角在生活中的应用
2024中考数学专题5.9三角函数在实际生活中的应用 (全国通用)

考向5.9 三角函数在实际生活中的应用【知识要点】1、在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
2、如图1,当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角3、 如图2,坡面与水平面的夹角叫做仰角 (或叫做坡比)。
用字母i 表示,即tan h i A l==4、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
5、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。
7.测量物体高度的方法:(1).利用全等三角形的知识 ;(2)利用相似三角形的对应边成比例 ;(3).利用三角函数的知识例1、如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC的高度为(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D 都在同一平面内.参考数据:tan 752︒=tan152︒=.计算结果保留根号)图1图2hA图3 图4解:如图1,过D 点作DH ⊥AB ,垂足为点H ,过C 点作CE ⊥DH ,垂足为点E ,可知四边形EHBC 为矩形,∴EH =CB ,CE =HB ,∵无人机测得小区楼房BC 顶端点C 处的俯角为45︒,测得操控者A 的俯角为75︒,DM ∥AB ,∴∠ECD =45°,∠DAB =75°,∴∠CDE =∠ECD =45°,∴CE =DE ,设CE =DE =HB =x ,∴AH =45-x ,DH =DE +EH =x +在Rt △DAH 中,DH =tan75°×AH =(()245x -,即(()245x x +=-,解得:x =30,∴DH = 30+∴此时无人机的高度为()30米;(2)如图2所示,当无人机飞行到图中F 点处时,操控者开始看不见无人机,此时AF 刚好经过点C ,过A 点作AG ⊥DF ,垂足为点G ,此时,由(1)知,AG =30(米),∴°=tan 75AG DG ;∵tan =BC CAB AB ∠=∴°=30CAB ∠∵DF ∥AB ,∴∠DFA =∠CAB =30°,∴°45tan 30GA GF ==,∴=30DF GF DG -=+,因为无人机速度为5米/秒,6+(秒);所以经过()6秒时,无人机刚好离开了操控者的视线.一、单选题1.(2021·广东深圳·二模)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65︒(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为()A.100sin65︒B.100cos65︒C.100tan65︒D.100 sin65︒2.(2021·浙江温州·一模)如图,小慧的眼睛离地面的距离为1.6m,她用三角尺测量广场上的旗杆高度,仰角恰与三角板60︒角的边重合,量得小慧与旗杆之间的距离BC为5m,则旗杆AD的高度(单位:m)为()A.6.6B.11.6C.1.6D.1.6+3.(2021·河北唐山·二模)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO 的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A .4sin α米B .4sin α米C .4cos α米D .4cos α米4.(2021·广东云浮·一模)如图,是一水库大坝横断面的一部分,坝高60m h =,迎水斜坡100m AB =,斜坡的坡角为a ,则tan a 的值为( )A .43B .34C .35D .455.(2021·重庆市永川区教育科学研究所一模)鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA 旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A 观察到瞰胜楼楼底点C 的仰角为12°,楼顶点D 的仰角为13°,测得斜坡BC 的坡面距离BC =510米,斜坡BC 的坡度8:15i =.则瞰胜楼的高度CD 是( )米.(参考数据:tan12°≈0.2,tan13°≈0.23)A .30B .32C .34D .366.(2021·山东·济宁学院附属中学二模)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之间的距离为( )A .30海里B .C .20海里D .7.(2021·河北唐山·一模)如图,电线杆的高度为CD =m ,两根拉线AC 与BC 互相垂直(A ,D ,B在同一条直线上),若∠CBA =α,则拉线AC 的长度可以表示为( )A .sin mαB .cos mαC .m cosαD .tan mα8.(2021·江苏无锡·一模)如图,胡同左右两侧是竖直的墙,一架BC 斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B 恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D 处,此时测得梯子AD 与地面的夹角为60°,则胡同左侧的通道拓宽了( )AB .3米C .