减, 所以当x e =时,()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x ex x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==,当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e +⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4) 【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论. 【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦,所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误; 对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解; 令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增,22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4). 【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.14.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.15.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1xxf x e >,令()()xxf x g x e=,根据函数的单调性以及奇偶性求出x 的范围即可. 【详解】由()0xxf x e ->可得()1xxf x e>,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增,又()1y f x e =+-是奇函数,故()1f e =,()11g =, 故()()1g x g >,解得:1x >,故答案为:()1,+∞. 【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题.16.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.17.【分析】根据题意求出函数的导函数则方程的两根为和利用韦达定理即可得到结论【详解】由题意因函数的递减区间为所以方程的两根为和由韦达定理可得:即故答案为:【点睛】本题考查了导函数的运算法则一元二次方程根 解析:3-【分析】根据题意,求出函数的导函数,则方程220x ax -+=的两根为2-和1-,利用韦达定理即可得到结论. 【详解】由题意,()22f x x ax =-+',因函数()f x 的递减区间为()2,1--,所以,方程220x ax -+=的两根为2-和1-, 由韦达定理可得:21a --=,即3a =-.故答案为:3-. 【点睛】本题考查了导函数的运算法则,一元二次方程根与系数的关系,属于基础题.18.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1-【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅' 由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减, 因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数, 所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1-故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x+=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-.∴ln 1x a x +=在0x >时有两个根, 令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==-当01x <<时,'()0g x >,当1x >时,'()0g x <,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<. 【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】根据当时构造函数求导在上是减函数再根据是奇函数在上是增函数由写出的解集【详解】设所以因为当时则所以在上是减函数又因为是奇函数所以在上是增函数因为所以所以当或时所以不等式的解集为故答案为:【点 解析:(),2(0,2)-∞-⋃【分析】根据当0x >时,()()0xf x f x '-<,构造函数()()f x g x x=,求导 ()()()20xf x f x g x x'-'=<,()g x 在()0,∞+上是减函数,再根据()f x 是奇函数,()g x 在(),0-∞上是增函数,由()20f -=,()20f =,写出()0f x >的解集. 【详解】 设()()f x g x x=, 所以()()()2xf x f x g x x'-'=, 因为当0x >时,()()0xf x f x '-<,则()0g x '<, 所以()g x 在()0,∞+上是减函数,又因为()f x 是奇函数,所以()g x 在(),0-∞上是增函数, 因为()20f -=,所以()20f =, 所以当2x <- 或02x <<时,()0f x >, 所以不等式()0f x >的解集为(),2(0,2)-∞-⋃. 故答案为:(),2(0,2)-∞-⋃ 【点睛】本题主要考查构造函数,用导数研究函数的单调性解不等式,还考查了运算求解的能力,属于中档题.三、解答题21.(1)(],4-∞;(2)证明见解析. 【分析】(1)由题意可知,()0g x '≥对任意的0x >恒成立,利用参变量分离法可得出()21x a x+≤,利用基本不等式求出函数()21x y x+=在区间()0,∞+上的最小值,由此可求得实数a 的取值范围;(2)利用导数分别证明出不等式ln 1≤-x x ,()120xx e x -<->,由此可证得所求不等式成立. 【详解】(1)()()ln 11ax ax g x f x x x x =-=-++的定义域为()0,∞+,()()211a g x x x '=-+,由题意可知,()0g x '≥对任意的0x >恒成立,可得()2112x a x xx+≤=++,当0x >时,由基本不等式可得1224x x ++≥=, 当且仅当1x x=时,即当1x =时,等号成立, 4a ∴≤,因此,实数a 的取值范围是(],4-∞;(2)先证明不等式ln 1≤-x x ,构造函数()ln 1g x x x =--,定义域为()0,∞+,()111x g x x x-'=-=,当01x <<时,()0g x '<;当1x >时,()0g x '>. 所以,函数()g x 的单调递增区间为()1,+∞,单调递减区间为()0,1,则()()min 10g x g ==,即ln 10x x --≥,ln 1x x ∴≤-.下面证明:当0x >时,12x x e -<-,构造函数()()()211xxh x e x e x =---=--,()1x h x e '=-,当0x >时,()0h x '>,所以,函数()h x 在区间()0,∞+上单调递增,()()00h x h ∴>=,即21x e x ->-.因此,ln 12x x x e ≤-<-,即()2xf x e <-.【点睛】第(1)问由函数在区间上的单调性求参数的取值范围,一般转化为导数不等式恒成立问题,常用参变量分离法或分类讨论法求解;第(2)问证明不等式ln 2x x e <-,可通过常用不等式ln 1≤-x x ,1x e x ≥+构造函数,利用导数法来得到证明.22.(1)见解析;(2)[1,+∞);(3)证明见解析. 【分析】(1)求导数可得2244(1)(2)ax a y ax x +-'=++,当1a 时函数在[)0+∞,上单调递增;当01a <<时易得函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,不等式()()1f x g x +在[0x ∈,)+∞时恒成立,当01a <<时,不等式00()()1f x g x +不成立,综合可得a 的范围; (3)由(2)的单调性易得11[(1)]122ln k lnk k <+-+,进而可得11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+,将上述式子相加可得结论. 【详解】解:(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增;当01a <<时,由0y '>可得x >∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立,当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证. 【点睛】本题考查导数的综合应用,涉及函数的单调性和恒成立以及不等式的证明,属于中档题. 23.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】(1)3ln 4()x x x a f x x --'=, ∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-,12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-, ∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增,∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立,∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立.令1111()ln ,h x x x x =-, 11()ln h x x '=-, ∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =,∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.24.(1)答案见解析;(2)10,e ⎛⎫ ⎪⎝⎭ 【分析】(1)当1a =时,求导得到()111x f x x x -'=-=,然后解不等式()0f x '<和()0f x '>即可..(2)由()1f x a x '=-,当0a ≤时,()10f x a x'=-<,()f x 单调减不成立,当0a >时,()11a x a f x a x x⎛⎫- ⎪⎝⎭'=-=,易得1x a =是()f x 的极小值点,然后分1a e ≥,10a e<<两种情况,利用零点存在定理求解. 【详解】(1)当1a =时,由()111x f x x x-'=-=, 当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;.(2)由()1f x a x'=-, 若0a ≤,()10f x a x'=-<, ()f x 单调减,()f x 最多有一个零点,不合题意;若0a >,()11a x a f x a x x⎛⎫- ⎪⎝⎭'=-=, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调减; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调增, 则1x a=是()f x 的极小值点, (i )若111110ln 1ln 0a e f a e e a a a a ⎛⎫≥⇒<≤⇒=⋅-≥-= ⎪⎝⎭, 此时,()f x 最多有一个零点,不合题意;.(ii )当111110ln 1ln 0a e f a e e a a a a ⎛⎫<<⇒>⇒=⋅-<-= ⎪⎝⎭, 又1110f a e e ⎛⎫=⋅+> ⎪⎝⎭,故在11,e a ⎛⎫ ⎪⎝⎭内,()f x 有一个零点, 又∵10,x a ⎛⎫∈ ⎪⎝⎭时,()f x 单调递减, 在10,a ⎛⎫ ⎪⎝⎭内,()f x 有且只有一个零点. 由(1)知,ln 1ln11x x -≥-=,等号仅当1x =时成立,22442222ln 2ln 2f a a a a aa ⎛⎫⎛⎫=⋅-=-> ⎪ ⎪⎝⎭⎝⎭, 故在214,a a ⎛⎫ ⎪⎝⎭内,()f x 有一个零点, 又∵1,x a ⎛⎫∈+∞⎪⎝⎭时,()f x 单调增, 在1,a ⎛⎫+∞ ⎪⎝⎭内,()f x 有且只有一个零点. 所以a 的取值范围为10,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查函数的单调性与导数以及函数的零点与导数,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-.【分析】(1)先求出()21x f x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2x f x e x a =-+,则()2xf x e x '=-,则()01f b '==, 由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21x f x e x =--,则()()21xg x f x x x e x =+-=--, 则()10xg x e '=-=,得0x =, 当(),0x ∈-∞,0g x,函数y g x 单调递减; 当()0,x ∈+∞,0g x ,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+.(2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,得()()()()()()()22222111x x x x e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立,令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<,所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-.所以实数k 的取值范围为(),2e -∞-.【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平.26.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题.。

(易错题)高中数学高中数学选修2-2第三章《导数应用》检测(有答案解析)(1)

(易错题)高中数学高中数学选修2-2第三章《导数应用》检测(有答案解析)(1)

一、选择题1.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭2.下列函数中,在(0,+∞)上为增函数的是( ) A .y =sin 2xB .y =x 3-xC .y =x e xD .y =-x +ln(1+x )3.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<4.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()x f x F x e=则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞5.函数()f x 是定义在R 上的奇函数,且()10f =,当0x >时,有()()2xf x f x x'->恒成立,则不等式()0f x >的解集为( ) A .()()1,01,-⋃+∞ B .()()1,00,1-⋃ C .()(),11,-∞-⋃+∞ D .()(),10,1-∞-6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭ B .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭8.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .9.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x e e x x -<-C .1221xxx e x e > D .1221xxx e x e <10.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .311.已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为( )A 33B 3C 33D 2312.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .32⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .322,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦二、填空题13.函数()21ln 2f x x x ax =+-存在与直线30x y -=平行的切线,则实数a 的取值范围是________.14.定义在()0,∞+上的函数()f x 满足()210x f x '+>,()15f =,则不等式()14f x x≤+的解集为______. 15.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .16.321313y x x x =--+的极小值为______. 17.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g (x 2)恒成立,则实数a 的取值范围为__________18.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.19.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.20.若函数()32ln f x x x x x ax =-+-有两个不同的零点,则实数a 的取值范围是______.三、解答题21.设函数()()2ln 1f x x x ax =--+.(1)若()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围; (2)若存在正数0x ,使得()001ln f x x ≤-成立,求实数a 的取值范围.22.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立.23.已知函数()ln f x x ax =-,()2g x x =,a R ∈.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围.24.有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒.(1)试把方盒的容积表示成的函数;(2)求多大时,做成方盒的容积最大.25.已知函数:()()21ln ,12x f x x a x a g x e x =--=--. (1)当[]1,x e ∈时,求()f x 的最小值;(2)对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围.26.设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+; (Ⅱ)34<()f x 32≤.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()x f x g x e=,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等2.C解析:C 【解析】A 在R 上是周期函数,2sin cos y x x =' ,导函数在(0,+∞)上有正有负,故原函数有增有减;.B 231,y x -'= 在(0,+∞),有正有负,所以原函数不是增函数,C x x y xe e '=+ 0> ,恒成立,故原函数单调递增;D 1111x y x x-=-+=++' ,在(0,+∞)上导函数为负,原函数应该是减函数. 故选C .点睛:判断函数的单调性的方法,可以根据导函数的正负来判断原函数的单调性.3.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.4.B解析:B 【解析】∵()()xf x F x e=∴2()()()()()x x x xf x e f x e f x f x F x e e''--'== ∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e =∴不等式()21F x e <等价于()(1)F x F < ∴不等式()21F x e <的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.5.A解析:A 【分析】 构造函数()()(0)f x g x x x=≠,可得()g x 在定义域内为偶函数,并得到()g x 在(0,)+∞ 上单调递增,则在(,0)-∞上单调递减,且(1)0g =,(1)0g -=,结合函数的大致图像分析即可得到()0f x >的解集. 【详解】 构造函数()()(0)f x g x x x =≠,则()()2()xf x f x g x x'-'= 由于()f x 是定义在R 上的奇函数,则()()()()()f x f x f x g x g x x x x---====--, 故()g x 在定义域内为偶函数,图像关于y 轴对称;()10f =,则(1)0g =,(1)0g -=;又0x >时,有()()20xf x f x x'->恒成立, 故()0g x '>在(0,)+∞上恒成立,即()g x 在(0,)+∞ 上单调递增;根据偶函数的对称性可得()g x 在(,0)-∞上单调递减, 所以()g x 的大致图像如下图:()0f x >,即为当0x <时,()0<g x ,当0x >时,()0>g x 的解集,所以()0f x >,则10x -<<或1x >; 即()0f x >的解集为()()1,01,-⋃+∞ 故选:A. 【点睛】本题考查奇偶函数的定义,根据导数符号判断函数单调性,根据函数单调性解不等式,考查学生数形结合的思维能力,属于中档题目.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】 由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C.本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.8.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足.【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题9.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x -'=<,故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.10.C解析:C 【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验. 【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误; 因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C . 【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题.11.C解析:C 【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项. 【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数; 若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤⎥⎝⎦为减函数; 故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 4cos x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 4cos x x ⎧=-⎪⎪⎨⎪=⎪⎩故M ≥M故选:C. 【点睛】本题考查与三角函数有关的函数的最值,注意通过换元法把与三角函数有关的函数问题转化为多项式函数,后者可以利用导数来讨论,本题属于中档题.12.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x -'=-+=>,所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--, 令()32120x f x x -'==可得2x =,列表如下:2()2max22f x ⎛=-= ⎝⎭3a ∴≥a ≥.综上所述,实数a 的取值范围是⎡⎤⎢⎥⎣⎦.故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】原命题等价于有解再求的最小值即得解【详解】由题意得故存在切点使得所以有解因为所以(当且仅当时取等号)所以即则实数的取值范围是故答案为:【点睛】方法点睛:形如的有解问题等价于不是所以本题只要求解析:[)1,-+∞. 【分析】原命题等价于13t a t +=+有解,再求1tt +的最小值即得解. 【详解】 由题意,得()1f x x a x'=+-, 故存在切点()(),P t f t ,使得13t a t+-=, 所以13t a t+=+有解,因为0t >,所以12t t+(当且仅当1t =时取等号), 所以32a +, 即1a -,则实数a 的取值范围是[)1,-+∞. 故答案为:[)1,-+∞. 【点睛】方法点睛:形如()a f x =的有解问题,等价于[()]min a f x ≥,不是[()]max a f x ≥,所以本题只要求出1tt +的最小值即得解.14.【分析】设解不等式即解则结合条件得出的单调性且可解出不等式得出答案【详解】由设则故函数在上单调递增又故的解集为即的解集为故答案为:【点睛】本题考查根据条件构造函数根据函数单调性解不等式由条件构造出函 解析:(]0,1【分析】 设()()14g x f x x =--,解不等式()14f x x≤+,即解()0g x ≤,则()()221x f x g x x'+'=,结合条件,得出()g x 的单调性,且()10g =,可解出不等式得出答案.【详解】由()210x f x '+>,设()()14g x f x x =--,则()()()222110x f x g x f x x x'+''=+=>. 故函数()g x 在()0,∞+上单调递增, 又()10g =,故()0g x ≤的解集为(]0,1, 即()14f x x≤+的解集为(]0,1. 故答案为:(]0,1 【点睛】本题考查根据条件构造函数,根据函数单调性解不等式,由条件构造出函数是本题的关键,属于中档题.15.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为GE x = cm ,因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为)HE x - cm ,所以包装盒的体积为232())]60900)V x x x x x =-=-+,030x <<,则2()120900)V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V单调递减,所以3max ()(10)60009000))4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值3)cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.16.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.17.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数, 所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.18.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e -=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案.【详解】由()()12f x g x m ==,即1xe m ==且0m >.所以212ln ,m x m x e ==,则221ln m x x m e -=- 设函数()2ln x h x x e =-,则()2212x eh x x e x ex-'=-=.令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x 在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x 的最小值为11ln 222e h e =⨯-=. 所以21x x -的最小值为ln 22故答案为:ln 22【点睛】本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题.19.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用 解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.20.【分析】转化条件得有两个不同实数根令通过导数画出函数的草图后数形结合即可得解【详解】函数的定义域为函数函数有两个不同的零点即为有两个不同实数根令则当时单调递增;当时单调递减可画出函数的草图如图:由图 解析:(),0-∞【分析】转化条件得2ln a x x x =-+有两个不同实数根,令()2ln g x x x x =-+,通过导数画出函数()g x 的草图后数形结合即可得解. 【详解】函数()f x 的定义域为()0,∞+,∴函数()32322ln 0ln ln f x x x x x ax ax x x x x a x x x =-+-=⇔=-+⇔=-+, ∴函数()f x 有两个不同的零点即为2ln a x x x =-+有两个不同实数根,令()2ln g x x x x =-+,则()()()211121x x g x x x x+-+'=-+=, ∴当()0,1x ∈时,()0g x '>,()g x 单调递增;当()1,x ∈+∞时,()0g x '<,()g x 单调递减.()10g =,∴可画出函数()g x 的草图,如图:由图可知,要使2ln a x x x =-+有两个不同实数根,则0a <. 故答案为:(),0-∞. 【点睛】本题考查了导数的应用,考查了数形结合思想,属于中档题.三、解答题21.(1)(],1-∞-;(2)[)0,+∞ 【分析】(1)由函数()f x 在区间[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即()2ln 10f x x a x=--'+≥在[)1,+∞上恒成立,采用参变分离的方法,将问题转化为2ln 1a x x ≤+-在[)1,+∞上恒成立,设函数()2ln 1g x x x≤+-,于是只需满足()min a g x ≤即可,问题转化为求函数()g x 的最小值;(2)存在正数0x ,使得()001ln f x x ≤-,即()0001ln x x ax -<,分离参数可得()0001ln x x a x -≥,构造函数()()()1ln ,0,x x g x x x-=∈+∞,利用导数求出()()1ln x x g x x-=的最小值即可求解.【详解】(1)函数()f x 的定义域为()0,∞+,()2ln 1f x x a x=+--', 要使()f x 在区间[)1,+∞上单调递增,只需()0f x '≥,即2ln 1x a x+-≥在[)1,+∞上恒成立即可, 由对数函数、反比例函数的性质可得2ln 1y x x=+-在[)1,+∞上单调递增, 所以只需min a y ≤即可,当1x =时,y 取最小值,min 2ln1111y =+-=-, ∴实数a 的取值范围是(],1-∞-.(2)存在正数0x ,使得()001ln f x x ≤-成立,即()0001ln x x ax ≤-,即存在()00x ∈+∞,使得()001ln x x a x -≥,令()()()1ln ,0,x x g x x x-=∈+∞,则()2ln 1x x g x x+-'=,令()()ln 1,0,h x x x x =+-∈+∞, 则()h x 在()0,∞+上单调递增,且()10h =, 所以当()0,1x ∈时,()0h x <,即()0g x '<, 当()1,x ∈+∞时,()0h x >,即()0g x '>, 所以()g x 在()0,1上单调递减;在()1,+∞上单调递增,则()()min 10g x g ==,故0a ≥,即实数a 的取值范围为[)0,+∞. 【点睛】思路点睛:导数是高考中的高频考点,同时也是初等数学与高等数学的重要衔接.利用导数研究函数单调性,利用导数研究函数最值,导数几何意义等内容,使函数内容更加丰富,更加充盈.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“恒成立”问题和“有解”问题的等价转化,可以简化解题过程.还有在求参数取值范围时,可以考虑到分离参数方法或分类讨论的方法.22.(1)1,1a b ==;(2)证明见解析. 【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-. 易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减, 当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增. ∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到. ∴不等式()()f x g x >恒成立. 【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题. 23.(1)答案见解析;(2)[)1,-+∞. 【分析】(1)对实数a 分情况讨论,求导得到导函数的正负,进而得到函数的单调性和极值; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立,令()()ln 0xh x x x x=->,对此函数求导得到函数的单调性和最值即可得到结果. 【详解】(1)函数()ln f x x ax =-的定义域为()0,∞+,()1f x a x'=-. 当0a ≤时,()10f x a x'=->,所以()y f x =在()0,∞+上单调递增,无极值点; 当0a >时,解()10f x a x '=->得10x a <<;解()10f x a x '=-<得1x a>.所以()y f x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以函数()y f x =有极大值点是1a,无极小值点; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立, 令()()ln 0x h x x x x =->,则()221ln x x h x x--'=,令()()21ln 0k x x x x =-->, 则当0x >时,()120k x x x'=--<,所以()y k x =在()0,∞+上为减函数. 又(1)0k =,所以,当()0,1x ∈时,()0h x '>;当()1,x ∈+∞上,()0h x '<. 所以()y h x =在()0,1上为增函数,在()1,+∞上为减函数. 所以()()max 11h x h ==-,所以1a ≥-. 因此,实数a 的取值范围是[)1,-+∞. 【点睛】对于函数不等式恒成立或者有解求参的问题,常用方法有:参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数. 24.(1)见解析;(2) 6a. 【详解】解: 2322221212(1)(2?44(0)2(2)'128'0,()26v a x xax ax a x x v ax ax a a av x x x x =-=-+<<=-+===)令舍,根据,列表,得到函数的极值和单调性06a(,) 6a(,)62a aV’+9-v增极大值 减6a x =时,max 2()27v x = 【点睛】此题是一道应用题,主要还是考查导数的定义及利用导数来求区间函数的最值,利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,解题的关键是求导要精确.25.(1)答案见解析;(2)2124,24e e ⎡⎫-+⎪⎢⎣⎭. 【分析】(1)求导,对参数进行分类讨论,根据不同情况下函数的单调性,即可求得函数的最小值;(2)根据题意,求得不同情况下()f x 的值域,结合其值域为()f x 的子集,列出不等式,则问题得解.【详解】(1)()2x a f x x-'= 1a ≤时,[]()()1,,0,x e f x f x '∈≥递增,()()min 112f x f a ==-, 2a e ≥时,[]()()1,,0,x e f x f x '∈≤递减,()()2min 22e f x f e a ==-,21a e <<时,x ⎡∈⎣时()0,()f x f x '<递减,x e ⎤∈⎦时()0,()f x f x '>递增,所以()min ln 22a a f x f a ==-- 综上,当min 11,()2a f x a ≤=-; 当()2min 1ln 22a a a e f x a <<=--, 当()22min 22e a e f x a ≥=-, (2)因为对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =成立, 所以()[],0,1g x x ∈的值域是()([1,])f x x e ∈的值域的子集.因为()1x g x e '=- [0,1],()0,()x g x g x '∈≥递增,()g x 的值域为()()[]0,10,2g g e =-⎡⎤⎣⎦(i )当1a ≤时,()f x 在[]1,e 上单调递增,又()()211,222e f a f e a =-=-, 所以()f x 在[1,e]上的值域为21[,2]22e a a --, 所以2102222a e a e ⎧-≤⎪⎪⎨⎪-≥-⎪⎩, 即112a . (ii )当21a e <<时,因为x ⎡∈⎣时,()f x递减,x e ⎤∈⎦时,()f x 递增,且()10,0f f <<,所以只需()2f e e ≥- 即2222e a e -≥-,所以21142e e a <≤-+ (iii )当2a e ≥时,因为()f x 在[1,]e 上单调递减,且()()1102f x f a ≤=-<, 所以不合题意. 综合以上,实数a 的取值范围是2124,24e e ⎡⎫-+⎪⎢⎣⎭. 【点睛】本题考查求含参函数最值得求解,涉及利用导数求函数值域的问题,属综合中档题. 26.(Ⅰ)证明详见解析;(Ⅱ)证明详见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到3()2f x ≤, 再结合第一问的结论,得到3()4f x >, 从而得到结论. 试题 (Ⅰ)因为44231()11,1()1x x x x x x x ----+-==--+ 由于[0,1]x ∈,有411,11x x x-≤++即23111x x x x -+-≤+,所以2()1.f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤,故31133(1)(21)33()11222(1)22x x f x x x x x x -+=+≤+-+=+≤+++ , 所以3()2f x ≤. 由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥, 又因为,所以3()4f x >. 综上,33().42f x <≤ 【考点】函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-+-≤+,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤.。