(3米D .(3米9.(2021·重庆一中三模)如图,小欢同学为了测量建筑物AB 的高度,从建筑物底端点B 出发,经过一段坡度1:2.4i =的斜坡,到达C 点,测得坡面BC 的长度为15.6米,再沿水平方向行走30米到达点D (A ,B ,C ,D 均在同一平面内).在点D 处测得建筑物顶端A 的仰角为37︒,则建筑物AB 的高度约为(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)( )A .27.3米B .28.4米C .33.3米D .38.4米10.(2021·江苏南通·二模)如图,某大楼DE 楼顶挂着“众志成城,抗击疫情”的大型宣传牌,为了测量宣传牌的高度CD ,小江从楼底点E 向前行走30米到达点A ,在A 处测得宣传牌下端D 的仰角为60°.小江再沿斜坡AB 行走26米到达点B ,在点B 测得宣传牌的上端C 的仰角为43°,已知斜坡AB 的坡度i=1:2.4,点A 、B 、C 、D 、E 在同一平面内,CD ⊥AE ,宣传牌CD 的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A .8.3米B .8.5米C .8.7米D .8.9米11.(2021·重庆八中二模)如图,一棵松树AB 挺立在斜坡CB 的顶端,斜坡CB 长为52米,坡度为i =12:5,小张从与点C 相距60米的点D 处向上爬12米到达观景台DE 的顶端点E ,在此测得松树顶端点A 的仰角为39°,则松树的高度AB 约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A .16.8米B .28.8米C .40.8米D .64.2米12.(2021·重庆·字水中学三模)白沙镇有一望夫塔,小明在与塔底中心的D 同一水平线的A 处,测得24AD =米,沿坡度0.75:1i =的斜坡AB 走到B 点,测得塔顶E 仰角为37°,再沿水平方向走22米到C 处,测得塔顶E 的仰角为22°,则塔高DE 为( )米.(结果精确到十分位)(sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈,)A .18.3米B .19.7米C .20.7米D .22.3米二、填空题13.(2021·广东·深圳市南山区太子湾学校二模)如图,一楼房AB 后有一假山,其斜面坡度为i =1(斜面坡度是指坡面的铅直高度与水平宽度的比),山坡坡面上点E 处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,则楼房AB的高为_____米.14.(2021·广东·广州市第六十五中学一模)小颖家住在甲楼,她所居住的楼房前面有一座乙楼.冬天,阳光入射角是30°,两楼距离20米,小颖家的阳台距地面7米,乙楼高18米,那么影子的顶端距她家阳台还有_________米.(精确到0.1米)15.(2021·山东·郓城县教学研究室一模)如图,在一笔直的海岸线l上有相距2km的A、B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是__km.16.(2021·吉林长春·二模)如图,在A处看建筑物CD的顶端C的仰角为α,且tanα=0.8,向前行进3米到达B处,从B处看顶端C的仰角为45°(图中各点均在同一平面内,A、B、D三点在同一条直线上,CD⊥AD,则建筑物CD的高度为_____米.17.(2021·广东·佛山市华英学校一模)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC,CD.测得BC=9m,CD=6m,斜坡CD的坡度i=1D处测得电线杆顶端A 的仰角为30°,则电线杆AB的高度为_____.18.(2021·湖南·长沙市开福区青竹湖湘一外国语学校二模)如图,某同学在楼房的A处测得荷塘的一端B 处的俯角为30°,荷塘另一端点D与点C,B在同一直线上,已知楼房AC=32米,CD=16米,则荷塘的宽BD为________米.19.(2021·山东·庆云县渤海中学一模)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.则大楼AB的高度_____.(结果保留根号)20.(2021·湖北咸宁·模拟预测)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC 的高约为_____m (结果保留小数点后一位).(参考数据sin 530.80︒≈,cos530.60︒≈,tan 53 1.33︒≈)三、解答题21.(2021·贵州六盘水·模拟预测)位于我市的北盘江大桥是世界第一高桥,大桥采用低塔斜拉桥桥型(如图1),桥长1341.4米,桥面至江面垂直距离565.4米.图2是从图1中抽象出的平面图,测得拉索AB 与水平桥面的夹角是30°,拉索DE 与水平桥面的夹角是60°,两拉索顶端的距离BE 为55米,两拉索底端距离AD 为240米.(1)求DC EC的值;(结果保留根号)(2)求立柱BC 的长.(结果精确到0.1≈1.732)22.