(易错题)高中数学高中数学选修2-2第三章《导数应用》测试(有答案解析)(1)

(易错题)高中数学高中数学选修2-2第三章《导数应用》测试(有答案解析)(1)

一、选择题1.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1632.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .3.已知函数()32114332f x x mx x =-+-在区间[]12,上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤4.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .5.函数y =x 3+x 的递增区间是( ) A .(0,+∞) B .(-∞,1) C .(-∞,+∞)D .(1,+∞)6.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .7.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃8.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .39.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞10.已知函数()2x f x e =+,2()21g x x x =-+,若存在123,,,[0,1]n x x x x ∈,使得*122-1122-1()()()()+()()()()()+(),N n n n n n n f x f x f x g x g x g x g x g x f x f x n --++++=++++∈成立,则n 的最大值为( )(注:=2.71828e 为自然对数的底数)A .9B .8C .7D .611.已知函数()22ln f x x x =-,若关于x 的不等式()0f x m -≥在[]1,e 上有实数解,则实数m 的取值范围是( ) A .()2,2e -∞-B .(2,2e ⎤-∞-⎦C .(],1-∞D .(),1-∞12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.若函数f (x )cosx a sinx +=在(0,2π)上单调递减,则实数a 的取值范围为___. 14.若关于x 的方程()2ln ln x ax x x -=有且只有三个不相等的实根,则实数a 的取值范围是__________.15.若函数的()1,2ln ,x m x ef x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.16.已知函数()2x e f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________.17.已知函数()f x 是定义在R 上的增函数,()()2f x f x '+>,()01f =,则不等式()ln 2ln 3f x x +>+⎡⎤⎣⎦的解集为______.18.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.19.已知a R ∈,设函数()2,1,1x x ax a x f x ae x x ⎧-+≥=⎨-<⎩(其中e 是自然对数的底数),若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为______.20.已知()3226f x x x a =-+(a 为常数)在[]22-,上有最小值3,则()f x 在[]22-,上的最大值为______三、解答题21.已知函数()ln f x x =. (1)令()()1axg x f x x =-+,若函数()g x 在其定义域上单调递增,求实数a 的取值范围;(2)求证:()2xf x e <-.22.设函数()()()ln 10f x x x =+≥,()()()101x x a g x x x ++=≥+.(1)证明:()2f x x x ≥-. (2)若()()f x xg x +≥恒成立,求a 的取值范围; (3)证明:当*n ∈N 时,()2121ln 149n n n -+>+++.23.已知函数()xf x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值; (2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值. 24.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围.25.设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+; (Ⅱ)34<()f x 32≤. 26.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.2.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.3.D解析:D 【分析】求函数的导函数,利用导函数与原函数单调性的关系进行判断,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,分离参数m ,即可得到答案. 【详解】由题得2()4f x x mx '=-+,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,即240x mx -+≥,则244x m x x x+≤=+在[]12,上恒成立,又44x x +≥=,当且仅当2x =时,等号成立,所以4m ≤, 故答案选D 【点睛】本题主要考查导数与原函数单调性之间的关系,将含参问题转化为最值成立,是解决本题4.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.5.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.6.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足. 故选:D 【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结7.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.8.C解析:C 【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验. 【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误; 因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C . 【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题.9.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D10.D解析:D 【分析】构造函数()()()h x f x g x =-,利用导数研究函数的单调性,求出函数的值域即可求解.【详解】 由122-1()()()()+()n n n f x f x f x g x g x -++++*122-1()()()()+(),N n n n g x g x g x f x f x n -=++++∈,变形为:()()()()()()112222n n f x g x f x g x f x g x ---+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()11n n n n f x g x f x g x --=-+-⎡⎤⎡⎤⎣⎦⎣⎦,设()()()h x f x g x =-,则()()()()()1122n n n h x h x h x h x h x --+=+++,()()()()2222121x x h x f x g x e x x e x x =-=+--+=-++,()22'=-+x h x e x ,当[]0,1x ∈时,()0h x '>,所以[]0,1x ∈时,()h x 单调递增,()22h x e ∴≤≤+, ()()()122n h x h x h x -∴++的值域为()()()22,22n e n -+-⎡⎤⎣⎦,若存在123,,,[0,1]n x x x x ∈,使得()()()()()1122n n n h x h x h x h x h x --+=+++,则()42224n e ≤-≤+,44n e ∴≤≤+,且n *∈N ,n ∴的最大值为6.故选:D 【点睛】关键点点睛:本题考查了导数研究函数方程的根,解题的关键是构造函数()()()h x f x g x =-,考查了运算能力、分析能力. 11.B解析:B 【分析】由题意可得()max m f x ≤,利用导数求出函数()f x 在区间[]1,e 上的最大值,由此可求得实数a 的取值范围. 【详解】由题意可知,存在[]1,3x ∈,使得()m f x ≤,则()max m f x ≤.()22ln f x x x =-,则()()()22112222x x x f x x x x x-+-'=-==, 当[]1,3x ∈时,()0f x '≥,所以,函数()f x 在区间[]1,e 上单调递增,则()()2max 2f x f e e ==-,22m e ∴≤-,因此,实数m 的取值范围是(2,2e ⎤-∞-⎦.故选:B. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦. 故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.a≥﹣1【分析】将函数f (x )在(0)上单调递减转化在(0)上恒成立即在(0)上恒成立再求最大值即可【详解】因为函数f (x )在(0)上单调递减所以在(0)上恒成立即在(0)上恒成立因为所以所以所以故解析:a ≥﹣1.【分析】 将函数f (x )cosx a sinx +=在(0,2π)上单调递减,转化()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 即1cos a x ≥-在(0,2π)上恒成立 再求1cos x -最大值即可.【详解】因为函数f (x )cosx asinx +=在(0,2π)上单调递减,所以()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 ,即1cos a x ≥-在(0,2π)上恒成立 ,因为0,2x π⎛⎫∈ ⎪⎝⎭, 所以()cos 0,1x ∈, 所以1(,1]cos x-∈-∞-, 所以1a ≥-. 故答案为:1a ≥- 【点睛】本题主要考查了导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.14.【分析】由参变量分离法得出令(且)作出函数的图象由题意可知关于的方程的两根满足数形结合可得出实数的取值范围【详解】显然不满足方程;当且时由得令对函数求导得令得列表如下: 单调解析:1,e e ⎛⎫-∞- ⎪⎝⎭【分析】由参变量分离法得出ln ln x x a x x=-,令ln x t x =(0x >且1x ≠),1y t t =-,作出函数ln x t x =的图象,由题意可知,关于t 的方程1a t t=-的两根1t 、2t 满足110t e <<,20t <,数形结合可得出实数a 的取值范围.【详解】显然1x =不满足方程()2ln ln x ax x x -=;当0x >且1x ≠时,由()2ln ln x ax x x -=得ln ln x xa x x=-, 令ln x t x =,1y t t =-,对函数ln xt x=求导得21ln xt x,令0t '=得x e =,列表如下:x()0,1()1,ee(),e +∞t '++-t单调递增单调递增极大值单调递减所以,函数ln xt x =在x e =处取得极大值,即1t e=极大值,如下图所示:由于关于x 的方程()2ln ln x ax x x -=有且只有三个不相等的实根,则关于t 的方程1a t t =-要有两个根1t 、2t ,且110t e<<,20t <,如下图所示:所以,1a e e<-. 综上所述,实数a 的取值范围是1,e e⎛⎫-∞- ⎪⎝⎭.故答案为:1,e e ⎛⎫-∞-⎪⎝⎭. 【点睛】本题考查利用函数的零点个数求参数,考查了利用导数研究函数的零点个数问题,考查数形结合思想的应用,属于中等题.15.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x ef x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e-. 故答案为:312e-. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当解析:2,12e ⎛⎤-∞ ⎥⎝⎦【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立, 所以()()g x xf x =,在()0,x ∈+∞上是增函数, 所以()230xg x e ax '=-≥,在()0,x ∈+∞上是恒成立,即23xe a x ≤,在()0,x ∈+∞上是恒成立,令2()3xe h x x=,所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e,所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦.故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】构造函数则所以的单调递减将转化成又再根据函数单调性即可求出结果【详解】设所以因为所以所以在上为减函数因为函数是定义在上的增函数所以所以在上恒成立又因为所以所以即因为所以所以又在上为减函数所以 解析:(),0-∞【分析】 构造函数()()2+=x f x g x e ,则()()()()20'-+'=<xf x f xg x e,所以()g x 的单调递减,将()ln 2ln 3f x x +>+⎡⎤⎣⎦转化成()23+>xf x e,又()03g =,再根据函数单调性即可求出结果. 【详解】设()()2+=x f x g x e ,所以()()()()()()()222''-+-+'==x x x xf x e f x e f x f xg x e e, 因为()()2f x f x '+>,所以()0g x '<,所以()()2+=xf xg x e在R 上为减函数, 因为函数()f x 是定义在R 上的增函数,所以()0f x '>,所以()()20'+>>f x f x 在R 上恒成立,又因为()ln 2ln 3f x x +>+⎡⎤⎣⎦,所以()2ln3+>f x x ,所以()23+>xf x e ,即()23+>x f x e ,因为()01f =,所以()()00203+==f g e,所以()()0g x g >,又()()2+=xf xg x e在R 上为减函数,所以0x <. 故答案为:(),0-∞ 【点睛】本题主要考查导数在判断单调性中的应用,解题的关键是合理构造函数,利用导函数判断构造的函数的单调性.18.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值. 【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162ah +=,即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->,可得232'23V h =-,令'0V =,解得h =当0h <<,可得'0V >,可知V 在0h <<当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313237V ⎛⎫-⨯⨯=⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.19.【分析】考虑和两种情况分别计算得到利用均值不等式得到;证明单调递增得到得到答案【详解】当时即对恒成立当时符合题意;当时参变分离得:因为当时等号成立故上式恒成立时;当时即对恒成立参变分离得:令故单调递解析:14a e≤≤【分析】考虑1x ≥和1x <两种情况,分别计算得到211211x a x x x ≤=-++--,利用均值不等式得到4a ≤;x x a e ≥,证明()xx p x e=单调递增,得到1a e ≥,得到答案. 【详解】当1x ≥时,()0f x ≥,即20x ax a -+≥对1x ≥恒成立, 当1x =时,符合题意;当1x >时,参变分离得:211211x a x x x ≤=-++--,因为11241x x -++≥-,当2x =时等号成立,故上式恒成立时4a ≤; 当1x <时,()0f x ≥,即0x ae x -≥对1x <恒成立, 参变分离得:x x a e ≥,令()x x p x e =,()10xxp x e-'=>,故()p x 单调递增,∴()()11x x p x p e e=<= 要使0x ae x -≥对1x <恒成立,则1a e≥. 综上所述:a 的取值范围为14a e≤≤. 故答案为:14a e≤≤. 【点睛】本题考查了恒成立问题,参数分离转化为函数的最值问题是解题的关键.20.43【分析】通过函数的导数可判断出在上单调递增在上单调递减比较和的大小从而可得在上的最小值再结合已知其最小值为3即可求出的值进而可求出函数在上的最大值【详解】因为所以当时;当时所以函数在上单调递增在解析:43 【分析】通过函数()f x 的导数可判断出()f x 在(2,0)-上单调递增,在(0,2)上单调递减,比较(2)f -和(2)f 的大小,从而可得()f x 在[2,2]-上的最小值,再结合已知其最小值为3,即可求出a 的值,进而可求出函数()f x 在[2,2]-上的最大值. 【详解】因为32()26f x x x a =-+,所以2()6126(2)f x x x x x '=-=-, 当(2,0)x ∈-时,()0f x '>;当(0,2)x ∈时,()0f x '<, 所以函数()f x 在(2,0)-上单调递增,在(0,2)上单调递减, 所以()f x 的最大值为(0)f a =,又(2)40f a -=-+,(2)8f a =-+,因为(8)(40)320a a -+--+=>, 所以408a a -+<-+,所以()f x 在[2,2]-上的最小值为(2)403f a -=-+=, 所以43a =,所以()f x 的最大值为(0)43f =. 故答案为:43 【点睛】本题考查利用导数求闭区间上的函数最值问题.一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,最值必在端点处或极值点处取得.三、解答题21.(1)(],4-∞;(2)证明见解析. 【分析】(1)由题意可知,()0g x '≥对任意的0x >恒成立,利用参变量分离法可得出()21x a x+≤,利用基本不等式求出函数()21x y x+=在区间()0,∞+上的最小值,由此可求得实数a 的取值范围;(2)利用导数分别证明出不等式ln 1≤-x x ,()120xx e x -<->,由此可证得所求不等式成立. 【详解】(1)()()ln 11ax ax g x f x x x x =-=-++的定义域为()0,∞+,()()211a g x x x '=-+,由题意可知,()0g x '≥对任意的0x >恒成立,可得()2112x a x xx+≤=++,当0x >时,由基本不等式可得1224x x ++≥=, 当且仅当1x x=时,即当1x =时,等号成立, 4a ∴≤,因此,实数a 的取值范围是(],4-∞;(2)先证明不等式ln 1≤-x x ,构造函数()ln 1g x x x =--,定义域为()0,∞+,()111x g x x x-'=-=,当01x <<时,()0g x '<;当1x >时,()0g x '>. 所以,函数()g x 的单调递增区间为()1,+∞,单调递减区间为()0,1,则()()min 10g x g ==,即ln 10x x --≥,ln 1x x ∴≤-.下面证明:当0x >时,12x x e -<-,构造函数()()()211xxh x e x e x =---=--,()1x h x e '=-,当0x >时,()0h x '>,所以,函数()h x 在区间()0,∞+上单调递增,()()00h x h ∴>=,即21x e x ->-.因此,ln 12x x x e ≤-<-,即()2xf x e <-.【点睛】第(1)问由函数在区间上的单调性求参数的取值范围,一般转化为导数不等式恒成立问题,常用参变量分离法或分类讨论法求解;第(2)问证明不等式ln 2x x e <-,可通过常用不等式ln 1≤-x x ,1x e x ≥+构造函数,利用导数法来得到证明.22.(1)证明见解析;(2)(],1-∞;(3)证明见解析. 【分析】(1)令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,利用导数判断函数单调递增,从而可得()()00h x h ≥=,即证. (2)令()()ln 11axm x x x=+-+,转化为()0m x ≥恒成立,利用导数求出()()11x am x x +-'=+,讨论a 的取值,判断函数的单调性,求出()()()min 100m x m a m =-<=,即求.(3)由(1)()2ln 1x x x +≥-,令1x n =,*n ∈N ,整理可得()21ln 1ln n n n n-+->,然后将不等式相加即可证明. 【详解】(1)证明:令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,()21221011x xh x x x x+'=+-=≥++,所以()h x 为单调递增函数,()()00h x h ≥=, 故()2ln 1x x x +≥-.(2)()()f x x g x +≥,即为()ln 11axx x+≥+, 令()()ln 11axm x x x=+-+,即()0m x ≥恒成立, ()()()()2111111a x ax x a m x x x x +-+-'=-=+++, 令()0m x '>,即10x a +->,得1x a >-.当10a -≤,即1a ≤时,()m x 在[)0,+∞上单调递增,()()00m x m ≥=,所以当1a ≤时,()0m x ≥在[)0,+∞上恒成立;当10a ->,即1a >时,()m x 在()1,a -+∞上单调递增,在[]0,1a -上单调递减, 所以()()()min 100m x m a m =-<=, 所以当1a >,()0m x ≥不恒成立. 综上所述:a 的取值范围为(],1-∞. (3)证明:由(1)知()2ln 1x x x +≥-,令1x n=,*n ∈N ,(]0,1x ∈,211lnn n n n+->,即()21ln 1ln n n n n -+->,故有ln 2ln10->,1ln 3ln 24->, ……()21ln 1ln n n n n -+->, 上述各式相加可得()2121ln 149n n n -+>+++. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于中档题.23.(1)()min 4ln 2F x =-+,()max 4ln3F x =-+;(2)1-. 【分析】(1)对函数()F x 求导,根据导数的方法研究其在[]1,3上的单调性,进而可得出最值; (2)先将不等式恒成立转化为215122xk e x x ≤+--对任意x ∈R 恒成立,令()215122x h x e x x =+--,根据导数的方法求出最值,即可得出结果. 【详解】(1)∵()()215ln ln 122F x x g x x x x =+=+--,∴()()()2122x x F x x--'=,令()0F x '=,则112x =,22x =, 当()1,2x ∈时,()()()21202x x F x x--'=<,则函数()F x 在区间()1,2上单调递减;当()2,3x ∈时,()()()21202x x F x x--'=>,则函数()F x 在区间()2,3上单调递增;∴()()min 24ln2F x F ==-+,又()()33ln 143F F =-<=-+,所以()max 4ln3F x =-+; (2)∵()()0f x g x k +->对任意x ∈R 恒成立,∴2151022x e x x k +---≥对任意x ∈R 恒成立, ∴215122xk e x x ≤+--对任意x ∈R 恒成立.令()215122xh x e x x =+--,则()52x h x e x '=+-. 由于()10xh x e '=+>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,3437044h e ⎛⎫'=-= ⎪⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=, 且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增. ∴()()02000min 15122xh x h x e x x ==+--. 又()00h x '=,即00502xe x +-=,∴0052x e x =-. ∴()()2200000051511732222h x x x x x x =-+--=-+. ∵013,24x ⎛⎫∈⎪⎝⎭,∴()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又∵215122xk e x x ≤+--对任意x ∈R 恒成立,∴()0k h x ≤, 又k ∈Z ,∴max 1k =-. 【点睛】本题主要考查用导数的方法求函数的最值,考查导数的方法研究等式恒成立问题,属于常考题型.24.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-. (2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=,①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a <≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意.③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>, 所以()f x 在2(1,)a 上单调递增,()f x 在2(,)a +∞上单调递减,所以()2()10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞.【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题. 25.(Ⅰ)证明详见解析;(Ⅱ)证明详见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到3()2f x ≤, 再结合第一问的结论,得到3()4f x >, 从而得到结论. 试题 (Ⅰ)因为44231()11,1()1x x x x x x x ----+-==--+ 由于[0,1]x ∈,有411,11x x x-≤++即23111x x x x -+-≤+, 所以2()1.f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤,故31133(1)(21)33()11222(1)22x x f x x x x x x -+=+≤+-+=+≤+++ , 所以3()2f x ≤.由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥, 又因为,所以3()4f x >. 综上,33().42f x <≤ 【考点】函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-+-≤+,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤. 26.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

(易错题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(1)

(易错题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(1)