(2021·贵州·仁怀市教育研究室一模)如图,两座建筑物AD 与BC ,其地面距离CD 为60m ,从AD 的顶点A 测得BC 顶部B 的仰角30α=︒,测得其底部C 的俯角45β=︒,求建筑物BC 的高(结果保留根号).23.(2021·河南商丘·三模)在一次实弹演习中,我国参演红军需轰炸蓝军的一个桥梁,如图,红军飞行员驾驶战机飞到A 处时发现桥梁BC 并测得B 、C 两点的俯角分别为45°、35°.已知飞机、桥梁BC 与地面在同一水平面上,其桥梁BC 长度为800m .请求出此时飞机离地面的高度.(结果保留整数.参考数据:sin35°≈712,cos35°≈56,tan35°≈710)一、单选题1.(2021·吉林长春·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B 两点间的距离为30米,A α∠=,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A .30sin α米B .30sin α米C .30cos α米D .30cos α米2.(2021·福建·中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得60,90,2km A C AC ∠=︒∠=︒=.据此,可求得学校与工厂之间的距离AB 等于( )A .2kmB .3kmC .D .4km3.(2021·湖南衡阳·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin 370.6,cos370.8,tan 370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米4.(2021·山东济南·中考真题)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos 350.8︒≈,tan 350.7︒≈,结果保留整数)( )A .188mB .269mC .286mD .312m5.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米6.(2021·广东深圳·中考真题)如图,在点F 处,看建筑物顶端D 的仰角为32°,向前走了15米到达点E 即15EF =米,在点E 处看点D 的仰角为64°,则CD 的长用三角函数表示为( )A .15sin 32︒B .15tan 64︒C .15sin 64︒D .15tan 32︒7.(2021·山东日照·中考真题)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点B 处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30 ,已知斜坡的斜面坡度i =A ,B ,C ,D ,E 在同一平面内,小明同学测得古塔AB 的高度是( )A .()20m +B .()10mC .D .40m8.(2021·贵州毕节·中考真题)如图,拦水坝的横断面为梯形ABCD .其中//AD BC ,45ABC ∠=︒,30DCB ∠=︒,斜坡AB 长8m .则斜坡CD 的长为( )A .B .C .D 9.(2021·湖北十堰·中考真题)如图,小明利用一个锐角是30 的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离BC 为15m ,AB 为1.5m (即小明的眼睛与地面的距离),那么旗杆的高度是( )A .3m 2⎛⎫ ⎪⎝⎭B .C .D .3m 2⎛⎫+ ⎪⎝⎭10.(2021·湖北随州·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米11.(2021·重庆·中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin 500.77︒≈;cos500.64︒≈;tan 50 1.19︒≈)A.69.2米B.73.1米C.80.0米D.85.7米12.(2021·山东泰安·中考真题)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、i=.根据小颖的测量数据,计算出建筑物BC的高度约为C、D、E在同一平面内,斜坡AD的坡度1:2.4( 1.732≈)A.136.6米B.86.7米C.186.7米D.86.6米二、填空题13.(2021·广西百色·中考真题)数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为_________米.14.(2021·广西梧州·中考真题)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是___米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)15.(2021·江苏无锡·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.16.(2021·四川乐山·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C处测得石碑顶A点的仰角为30 ,她朝石碑前行5米到达点D处,又测得石顶A点的仰角为60︒,那么石碑的高度AB的长=________米.