一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-3.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个4.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞5.函数()f x 是定义在R 上的奇函数,且()10f =,当0x >时,有()()2xf x f x x'->恒成立,则不等式()0f x >的解集为( ) A .()()1,01,-⋃+∞ B .()()1,00,1-⋃ C .()(),11,-∞-⋃+∞ D .()(),10,1-∞-6.已知函数1()ln xf x x ax-=+,若函数()f x 在[1,)+∞上为增函数,则正实数a 的取值范围为( ) A .()0,1B .(01],C .()1,+∞D .[1,)+∞7.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦8.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .9.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x e e x x -<-C .1221xxx e x e > D .1221xxx e x e <10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.14.若函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是____. 15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.某生产厂家生产一种产品的固定成本为1万元,并且每生产1百台产品需增加投入0.5万元.已知销售收入()R x (万元)满足()32191882R x x x x =-++(其中x 是该产品的月产量,单位:百台,08x <<),假定生产的产品都能卖掉,则当公司每月产量为______百台时,公司所获利润最大.. 17.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 18.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.19.若函数()ln 1f x ax x =--有零点,则实数a 的取值范围是___________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 22.已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极值. (1)求,a b 的值及函数()f x 的单调区间; (2)若对[2,3]x ∈-,不等式23()2f x c c +<恒成立,求c 的取值范围. 23.设函数()(1)f x lnx m x =-+,2()2m g x x =,(0,)x m R >∈. (Ⅰ)若对任意121x x >>,1212()()1f x f x x x -<--恒成立,求m 的取值范围;(Ⅱ)()()()h x f x g x =+,讨论函数()y h x =的单调性. 24.已知函数()ln 1x f x ae x =--.(1)设2x =是()f x 的极值点,求()f x 的单调区间;(2)证明:当1a e≥时,()0f x ≥. 25.已知32()1,f x x ax a R =++∈. (1)若()f x 在23x =处取极值,求()f x 在点(,1)a -处切线方程; (2)若函数()f x 在区间[]01,最小值为-1,求a . 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6x g x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2, 则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.3.B解析:B 【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论. 【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)x g x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数, 于是222x e x x -=+,化为2220(0)x e x x x ++=<, 令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解, 由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>, ∴存在0(2,1)x ∈--使得0()0x ϕ'=, 当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>,∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个. 故选:B . 【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题.4.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增, 则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e+=∈+∞, 则2222ln 2ln ()42x xg x x x--'==-, 可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.5.A解析:A 【分析】 构造函数()()(0)f x g x x x=≠,可得()g x 在定义域内为偶函数,并得到()g x 在(0,)+∞ 上单调递增,则在(,0)-∞上单调递减,且(1)0g =,(1)0g -=,结合函数的大致图像分析即可得到()0f x >的解集. 【详解】 构造函数()()(0)f x g x x x =≠,则()()2()xf x f x g x x '-'= 由于()f x 是定义在R 上的奇函数,则()()()()()f x f x f x g x g x x x x---====--, 故()g x 在定义域内为偶函数,图像关于y 轴对称;()10f =,则(1)0g =,(1)0g -=;又0x >时,有()()20xf x f x x'->恒成立, 故()0g x '>在(0,)+∞上恒成立,即()g x 在(0,)+∞ 上单调递增;根据偶函数的对称性可得()g x 在(,0)-∞上单调递减, 所以()g x 的大致图像如下图:()0f x >,即为当0x <时,()0<g x ,当0x >时,()0>g x 的解集,所以()0f x >,则10x -<<或1x >; 即()0f x >的解集为()()1,01,-⋃+∞ 故选:A. 【点睛】本题考查奇偶函数的定义,根据导数符号判断函数单调性,根据函数单调性解不等式,考查学生数形结合的思维能力,属于中档题目.6.D解析:D 【分析】 根据函数1()ln xf x x ax-=+,求导得到()'f x ,然后根据函数()f x 在[1,)+∞上为增函数,转化为()0f x '≥在[1,)+∞上恒成立求解. 【详解】 函数1()ln xf x x ax-=+, ()2211()aax f x x ax ax --'=+=, 因为函数()f x 在[1,)+∞上为增函数, 所以()0f x '≥在[1,)+∞上恒成立, 又0a >,所以 10ax -≥在[1,)+∞上恒成立, 即1a x≥在[1,)+∞上恒成立, 令()()max 11g x g x x==,,所以1a ≥, 故选:D 【点睛】本题主要考查函数的单调性与导数,还考查了运算求解的能力,属于中档题.7.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.8.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足. 故选:D 【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题9.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.解析:C【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.【详解】 解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=, 则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<,则|23|1x +<,得1231x -<+<,得21x -<<-,即不等式的解集为(2,1)--,故选:C .【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.解析:A【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解.【详解】设函数()32f x nx x n =+-,则()232f x nx '=+, 当n 时正整数时,可得()0f x '>,则()f x 为增函数,因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A.【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+是解答的关键. 二、填空题13.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不 解析:16【分析】 利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】因为()ln 2x g x x =+,()0,x ∈+∞, 所以()21ln x g x x-'=,令()0g x '=得x e =,所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增;当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减,又()12g e e=+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =,所以121022t t e <<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16.【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.14.0【详解】此题考查导数的应用;所以当时原函数递减当原函数递增;因为在上不单调所以在上即有减又有增所以 解析:0123t t <<<<或【详解】此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以0113{{01231131t t t t t t <<<<∴<<<<<+<+或或 15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数 解析:2【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=,所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去).所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--,所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内,所以2m =.故答案为:2【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.6【分析】设销售利润为利用导数求出的最大值即可【详解】设销售利润为依题意可得当时当时所以在单调递增在单调递减所以时取得极大值也是最大值所以当公司每月生产6百台时获得利润最大故答案为:6【点睛】本题考 解析:6【分析】 设销售利润为1(),()()12g x g x R x x =--,利用导数求出()g x 的最大值即可. 【详解】设销售利润为()g x ,依题意可得,3232191119()11,(0,8)882288g x x x x x x x x =-++--=-+-∈, 2393()(6)848g x x x x x '=-+=--, 当(0,6)x ∈时,()0g x '>,当(6,8)x ∈时,()0g x '<,所以()g x 在(0,6)单调递增,在(6,8)单调递减,所以6x =时,()g x 取得极大值,也是最大值,所以当公司每月生产6百台时,获得利润最大.故答案为:6.【点睛】本题考查函数应用问题以及运用导数求最值,考查数学建模、数学计算能力,属于中档题. 17.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x -'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x =在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-. 故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.18.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围.【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-< ①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤.故答案为:15a ≤≤.【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.19.【分析】变换得到设求导得到单调性画出图像得到答案【详解】由题可知函数的定义域为函数有零点等价于有实数根即设则则函数在上单调递增在上单调递减且画出图像如图所示:根据图像知故答案为:【点睛】本题考查了利 解析:(,1]-∞【分析】 变换得到ln 1x a x+=,设()ln 1x g x x +=,求导得到单调性,画出图像得到答案. 【详解】由题可知函数()f x 的定义域为()0,∞+函数()ln 1f x ax x =--有零点,等价于()ln 10f x ax x =--=有实数根 ()ln 10f x ax x =--=,即ln 1x a x +=, 设()ln 1x g x x +=,则()2ln 'x g x x -=. 则函数在()0,1上单调递增,在[)1,+∞上单调递减,且()11g =,画出图像,如图所示:根据图像知1a ≤.故答案为:(,1]-∞.【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭ 故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.三、解答题21.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果; (2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域. 【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =.∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减, ()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f =-+>,即0>,而0>恒成立,∴0b >.所以实数b 的取值范围为()0,∞+.(2)()22f x x ax b '=-++, 由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-,令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符.当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤;令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =.又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减.又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】思路点睛: 导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果.22.(1)3{26a b =-=-,()f x 的减区间为(1,2)-,增区间为(,1)-∞-,(2,)+∞;(2)7(,1)(,)2-∞-⋃+∞. 【详解】试题分析:(1)求出()'f x 并令其0=得到方程,把1x =-和2x =代入求出,a b 即可;(2)求出函数的最大值为()1f -,要使不等式恒成立,既要证()2312f c c -+<,即可求出c 的取值范围.试题(1)()232f x x ax b =++', 由题意得:()()10{20f f ''-==即320{1240a b a b -+=++=,解得3{26a b =-=-∴()32362f x x x x c =--+,()2336f x x x '=--. 令()0f x '<,解得12x -<<,令()0f x '>,解得1x <-或2x >∴()f x 的减区间为()1,2-,增区间为(),1-∞-,()2,+∞.(2)由(1)知,()f x 在(),1-∞-上单调递增;在()1,2-上单调递减;在()2,+∞上单调递增.∴[]2,3x ∈-时,()f x 的最大值即为()1f -与()3f 中的较大者.()712f c -=+,()932f c =-+,∴当1x =-时,()f x 取得最大值, 要使()232f x c c +<,只需()2312c f c >-+,即2275c c >+,解得1c <-或72c >. ∴c 的取值范围为()7,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 23.(Ⅰ)1m ;(Ⅱ)答案见解析.【分析】(Ⅰ)依题意,1122()()f x x f x x +<+,构造函数()()(1)k x f x x lnx mx x =+=->,则1()0(1)k x m x x'=->恒成立,由此即可求得m 的取值范围; (Ⅱ)表示出()h x ,求导,分类讨论即可得出其单调性情况.【详解】(Ⅰ)依题意,121x x >>,1212()()1f x f x x x -<--,即1212()()()f x f x x x -<--,亦即1122()()f x x f x x +<+,令()()(1)k x f x x lnx mx x =+=->,由题意即知函数()y k x =在区间(1,)+∞上单调递减,则1()0(1)k x m x x'=->恒成立, ∴1m x在区间(1,)+∞上恒成立,故1m . (Ⅱ)2()(1)(0)2m h x lnx m x x m =-++>,1(1)(1)()(1)mx x h x m mx x x--'=-++=, 当0m =时,1()x h x x -'=, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当0m <时,101m<<, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当1m =时,()0h x ',()h x 的单调递增区间为(0,)+∞, 当1m 时,令()0h x '=,得1x =或1x m =;101m<<,当x 变化,()h x ',()h x 变化如下表即单调增区间为1(0,)m,(1,)+∞,减区间为(,1)m. 当01m <<时,令()0h x '=,得1x =或1x m =;11m>,当x 变化,()h x ',()h x 变化如下表即单调增区间为(0,1),1(,)m+∞,减区间为(1,)m. 综上:当0m 时,单调增区间为(0,1),减区间为(1,)+∞,当01m <<时,单调增区间为(0,1),1(,)m+∞,减区间为1(1,)m, 当1m =时,()h x 的单调递增区间为(0,)+∞, 当1m 时,单调增区间为1(0,)m,(1,)+∞,减区间为1(,1)m. 【点睛】本题主要考查利用导数研究函数的单调性,考查构造思想及分类讨论思想,考查运算求解能力,属于中档题.24.(1)在()0,2上单调递减,在(2,)+∞上单调递增;(2)证明见解析. 【分析】(1)由()20f '=可得212a e=,由导函数的符号可得函数的单调区间;(2)当1a e时,()ln 1xe f x x e--()g x =,利用导数证明()0g x ≥即可. 【详解】(1)()f x 的定义域为1(0,),()e xf x a x'+∞=-. 由题设知,()20f '=,所以212a e=. 从而22111()ln 1,()22x x f x e x f x e e e x'=--=-. 当02x <<时,()0f x <′;当2x >时,()0f x >′. 所以()f x 在()0,2上单调递减,在(2,)+∞上单调递增. (2)证明:当1a e时,()ln 1xe f x x e--. 设()ln 1x e g x x e =--,则1()x e g x e x'=-为(0,)+∞上的增函数,当01x <<时,()0(1)g g x '<'=;当1x >时,()(1)0g x g ''>=. 所以()g x 在(0,1)上递减,在(1,)+∞上递增,所以1x =是()g x 的最小值点.故当0x >时,()()10g x g ≥=. 因此,当1a e时,()()0f x g x ≥≥. 【点睛】本题考查了由函数的极值点求参数,考查了利用导数求函数的单调区间,考查了利用导数证明不等式,属于中档题. 25.(1)y x =;(2)3a =-.【分析】(1)求出导函数,结合()f x 在23x =处取极值,导函数为0,求解a ,然后求解切线的斜率,求解切线方程.(2)令()0f x '=,求出极值点,若0a ,若32a -,若302a >>-,判断导函数的符号判断函数的单调性求解函数的极值与最值,然后推出结果. 【详解】解:(1)∵2()3()3f x x x a '=+,又()f x 在23x =处取极值,∴2()03f '=得1a =-,当1a =-时2()33f x x x ⎛⎫'=- ⎪⎝⎭,函数在(),0-∞和2,3⎛⎫+∞ ⎪⎝⎭上单调递增,在20,3⎛⎫ ⎪⎝⎭上单调递减,满足题意;∴32()1f x x x =-+,切点为(1,1),切线斜率为(1)1k f '== ∴()f x 在点(1,1)的切线方程为y x = (2)∵2()3()3af x x x '=+,令()0f x '=得0x =或23a - 若0a ≥,则(0,1)x ∈时()0f x '>,()f x 在[0,1]为增函数 此时min ()(0)11f x f ==>-舍去 若32a ≤-,则213a -≥,此时(0,1)x ∈时()0f x '<,()f x 在[0,1]为减函数 min ()(1)21f x f a ==+=-,得33(,)2a =-∈-∞-满足题意若302a >>-,则2013a <-<,此时2(0,)3x a ∈-时()0f x '<,2(,1)3a x ∈-时()0f x '>()f x 在2(0,)3a -单调递减,在2(,1)3a-单调递增, 此时3min24()()11327a a f x f =-=+=-解得3(,0)2a =-舍去 综合以上得3a =-【点睛】本题考查函数的导数的应用,函数的极值以及函数的最值的求法,考查转化思想以及计算能力,属于难题.26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,. 【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122mx x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解. 【详解】(1)()f x 的定义域为(0,)+∞, ∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=,∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122mx x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+-2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x---+--=-+='=<, ∴()g x 在1,12⎛⎫⎪⎝⎭上为减函数,又1111544ln 4ln 22424g ⎛⎫=-+=-⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(答案解析)(1)