(结果保留根号)17.(2021·贵州遵义·中考真题)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为___m.(结果精确到0.1m≈1.73)18.(2021·内蒙古赤峰·中考真题)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头C处的高度CD为238米,点A,︒≈,D,B在同一直线上,则通道AB的长度为_________米.(结果保留整数,参考数据sin500.77︒≈)cos500.64︒≈,tan50 1.1919.(2021·广西来宾·中考真题)如图,从楼顶A 处看楼下荷塘C 处的俯角为45︒,看楼下荷塘D 处的俯角为60︒,已知楼高AB 为30米,则荷塘的宽CD 为__________米.(结果保留根号)20.(2021·湖北黄石·中考真题)如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得5BC =米,4CD =米,150BCD ∠=︒,在D 处测得电线杆顶端A 的仰角为45︒,则电线杆AB 的高度约为______米.(参考数据: 1.414≈ 1.732≈,结果按四舍五入保留一位小数)21.(2021·湖北荆州·中考真题)如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知8cm BC =,16cm AB =.当AB ,BC 转动到60=︒∠BAE ,50ABC ∠=︒时,点C 到AE 的距离为_____________cm .(结果保留小数点后一位,参考数据:sin 700.94︒≈ 1.73≈)22.(2021·湖北武汉·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是__________n mile 1.73≈,结果用四舍五入法精确到0.1).三、解答题23.(2021·山东青岛·中考真题)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度.如图所示,其中观景平台斜坡DE 的长是20米,坡角为37︒,斜坡DE 底部D 与大楼底端C 的距离CD 为74米,与地面CD 垂直的路灯AE 的高度是3米,从楼顶B 测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)24.(2021·广西河池·中考真题)如图,小明同学在民族广场A 处放风筝,风筝位于B 处,风筝线AB 长为100m ,从A 处看风筝的仰角为30︒,小明的父母从C 处看风筝的仰角为50︒.(1)风筝离地面多少m ?(2)AC 相距多少m ?(结果保留小数点后一位,参考数据:sin300.5︒=,cos300.8660︒=,tan300.5774︒=,sin500.7760︒=,cos500.6428︒=,tan50 1.1918︒=)25.(2021·四川巴中·中考真题)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50 1.73.)(1)求灯杆AB的高度;(2)求CD的长度.1.A【解析】【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【详解】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,sin B =AC AB,则AC =AB •sin B =100sin65°(米),故选:A .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.2.D【解析】【分析】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.再利用特殊角的三角函数解直角三角形即可求出AC 长,从而求出AD 长.【详解】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.∵60ABC ∠=︒,∴在Rt ABC 中,tan 60AC BC =︒= 米.∴ 1.6)AD AC CD =+=米.故选D .【点拨】本题考查解直角三角形的实际应用.掌握特殊角的三角函数值是解答本题的关键.3.B【解析】【分析】过点A′作A′C ⊥AB 于点C ,根据锐角三角函数的定义即可求出答案.【详解】解:如答图,过点A′作A′C ⊥AB 于点C .在Rt △OCA′,sinα=A C A O'',所以A′C =A′O·sinα.由题意得A′O =AO =4,所以A′C =4sinα,因此本题选B .【点拨】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.4.B【解析】【分析】直接利用勾股定理得出BC ,再利用锐角三角函数关系得出答案.【详解】解:过点A 作AC ⊥BD ,垂足为C ,∵坝高h =60m ,迎水斜坡AB =100m ,∴BC ==80(m ),则tanα=603804= .故选:B .【点拨】此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键.5.D【解析】【分析】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,由勾股定理可知17BC x =,BC =510,求得30x =,据此可知AE 、DE 的长,再根据DC DE CE =-可得答案.【详解】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,在Rt BCE 中,17BC x ===,由17510BC x ==求得30x =,∴240CE =米、450BE =米,在Rt ACE △中,2401200tan tan12CE AE CAE ===∠︒(米),在Rt ADE △中,tan 1200tan13276DE AE DAE =∠=⨯︒=(米),则27624036DC DE CE =-=-=(米).故选:D .【点拨】本题主要考查解直角三角形的应用能力,注意能借助仰角和俯角构造直角三角形并解直角三角形是解决本题的关键.6.D【解析】【分析】根据时间、速度、距离之间的关系求出AC ,根据等腰直角三角形的性质解答即可.【详解】解:如图:由题意得,AC =60×0.5=30海里,∵CD ∥BF ,∴∠CBF =∠DCB =60°,又∠ABF =15°,∴∠ABC =45°,∵AE ∥BF ,∴∠EAB =∠FBA =15°,又∠EAC =75°,∴∠CAB =90°,∴sin 45AC BC ︒=∴BC =海里,故选:D .【点拨】本题考查的是解直角三角形的应用−方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.7.B【解析】【分析】根据同角的余角相等得∠ACD =∠CBD ,由cos ∠ACD =CD AC ,即可求出AC 的长度.【详解】解:∵∠ACD +∠BCD =90°,∠CBD +∠BCD =90°,∴∠ACD =∠CBD ,在Rt △ACD 中,∵cos ∠ACD =CD AC,∴AC =cos cos CD m ACD α=∠.故选:B .【点拨】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.D【解析】【分析】根据等腰直角三角形的性质分别求出E C 、EB ,根据正切的定义求出DE ,结合图形计算得到答案.【详解】解:在Rt EBC 中,45BCE ∠=︒,3EC EB ∴====(米),在Rt BDE △中,tan BE BDE DE ∠=,tan BE DE BDE ∴==∠(米),(3CD EC DE ∴=-=米,故选:D .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.9.A【解析】【分析】延长AB 与DC 相交与点E ,由题意和三角函数可求得EC 的长度,根据37°角的三角函数求得AE 的长度,进而可求出建筑物AB 的高度.【详解】如图,延长AB 与DC 相交于点E ,∵15.6BC =,斜坡BC 的坡度i =1:2.4=512,∴12cos 13BCE =∠,5sin 13BCE =∠,∴12cos 15.6=14.413EC BC BCE =∙=⨯∠,5sin 15.6613BE BC BCE =∙=⨯=∠,∴==14.430=44.4ED EC CD ++,又∵D ∠=37°,∴=tan 37=44.40.75=33.3AE ED ∙︒⨯,∴33.3627.3AB AE BE =-=-=,故选:A .【点拨】此题考查了三角函数应用题,仰角和坡度的概念,做出辅助线是解答本题的关键.10.A【解析】【分析】过B 分别作AE 、DE 的垂线,设垂足为F 、G .分别在Rt △ABF 和Rt △ADE 中,通过解直角三角形求出BF 、AF 、DE 的长,再求出EF 即BG 的长;在Rt △CBG 中求出CG 的长,根据CD =CG +GE -DE 即可求出宣传牌的高度.【详解】解:过B 作BF ⊥AE ,交EA 的延长线于F ,作BG ⊥DE 于G .Rt △ABF 中,i =tan ∠BAF =BF AF =12.4,AB =26米,∴BF =10(米),AF =24(米),∴BG =AF +AE =54(米),Rt △BGC 中,∠CBG =43°,∴CG =BG •tan43°≈54×0.93=50.22(米),Rt △ADE 中,∠DAE =60°,AE =30米,∴∴CD =CG +GE -DE(米).故选:A .【点拨】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.11.B【解析】【分析】延长AB交DC的延长线于H,作EF⊥AH于F,根据矩形的性质得到FH=DE=12,EF=DH,根据坡度的概念分别求出CH、BH,根据正切的定义求出AF,结合图形计算即可.【详解】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=AF EF,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),故选:B.【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.12.B【解析】【分析】连接DE,作BF⊥DE于F,BG⊥DA于G,设BG=3x m,则AG=4x m,BF=DG=24+4x(m),CF=BF+BC=46+4x(m),由三角函数定义得出EF=tan37°(24+4x),EF=tan22°(46+4x),得出0.75(24+4x)=0.40(46+4x ),解得27x =,求出DF 、EF ,即可得出答案.