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(答案解析)(1)

一、选择题1.已知定义在[1,)+∞上的函数()f x 满足()ln ()0f x x xf x '+<且(2021)0f =,其中()'f x 是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( )A .(1,2021)B .(2021,)+∞C .(1,)+∞D .[1,2021)2.已知函数()ln f x x ax =-有两个零点,则实数a 的取值范围为( ) A .1a e<B .0a <C .0a ≤D .10a e<<3.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-5.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞6.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞7.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭ B .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭8.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点C .0x ≤时,不等式()2x f x e ≤恒成立D .函数()g x 至多有两个零点9.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________15.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.已知函数()2xe f x ax x=-,(0,)x ∈+∞,当12x x <时,不等式1221()0()f x f x x x -<恒成立,则实数a 的取值范围为_____________.18.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____.19.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围.23.已知函数()2(1)xf x x e ax =--,(a R ∈).(1)若12a =,求()f x 的极值; (2)若0x ≥时,()0f x ≥,求实数a 的取值范围.24.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数21()sin cos 2f x x x x ax =++,[,]x ππ∈-. (1)当0a =时,求()f x 的单调区间; (2)当0a >,讨论()f x 的零点个数;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】令()ln ()g x xf x =,1≥x ,利用导数可知()g x 在[1,)+∞上为单调递减函数,将不等式()0f x >化为1x >且()(2021)g x g >,再利用()g x 的单调性可解得结果.【详解】令()ln ()g x xf x =,1≥x ,则1()ln ()()()()ln f x x xf x g x f x f x x x x'+''=+=, 因为1≥x ,()ln ()0f x x xf x '+<,所以()0g x '<,所以()g x 在[1,)+∞上为单调递减函数,当1x =时,由()ln ()0f x x xf x '+<可知(1)0f <,不满足()0f x >; 当1x >时,ln 0x >,所以()0f x >可化为()ln 0f x x >(2021)ln 2021f =,即()(2021)g x g >,因为()g x 在(1,)+∞上为单调递减函数,所以12021x <<, 所以不等式()0f x >的解集为(1,2021). 故选:A 【点睛】关键点点睛:根据已知不等式构造函数()ln ()g x xf x =,利用导数判断其单调性是本题解题关键.2.D解析:D 【分析】求出()f x 的导数,可得0a ≤时函数单调递增,不满足题意,0a >时,利用()max 0f x >可得.【详解】可知()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, 当0a ≤时,()0f x '≥恒成立,()f x 单调递增,则()f x 不可能有两个零点; 当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,则()f x 在1x a=处取得极大值即最大值11ln 1f a a ⎛⎫=- ⎪⎝⎭,要满足()ln f x x ax =-有两个零点,则1ln 10a ->,解得10a e<<, 综上,10a e<<. 故选:D. 【点睛】方法点睛:本题考查利用导数研究函数的零点,根据零点个数求参数,一般如下步骤: (1)求出函数的定义域,求出函数的导数;(2)先讨论参数范围(以明显使得导数为正或负为参数界点讨论); (3)利用导数正负讨论函数单调性,得出极值或最值; (4)以极值或最值列出满足条件的等式或不等式,即可求出.3.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.4.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.5.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化204x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(2124x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 24xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 204x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭x 2sin 42x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦(2sin 1,24x a a a π⎛⎫⎤∴++∈-++ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.6.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.7.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.8.C【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】()()xf xg x e =, 则()()()xf x f xg x e '-'=, 2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减, 由0(0)(0)2f g e==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.9.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=, 所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+, (0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33 【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解, 设()ln xf x x =, 则()21ln xf x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n nn a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -==cm,包装盒的高为GE x = cm ,因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】根据题意得到函数单调递增求导根据导数大于等于零得到构造求导得到单调区间计算函数最小值得到答案【详解】当时不等式即故函数单调递增恒成立即设故函数在上单调递减在上单调递增故故故答案为:【点睛】本解析:(,]4e -∞ 【分析】根据题意得到函数()()g x xf x =单调递增,求导根据导数大于等于零得到4xe a x≤,构造()4xe F x x=,求导得到单调区间,计算函数最小值得到答案. 【详解】当12x x <时,不等式1221()0()f x f x x x -<,即()()1122x f x x f x <, 故函数()()g x xf x =单调递增,()()22xg x xf x e ax ==-,()'40xg x e ax =-≥恒成立,即4xe a x≤,设()4xe F x x =,()()21'4x e x F x x-=,故函数在()0,1上单调递减,在()1,+∞上单调递增,故()()min 14eF x F ==,故4e a ≤. 故答案为:(,]4e -∞. 【点睛】本题考查了根据函数的单调性求参数范围,意在考查学生的计算能力和应用能力,确定函数()()g x xf x =单调递增是解题的关键.18.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤ 【分析】①通过导数研究函数的单调性可得结论正确; ②利用导数可知函数为增函数,函数最多一个零点; ③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围. 【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的; 对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()x f x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()x f x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的. 故答案为:①③⑤ 【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.19.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++,即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>, 则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>,即为()()()lg lg 22f x f x f +->,即有()()lg 2f x f >, 可得()()lg 2fx f >,即有lg 2x >, 即lg 2x >或lg 2x <-, 解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导解析:18a ≥【分析】依题意可得()210af x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围; 【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210af x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x =所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫-- ⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解.(Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解.【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>,所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,,即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,,解得2x ≥或12x <<,所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭, 故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x≥+在[]2,5上恒成立,设()13m x x x=+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围. 【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-, 由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<;∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =;函数()g x 极小值点为0,对应的极小值为()00g =. (2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增, ∴2320cx x c -+≥在[]2,5上恒成立,即2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】 方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 23.(1)极大值是112e-,()f x 的极小值是0(2)1a ≤ 【分析】(1)()()2112xx f x e x =--,求导()()()110x f x x e '=+-=,判断()f x ',()f x 变化求得极值;(2)解法一:分离a,求最值得a 的范围,解法二: ()xf x e a '=-,讨论a 的范围得解 【详解】 (1)当12a =时,()()2112xx f x e x =-- ()()()110x f x x e '=+-=时,则1x =-,0x =.当x 变化时,()f x ',()f x 变化状态如下表:所以()f x 的极大值是()12f e-=-,()f x 的极小值是()00f = (2))等价于当0x ≥时,()()10xf x x e ax =--≥恒成立解法一: 当0x =,等号成立,当x>0,()10x e f x a x -≥⇔≤,设()1x e g x x-=()min a g x ≤,由经典不等式1x e x >+ ∴1a ≤或者()21x x xe e g x x-+'=,()1x x x xe e ϕ=-+,()0x x x xx e xe e xe ϕ='+-=> ()x ϕ↑,()()00ϕϕ>=x ∴()0g x '>,()g x ↑,又()0,1x g x →→ ∴1a ≤解法二: ()xf x e a '=-,0x ≥,1x e ≥若1a ≤,则()0xf x e a ='-≥,()f x ↑,∴()()00f x f ≥=,即不等式恒成立.(充分性)若1a >,()0xf x e a '=-= ∴0ln 0x a =>()00,x x ∈,()0f x '<,()f x ↓,()()00f x f ≤=,这与当0x ≥时,()10xf x e ax =--≥恒成立相矛盾(必要性)【点睛】本题考查函数与导数的极值,考查不等式恒成立,考查转化化归能力,考查计算能力,是中档题24.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-. 【分析】(1)先求出()21xf x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x>对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2xf x e x a =-+,则()2xf x e x '=-,则()01f b '==,由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21xf x e x =--,则()()21xg x f x x x e x =+-=--,则()10xg x e '=-=,得0x =,当(),0x ∈-∞,0g x ,函数y g x 单调递减; 当()0,x ∈+∞,0g x,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+. (2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x>对任意的0,恒成立, 令()()f x x xϕ=,0x >,得()()()()()()()22222111x x xx e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立, 令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<, 所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-. 所以实数k 的取值范围为(),2e -∞-. 【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平. 25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

(易错题)高中数学高中数学选修2-2第三章《导数应用》测试卷(答案解析)

(易错题)高中数学高中数学选修2-2第三章《导数应用》测试卷(答案解析)