【详解】解:连接DE ,作BF ⊥DE 于F ,BG ⊥DA 于G ,如图:则DF =BG ,BF =DG =AD +AG ,∵AB =斜坡AB 的坡度0.75BG i AG==,∴设BG =3x m ,则AG =4x m ,BF =DG =24+4x (m ),CF =BF +BC =24+4x +22=46+4x (m ),由题意得:∠EBF =37°,∠ECF =22°,∵tan ∠BEF =244EF EF BF x =+,tan ∠ECF =464EF EF CF x=+,∴EF =tan 37°(24+4x ),EF =tan 22°(46+4x ),∴0.75(24+4x )=0.40(46+4x ),解得:27x =,∴DF =BG =3x =67(m ),EF =0.40(46+4x )=1327(m ),∴DE =DF +EF =613213819.7777+=≈;故选:B .【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角分概念、熟记锐角三角函数的定义是解题的关键.13.().【解析】【分析】过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,解直角三角形即可求解.【详解】解:过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,在Rt △CEF 中,∵i =EF CF tan ∠ECF ,∴∠ECF =30°,∴EF =12CE =10米,CF =∴BH =EF =10米,HE =BF =BC +CF =(在Rt △AHE 中,∵∠HAE =45°,∴AH=HE =(∴AB =AH +HB =(答:楼房AB 的高为(故答案为:(【点拨】本题考查了解直角三角形的应用,涉及俯角及坡度的知识,构造直角三角形是解题的关键.14.0.6【解析】【分析】如图,解直角三角形ABC 可以求得AB 的长,求出乙楼的影子在甲楼上的高度CD ,再求影子的顶端距她家阳台的距离.【详解】解:如图,△ABC 中,∠ABC=90°,∠ACB=30°,BC=20米,所以AB=BC•tan ∠ACB =20•tan30°=(米),CD=18-11.55=6.45(米),∴影子的顶端距她家阳台还有7-6.45≈0.6(米).故答案为0.6.【点拨】本题考查特殊角的三角函数值,解直角三角形,根据BC 求出AB 的值是解题的关键.15【解析】【分析】根据题意可证得△ABC 为等腰三角形,即可求出BC 的长,然后再解直角三角形CBD 即可求得.【详解】解:如图,过点C 作CD ⊥AB 于点D ,根据题意得:∠CAD =90°−60°=30°,∠CBD =90°−30°=60°,∴∠ACB =∠CBD −∠CAD =60°-30°=30°,∴∠CAB =∠ACB ,∴BC =AB =2km ,在Rt △CBD 中,sin 602CD BC =⋅︒==,【点拨】本题考查了等腰三角形的判定与性质及解直角三角形的应用,解决本题的关键是证出△ABC 是等腰三角形.16.12【解析】【分析】根据∠DBC =45°可得BD CD =,根据tan α=0.8,可得3810CD CD =+,进而即可求得CD 的长.【详解】∵∠DBC =45°,∴BD =CD tan 45⨯︒=CD ,tanα=,3AD AB BD CD =+=+,则3810CD CD =+,解得CD =12.经检验:符合题意故答案为12.【点拨】本题考查了解直角三角形的应用,掌握正切的意义是解题的关键.17.(6m+【解析】【分析】延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,根据直角三角形的性质和勾股定理求出DC 、CG 的长,根据正切的定义解答即可.【详解】解:如图,延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,∵∠ADE =30°,∴∠AFB =30°,∵CD =6m ,斜坡CD 的坡度i =1∴tan ∠DCG =DG CG ∴∠DCG =30°,∴DG =3m ,CG =,∴∠DFC =∠DCF =30°,∴DF =DC ,∵DG ⊥BF ,∴FG =CG =,∴FC=,∴FB =FC +BC =()m ,∴AB =BF ×tan ∠AFB =()m .故答案为:(m .【点拨】本题主要考查了勾股定理,坡比和解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.18.16【解析】【分析】根据已知条件转化为直角三角形ABC 中的有关量,由锐角三角函数的定义可求出BC ,根据BD =BC -CD 可得出答案.【详解】解:由题意知,∠ABC =30°,∠ACB =90°,AC =32米,tan tan 30,AC ABC BC ︒∠==tan 30AC BC ︒∴===(米)∵CD =16米,∴BD =BC -CD=16米.故答案为:16.【点拨】本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形ABC 中的有关元素.19.