一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .3.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1635.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .6.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .39.函数()2cos f x x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最大值为( ) A .2B .36π+C .13π+ D .33π+10.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞11.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln 2+ D .ln 21-12.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( ) A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.已知定义域为R 的函数()f x 满足1122f ⎛⎫=⎪⎝⎭,()40f x x '+>,其中()f x '为()f x 的导函数,则不等式()sin cos20f x x -≥的解集为______.14.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.15.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______. 16.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.17.函数()3212132a f x x x x =-++的递减区间为()2,1--,则实数a 的值________. 18.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____19.已知函数()f x 在R 上是偶函数,其导函数为()f x ',且()21f =,()0f x ≥.当0x >时,()()0xf x f x '+<恒成立,则不等式()21f x -≤的解集为______.20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)22.已知函数()ln f x x ax =-,()2g x x =,a R ∈.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围. 23.已知函数()xf x mx e =-(e 为自然对数的底数).(1)讨论函数()f x 的单调性;(2)已知函数()f x 在1x =处取得极大值,当[]0,3x ∈时,恒有2()0x f x ex p-+<,求实数p 的取值范围.24.已知函数()sin x f x e x =. ⑴求函数()f x 的单调区间; ⑵如果对于任意的[0,]2x π∈,()f x kx ≥总成立,求实数k 的取值范围.25.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围.26.已知函数()()1xf x ax e -=,曲线()y f x =在点()0,1-处的切线为310x y --=.(1)求a 的值; (2)求函数()f x 的极值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-,设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2,则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤.故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.4.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.5.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.B解析:B 【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=, 得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.C解析:C 【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验. 【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误; 因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C . 【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题.9.B解析:B 【分析】利用导数分析函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值. 【详解】()2cos f x x x =+,则()12sin f x x '=-,0,2x π⎡⎤∈⎢⎥⎣⎦,当()0f x '>时,则12sin 0x ->,解得06x π≤<;当()0f x '<时,12sin 0x -<,解得62x ππ<≤.所以,函数()y f x =在区间0,6π⎡⎫⎪⎢⎣⎭上单调递增,在区间,62ππ⎛⎤ ⎥⎝⎦上单调递减, 因此,函数()y f x =在6x π=处取得极大值,亦即最大值,即()max 66f x f ππ⎛⎫== ⎪⎝⎭.故选:B. 【点睛】本题考查利用导数求解函数的最值,考查计算能力,属于中等题.10.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D11.A解析:A 【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论. 【详解】设函数()()()2ln 0=-=->y f x g x x x x ,()212120-'∴=-=>x y x x x x,令0y '<,0x,02∴<<x,函数在⎛ ⎝⎭上为单调减函数; 令0y '>,0x,2∴>x,函数在2⎛⎫+∞ ⎪ ⎪⎝⎭上为单调增函数.x ∴=时,函数取得极小值,也是最小值为111ln 2222-=+.故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A. 【点睛】本题主要考查利用导数研究函数的最值,属于中档题.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.【分析】引入函数求导后利用已知条件得即为增函数计算题设不等式又化为由单调性可求解最后再由正弦函数性质得出结论【详解】设则∴单调递增即为∴∴故答案为:【点睛】关键点点睛:本题考查用导数解函数不等式解题解析:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈ 【分析】引入函数2()()21g x f x x =+-,求导后利用已知条件得()0g x '>,即()g x 为增函数,计算102g ⎛⎫=⎪⎝⎭,题设不等式又化为(sin )(0)g x g ≥,由单调性可求解.最后再由正弦函数性质得出结论. 【详解】设2()()21g x f x x =+-,则()()40g x f x x ''=+>,∴()g x 单调递增.2111210222g f ⎛⎫⎛⎫⎛⎫=+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2(sin )cos2(sin )2sin 10f x x f x x -=+-≥即为1(sin )2g x g ⎛⎫≥ ⎪⎝⎭,∴1sin 2x ≥,∴522,66k x k k Z ππππ+≤≤+∈. 故答案为:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈【点睛】关键点点睛:本题考查用导数解函数不等式,解题关键是引入新函数2()()21g x f x x =+-,利用导数确定单调性,不等式转化为()g x 的不等式,从而求解.解题时要善于观察,分析如何引入函数,引入什么样的函数.14.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不解析:16 【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e <<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】 因为()ln 2xg x x=+,()0,x ∈+∞,所以()21ln xg x x-'=,令()0g x '=得x e =, 所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增; 当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减, 又()12g e e=+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =, 所以121022t t e<<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16. 【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.15.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值解析:()11ln 63+【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值. 【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.16.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点, 等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<,函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.17.【分析】根据题意求出函数的导函数则方程的两根为和利用韦达定理即可得到结论【详解】由题意因函数的递减区间为所以方程的两根为和由韦达定理可得:即故答案为:【点睛】本题考查了导函数的运算法则一元二次方程根 解析:3-【分析】根据题意,求出函数的导函数,则方程220x ax -+=的两根为2-和1-,利用韦达定理即可得到结论. 【详解】由题意,()22f x x ax =-+',因函数()f x 的递减区间为()2,1--,所以,方程220x ax -+=的两根为2-和1-, 由韦达定理可得:21a --=,即3a =-.故答案为:3-. 【点睛】本题考查了导函数的运算法则,一元二次方程根与系数的关系,属于基础题.18.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围. 【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立,()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln ag x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立,只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞. 【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.19.【分析】由时可得再利用偶函数的性质即可解决【详解】当时由及得所以故在上单调递减又为偶函数所以所以解得或故答案为:【点睛】本题考查解与抽象函数有关的不等式本题关键是找到函数的单调性以及利用偶函数的性质 解析:(][),04,-∞+∞【分析】由0x >时,()()0xf x f x '+<可得'()0f x <,再利用偶函数的性质(||)()f x f x =即可解决. 【详解】当0x >时,由()0f x ≥及()()0xf x f x '+<,得()()0xf x f x '<-≤,所以'()0f x <,故()f x 在(0,)+∞上单调递减,又()f x 为偶函数,所以()21f x -≤⇔(|2|)1(2)f x f -≤=所以|2|2x -≥,解得4x ≥或0x ≤. 故答案为:(][),04,-∞+∞【点睛】本题考查解与抽象函数有关的不等式,本题关键是找到函数()f x 的单调性以及利用偶函数的性质(||)()f x f x =,是一道中档题.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导解析:18a ≥【分析】依题意可得()210af x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围; 【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210af x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x =所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.三、解答题21.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x -'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x -'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10a f e a e=-+≤时,即当ee e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 22.(1)答案见解析;(2)[)1,-+∞. 【分析】(1)对实数a 分情况讨论,求导得到导函数的正负,进而得到函数的单调性和极值; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立,令()()ln 0xh x x x x=->,对此函数求导得到函数的单调性和最值即可得到结果. 【详解】(1)函数()ln f x x ax =-的定义域为()0,∞+,()1f x a x'=-. 当0a ≤时,()10f x a x'=->,所以()y f x =在()0,∞+上单调递增,无极值点; 当0a >时,解()10f x a x '=->得10x a <<;解()10f x a x '=-<得1x a>. 所以()y f x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以函数()y f x =有极大值点是1a,无极小值点; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立, 令()()ln 0x h x x x x =->,则()221ln x x h x x--'=,令()()21ln 0k x x x x =-->, 则当0x >时,()120k x x x'=--<,所以()y k x =在()0,∞+上为减函数. 又(1)0k =,所以,当()0,1x ∈时,()0h x '>;当()1,x ∈+∞上,()0h x '<. 所以()y h x =在()0,1上为增函数,在()1,+∞上为减函数. 所以()()max 11h x h ==-,所以1a ≥-. 因此,实数a 的取值范围是[)1,-+∞. 【点睛】对于函数不等式恒成立或者有解求参的问题,常用方法有:参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.23.(1)答案见解析;(2)24(,0),e ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【分析】(1)根据函数()xf x mx e =-,求导得到()xf x m e '=-,然后分0m ≤和0m >两种情况讨论求解.(2)根据()f x 在1x =处取得极大值,由(1)知,0m >,且()f x 在ln x m =处取得极大值,从而求得m ,然后将2()0x f x ex p -+<在[]0,3x ∈恒成立,转化为20xx e p-+<在[]0,3x ∈上恒成立求解.【详解】(1)因为函数()xf x mx e =-,所以()xf x m e '=-,若0m ≤,则()()0,f x f x '<在R 上单调递减; 若0m >,令()0f x '=,则x lnm =,当x lnm <时,()()0,f x f x '>单调递增;当x lnm >时,()()0,f x f x '<单调递减, 综上所述,当0m ≤时,函数()f x 在R 上单调递减;当0m >时,函数()f x 的单调增区间为(),lnm ∞﹣,单调减区间为(),lnm +∞. (2)()f x 在1x =处取得极大值,由(1)知,0m ≤不符合题意,故0m >,此时()f x 在ln x m =处取得极大值,1lnm ∴=,解得(),x m e f x ex e =∴=﹣. 2()0x f x ex p -+<在[]0,3x ∈恒成立,20xx e p∴-+<在[]0,3x ∈上恒成立,显然0p ≠,当0p <时,20xx e p-+<恒成立,符合题意; 当0p >时,问题可转化为2x xp e>在[]0,3x ∈上恒成立,设2()([0,3])xx g x x e =∈,则22()xx x g x e'-=, 当[)0,2x ∈时,()()'0,g x g x ≥单调递增;当(]2,3x ∈时,()()'0,g x g x <单调递减.42max24()(2),g x g p e e∴==∴>,综上,实数p 的取值范围为24(,0),e ⎛⎫-∞⋃+∞⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性、极值和存在性问题,还考查运分类讨论、构造函数和参变分离等方法以及逻辑推理和运算能力,属于中档题. 24.(1)()f x 的单调递增区间为3(2,2)44k k ππππ-+,单调递减区间为37(2,2)44k k ππππ++()k Z ∈;(2)(,1]-∞ 【详解】试题分析:⑴求出函数的导数令其大于零得增区间,令其小于零得减函数;⑵令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥,对讨论,利用导数求的最小值.试题(1) 由于()sin x f x e x =,所以'()sin cos (sin cos )2sin()4x x x x f x e x e x e x x e x π=+=+=+.当(2,2)4x k k ππππ+∈+,即3(2,2)44x k k ππππ∈-+时,'()0f x >; 当(2,22)4x k k πππππ+∈++,即37(2,2)44x k k ππππ∈++时,'()0f x <. 所以()f x 的单调递增区间为3(2,2)44k k ππππ-+()k ∈Z , 单调递减区间为37(2,2)44k k ππππ++()k ∈Z . (2) 令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥.对()g x 求导得()(sin cos )x g x e x x k =+-',令()(sin cos )x h x e x x =+,则()2cos 0x h x e x '=>,((0,)2x π∈)所以()h x 在[0,]2π上为增函数,所以2()[1,]h x e π∈.对分类讨论:① 当1k ≤时,()0g x '≥恒成立,所以()g x 在[0,]2π上为增函数,所以min ()(0)0g x g ==,即()0g x ≥恒成立;② 当21k e π<<时,()0g x '=在上有实根0x ,因为()h x 在(0,)2π上为增函数,所以当0(0,)x x ∈时,()0g x '<,所以0()(0)0g x g <=,不符合题意;③ 当2k e π≥时,()0g x '≤恒成立,所以()g x 在(0,)2π上为减函数,则()(0)0g x g <=,不符合题意.综合①②③可得,所求的实数的取值范围是(,1]-∞.考点:利用导数求函数单调区间、利用导数求函数最值、构造函数. 25.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-. (2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=, ①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意. ③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>, 所以()f x 在2(1,)a上单调递增,()f x 在2(,)a +∞上单调递减,所以()2()10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞. 【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题. 26.(1)4;(2)极小值为344e --,无极大值.