(【解析】【分析】在直角三角形DCE 中,利用锐角三角函数定义求出DE 的长,过D 作DF 垂直于AB ,交AB 于点F ,可得出三角形BDF 为等腰直角三角形,设BF =DF =x (米),表示出BC ,BD ,DC ,由题意得到三角形BCD 为直角三角形,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出AB 的长.【详解】解:在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°,∴DE 12=DC =2(米),过D 作DF ⊥AB ,交AB 于点F,∵∠BFD =90°,∠BDF =45°,∴∠FBD =45°,即△BFD 为等腰直角三角形,设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米,在Rt △ABC 中,∠ABC =30°,∴cos30B AB C ===︒BD =米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°,在Rt △BCD 中,根据勾股定理得:22(24)2163x x +=+ ,解得:x =则AB =(故答案为:(【点拨】此题考查了解直角三角形的实际应用--仰角俯角问题,坡度坡角问题,熟练掌握解直角三角形的方法是解本题的关键.20.24.2【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:,8m,53,45AC CD AB ADC BDC ⊥=∠=︒∠=︒,Rt BCD ∴ 是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,在Rt ACD △中,tan AC ADC CD∠=,即8tan 53 1.33x x +=︒≈,解得24.2(m)x ≈,经检验,是所列分式方程的解,且符合题意,即建筑物BC 的高约为24.2m ,故答案为:24.2.【点拨】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.21.(2)180.3米【解析】【分析】对于(1),由特殊角三角函数值得出答案;对于(2),设DC =x 米,再根据特殊角三角函数值得CE =(米),AC =(3x )(米),再由AC =AD +DC ,得关于x 的方程,求出x 的值,即可解决问题.(1)∵∠ECD =90°,∠EDC =60°,∴∠DEC =90°﹣∠EDC =30°,∴tan tan 30∠==︒=DC DEC EC ,即DC EC (2)设DC =x 米,∵∠EDC =60°,∠ECD =90°,∴tan 60CE DC =⋅︒=(米),∴(55)=+=BC BE CE (米).∵∠A =30°,∴3)==AC x (米).∵AC =AD +DC ,∴3240=+x x ,。
余弦定理在生活中的应用

余弦定理在生活中的应用一、余弦定理内容回顾1. 对于三角形ABC,设a、b、c分别为角A、B、C所对的边,则余弦定理有以下三种形式:- a^2=b^2+c^2-2bccos A- b^2=a^2+c^2-2accos B- c^2=a^2+b^2-2abcos C2. 余弦定理的作用- 已知三角形的两边及其夹角,可以求出第三边。
- 已知三角形的三边,可以求出三角形的三个角。
二、在测量中的应用1. 测量不可到达两点间的距离- 例:A、B两点被一个池塘隔开,无法直接测量它们之间的距离。
我们可以在池塘外选一点C,测得AC = m米,BC=n米,∠ ACB=θ。
- 根据余弦定理AB^2=AC^2+BC^2-2AC· BC·cos∠ ACB,即AB=√(m^2)+n^{2-2mncosθ}。
这样就可以计算出A、B两点间的距离。
2. 测量建筑物的高度- 假设要测量一座大楼的高度h。
在大楼底部的水平地面上选一点A,在距离A 点d米的地方再选一点B,然后测量出∠ BAC=α,∠ ABC = β。
- 设大楼高度h对应的边为BC,根据三角形内角和为180^∘,可得∠ACB=180^∘-α-β。
- 在 ABC中,已知AB = d,根据正弦定理(AB)/(sin∠ ACB)=(BC)/(sin∠BAC),可求出BC的长度。
再根据h = BCsinβ求出大楼的高度。
这里正弦定理求出BC的过程中,若先求出sin∠ ACB=sin(α + β),在计算BC时可能会涉及到较为复杂的三角函数运算。
如果我们用余弦定理,先根据AC^2=AB^2+BC^2-2AB· BC·cos∠ABC,设AC = x,则x^2=d^2+BC^2-2d· BC·cosβ,再结合(h)/(x)=tanα,联立方程求解h,有时会更简便。
三、在导航中的应用1. 飞机航线规划- 飞机从机场A飞往机场B,由于风向等因素,飞机实际飞行的路线是一个三角形的路径。
正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
浅谈生活中三角函数的应用

浅谈生活中三角函数的应用三角函数是高中数学中的一个重要内容,它的应用范围十分广泛。
在生活中,我们可以通过三角函数解决很多实际问题。
本文将从生活中的实际问题出发,探讨一些三角函数的应用。
一、直角三角形中的应用在我们的日常生活中,我们常常会遇到一些直角三角形的问题,这时候运用三角函数就可以很好地解决这些问题。