【分析】(1)求出函数的导函数,利用(0)3f '=,可得a .(2)由(1)可得函数的解析式,利用导数研究函数的单调性,从而得到函数的极值; 【详解】解:(1)因为()()1xf x ax e -=,所以()()1xf x ax a e '=+-因为曲线()y f x =在点()0,1-处的切线为310x y --=. 所以(0)13f a '=-=,解得4a =(2)由(1)可得()()41xf x x e -=,所以()()43xf x x e '+=,令()0f x '>解得34x >-,即函数在3,4⎡⎫-+∞⎪⎢⎣⎭上单调递增,令()0f x '<解得34x <-,即函数在3,4⎛⎫-∞- ⎪⎝⎭上单调递减,故函数在34x =-处取得极小值,所以()34344f x f e -⎛⎫=-=- ⎪⎝⎭极小值,无极大值.【点睛】本题考查函数的导数的应用,切线方程以及函数的极值的求法,考查转化思想以及计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞2.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞3.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞4.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为() A .1B .2C 2D 35.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞6.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭7.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( )A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞8.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤9.已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为( )A B C D 10.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭11.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .202012.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数1()cos ,()(0)2axf x xg x e a a π==-+≠,若1x ∃、2[0,1]x ∈,使得()()12f x g x =,则实数a 的取值范围为________.14.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.15.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 16.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.17.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________18.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.19.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 22.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)设g (x )=f ′(x )e -x ,求函数g (x )的极值. 23.已知函数f(x)=12x 2+lnx. (1)求函数f(x)的单调区间; (2)求证:当x>1时,12 x 2+lnx<23x 3. 24.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.25.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=()f x x-4ln x 的零点个数. 26.已知函数:()()21ln ,12x f x x a x a g x e x =--=--. (1)当[]1,x e ∈时,求()f x 的最小值;(2)对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 2.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.3.B【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.4.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B .本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.5.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.6.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.7.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e '-'=∴=<∴单调递减(1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D8.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x=+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x=+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 9.C解析:C 【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项. 【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--, 若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤⎥⎝⎦为减函数; 故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 4cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 4cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故M ≥M故选:C. 【点睛】本题考查与三角函数有关的函数的最值,注意通过换元法把与三角函数有关的函数问题转化为多项式函数,后者可以利用导数来讨论,本题属于中档题.10.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.11.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解.【详解】 由题意,函数32()42x x f x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x x x x f x x x x x e f x e-=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+, 所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略:1、求解函数不等式的依据是函数的单调性的定义.具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 二、填空题13.【分析】根据余弦型函数的性质求出当时函数的值域分类讨论利用指数型函数的性质求出函数在时的值域然后根据存在的定义进行求解即可【详解】因为所以因此在时单调递减所以有当时函数是单调递增函数当时即因为使得所 解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】根据余弦型函数的性质求出当1[0,1]x ∈时,函数()1y f x =的值域,分类讨论利用指数型函数的性质,求出函数()2y g x =在2[0,1]x ∈时的值域,然后根据存在的定义进行求解即可.【详解】因为1[0,1]x ∈,所以1[0,]x ππ∈,因此1()f x 在1[0,1]x ∈时,单调递减,所以有11(1)()(0)1()1f f x f f x ≤≤⇒-≤≤.当0a >时,函数1()2ax g x e a =-+是单调递增函数,当2[0,1]x ∈时, ()2(0)(1)g g x g ≤≤,即231()22a a g x e a -≤≤-+, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =, 所以有:()3121112a a e a ⎧-≤⎪⎪⎨⎪-+≥-⎪⎩, 令'1()(0)()12a a h a e a a h a e =-+>⇒=-, 因为0a >,所以'()0h a >,因此函数 ()h a 单调递增, 所以有3()(0)2h a h >=,因此不等式组(1)的解集为:12a ≥,而0a >,所以12a ≥; 当0a <时,函数1()2ax g x e a =-+是单调递减函数,当2[0,1]x ∈时, ()2(1)(0)g g x g ≤≤,即213()22a e a g x a -+≤≤-, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =, 所以有()1122312a e a a ⎧-+≤⎪⎪⎨⎪-≥-⎪⎩:, 令'1()(0)()12a a h a e a a h a e =-+<⇒=-, 因为0a <,所以'()0h a <,因此函数 ()h a 单调递减, 所以有3()(0)2h a h >=,因此不等式组 (2)的解集为空集, 综上所述:12a ≥. 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】关键点睛:根据不等式112a e a -+≥构造新函数,利用导数求出新函数的最小值是解题的关键.14.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 4x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.15.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值.【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值,则42R H l +=22l H R ∴=- 22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=-令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-=60l R ∴-=6l R ∴=当6l R >时,(6)0V R l R π'=-< 当6l R <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-= 故答案为:3216l π. 【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.16.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】 由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭, 当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题. 17.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案 解析:11a e≤-- 【分析】求导后即可求得()()11f x f e e --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解.【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减; 当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e --≥=-; 函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+;由题意可知11a e -+≤-即11a e -≤--.故答案为:11a e -≤--.【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.18.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e-=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案. 【详解】由()()12f x g x m ==,即1x e m ==且0m >.所以212ln ,m x m x e ==,则221ln m x x m e-=- 设函数()2ln x h x x e =-,则()2212x e h x x e x ex-'=-=. 令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x的最小值为11ln 222e h e =⨯-=. 所以21x x -的最小值为ln 22 故答案为:ln 22【点睛】本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题. 19.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围.【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-< ①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩,解得15a ≤≤.故答案为:15a ≤≤.【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围.【详解】函数()2()1x f x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x x x e x =--+⋅≥,令'0f x ,解得021x =-(负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f =,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数;当θ∈(π6,π2)时,()'<0fθ,所以f(θ)为减函数,因此,当θ=π6时,f(θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.22.(1)6x+2y-1=0.;(2)15e-3.【解析】试题分析:(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣3点评:本题主要考查了利用导数研究曲线上某点切线方程,以及方程组的求解等有关问题,属于中档题.23. (1) f(x)的单调增区间为(0,+∞) (2)略【分析】(1)对函数求导,根据定义域,即可判断其单调性,从而知单调区间.(2)证明当x>1时,2312ln 23x x x +<,只需证当x>1时,3221ln 032x x x -->, 可设3221()ln 32g x x x x =--,只需证明1x >时,()0>g x ,因此,利用导数研究()g x 的单调性,得出()(1)0g x g >>,结论得证.【详解】(1)依题意知函数的定义域为{x|x>0},∵f′(x)=x +,故f′(x)>0,∴f(x)的单调增区间为(0,+∞).(2)设g(x)=x 3-x 2-lnx ,∴g′(x)=2x 2-x -,∵当x>1时,g′(x)=>0,∴g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=>0,∴当x>1时, x 2+lnx<x 3.【点睛】(1)求函数的单调区间,首先要考虑函数的定义域,然后求导,导函数大于0,可求单调递增区间,导函数小于0,可求单调递减区间.对于单调函数只需说明导函数大于0(小于0)即可.(2)证明不等式一般是证明与函数有关的不等式在某个范围内成立,解题时可转化为求函数最值(或值)的问题处理.24.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-.【分析】(1)先求出()21x f x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2x f x e x a =-+,则()2xf x e x '=-,则()01f b '==, 由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21x f x e x =--,则()()21xg x f x x x e x =+-=--, 则()10xg x e '=-=,得0x =, 当(),0x ∈-∞,0g x,函数y g x 单调递减; 当()0,x ∈+∞,0g x ,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+.(2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x>对任意的0,恒成立, 令()()f x x xϕ=,0x >, 得()()()()()()()22222111x x xx e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立, 令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<, 所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-. 所以实数k 的取值范围为(),2e -∞-. 【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平. 25.(1)f (x )=x 2-2x -3;(2)1个. 【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可. 【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2,∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x=2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表:g (x ) 极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 【点睛】本题主要考查二次函数和导数在研究函数中的应用.26.(1)答案见解析;(2)2124,24e e ⎡⎫-+⎪⎢⎣⎭.【分析】(1)求导,对参数进行分类讨论,根据不同情况下函数的单调性,即可求得函数的最小值;(2)根据题意,求得不同情况下()f x 的值域,结合其值域为()f x 的子集,列出不等式,则问题得解. 【详解】(1)()2x af x x-'=1a ≤时,[]()()1,,0,x e f x f x '∈≥递增,()()min 112f x f a ==-, 2a e ≥时,[]()()1,,0,x e f x f x '∈≤递减,()()2min22e f x f e a ==-,21a e <<时,x a ⎡∈⎣时()0,()f x f x '<递减, ,x a e ⎡⎤∈⎣⎦时()0,()f x f x '>递增, 所以()min ln 22a af x fa a ==-- 综上,当min 11,()2a f x a ≤=-; 当()2min 1ln 22a aa e f x a <<=--, 当()22min 22e a ef x a ≥=-,(2)因为对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =成立, 所以()[],0,1g x x ∈的值域是()([1,])f x x e ∈的值域的子集.因为()1xg x e '=-[0,1],()0,()x g x g x '∈≥递增,()g x 的值域为()()[]0,10,2g g e =-⎡⎤⎣⎦(i )当1a ≤时,()f x 在[]1,e 上单调递增,又()()211,222e f a f e a =-=-,所以()f x 在[1,e]上的值域为21[,2]22ea a --,所以2102222a e a e ⎧-≤⎪⎪⎨⎪-≥-⎪⎩,即112a . (ii )当21a e <<时,因为x ⎡∈⎣时,()f x递减,x e ⎤∈⎦时,()f x 递增,且()10,0f f<<,所以只需()2f e e ≥-即2222e a e -≥-,所以21142e ea <≤-+ (iii )当2a e ≥时,因为()f x 在[1,]e 上单调递减,且()()1102f x f a ≤=-<, 所以不合题意.综合以上,实数a 的取值范围是2124,24e e ⎡⎫-+⎪⎢⎣⎭.【点睛】本题考查求含参函数最值得求解,涉及利用导数求函数值域的问题,属综合中档题.。

相关文档
最新文档