例如,在测量一幢建筑物的高度时,我们可以站在建筑物的脚下,用一个角度计算器或手动计算,利用正切函数求出建筑物的高度。
此外,在导航和地图制作中也需要使用三角函数,计算一个地点的方向和距离。
二、正弦函数和余弦函数在单摆和波浪问题中的应用单摆和波浪问题都是涉及周期性运动的问题。
单摆就是一个质量挂在一根不可伸缩细线上的系统(一般为一个球、钩、挂钩、网)的系统。
当摆动时,其振幅和周期都与线的长度和重力有关。
正弦函数和余弦函数可以描述单摆的运动,这些函数可以计算出时间、挥动的幅度、运动的速度、周期和频率等信息。
同样的,波浪问题也涉及到周期性运动。
在物理学、电子工程等领域中都有波浪的应用。
正弦函数和余弦函数可以描述波浪的运动。
例如,我们可以用正弦函数描述海浪的形状、大小、行程和速度等。
三角函数在工程学中有广泛的应用,尤其是在机械工程和电气工程中。
在机械工程中,三角函数可以描述某些运动的曲线。
例如,在一个滑轮系统中,我们可以用正弦函数计算曲线的形状和弧度。
在电气工程中,三角函数可以用于计算交流电压和电流的频率、幅度和相位等信息。
四、三角函数在金融学和计量经济学中的应用金融学和计量经济学中有很多统计分析技术,而其中很多方法都涉及到三角函数的应用。
例如,利用正弦函数和余弦函数可以描述经济周期的波动,用它们可以统计股票和商品价格的变化。
此外,金融学和计量经济学也可以用三角函数来解决一些风险分析问题和预测市场行为的问题。
综上所述,三角函数在生活中的应用是非常广泛的。
它们可以被应用于很多领域,从机械工程到金融学、从物理学到导航、甚至于日常生活中的建筑测量和旅游规划等。
三角函数:生活中的指南针

三角函数:生活中的指南针
三角函数在现实生活中有许多应用,以下是一些实例:
1.时钟:时钟的指针的运动轨迹可以通过三角函数来描述。
例如,秒针一圈的长度是60秒,分针一圈的长度是60分钟,时针一圈的长度是12小时。
当我们在时钟上表示时间时,实际上是在使用三角函数来描述各指针之间的大小关系。
2.地球运动:地球的运动如果用三角函数来描述,就可以得出地球每天的运行轨迹,以及每天的日出日落时间。
这其中就涉及到了正弦、余弦和正切等三角函数。
3.建筑:在建筑设计中,三角函数也被用来计算建筑物的抗压能力、承重能力等。
例如,通过使用三角函数,可以计算出梁的跨度和高度,以使其在满足承重要求的同时,保持足够的稳定性。
4.机械:在机械设计中,三角函数同样有广泛的应用。
例如,可以用来计算出机械的转动角度,以及机械的运动轨迹等。
5.测量:在测量建筑物或山的高度时,如果知道建筑物的位置与仰角之间的距离,则可以利用三角函数轻松地计算得到建筑物的高度。
6.游戏:在一些游戏中,如赛车游戏,当控制赛车运动的角度时,需要利用三角函数时刻计算赛车当前的位置以及运动的距离。
7.航空飞行:飞行工程师在考虑飞行路径时,需要精确地计算飞行轨道、着陆角度等,这就涉及到了大量的三角函数应用。
通过以上例子,我们可以看出三角函数在生活中的应用十分广泛,几乎在各个领域都有其用武之地。
三角函数在实际生活中的应用

三角函数在实际生活中的应用引言:三角函数是数学中的重要概念,它们不仅在数学领域有广泛的应用,而且在实际生活中也扮演着重要的角色。
本文将探讨三角函数在实际生活中的应用,并着重讨论其在建筑、航海和音乐领域的具体运用。
一、建筑领域中的三角函数应用:在建筑领域,三角函数被广泛应用于测量、设计和构造过程中。
例如,在测量中,我们常常使用三角函数来计算建筑物的高度、角度和距离。
通过测量建筑物的高度和角度,我们可以计算出需要的材料和施工方法,确保建筑物的结构稳定和安全。
此外,在设计建筑物的过程中,三角函数也发挥着重要的作用。
我们可以利用正弦函数来确定建筑物的倾斜度和坡度,以确保建筑物在不同地势上的平衡性。
同时,余弦函数可以帮助我们计算建筑物的斜面和斜坡的角度,以便在施工过程中保持合适的倾斜度。
二、航海中的三角函数应用:三角函数在航海中的应用可以追溯到古代。
在没有现代导航设备的时代,航海者们通过观测太阳、星星和地平线上的角度来确定船只的位置和航向。
这种方法被称为天文导航,其中涉及到三角函数的概念和运算。
通过观测太阳的高度角和方位角,航海者可以计算出自己所处的纬度和经度。
利用正切函数,可以计算出船只与目标之间的距离和角度,从而确定正确的航向。
这种基于三角函数的天文导航方法,帮助航海者们在没有地图和指南针的情况下,安全地航行于大海之上。
三、音乐中的三角函数应用:三角函数在音乐领域中的应用,主要体现在声波的振动和频率的计算上。
音乐中的音调和音高是由声波的频率决定的,而三角函数可以帮助我们计算出不同音调的频率。
在乐器制作和调音过程中,三角函数被用来计算声波的频率和波长。
例如,在钢琴调音中,通过改变琴弦的张力和长度,可以调整不同音调的频率。
而这种频率的计算就依赖于三角函数的运算。
此外,在音乐理论中,三角函数还被用来分析和描述音乐的谐波结构。
通过分析音乐中不同频率的谐波成分,我们可以深入了解音乐的和声和共鸣特性,从而更好地理解和创作音乐。
解三角形在实际生活中的应用

解三角形在实际生活中的应用高一数学教研组冯一波一、背景说明:在我国古代就有嫦娥奔月的神话故事。
明月高悬,我们仰望星空,会有无限遐想。
不禁会问,遥不可及的月球离地球到底有多远?1671年,两个法国天文学家测出大约距离为385400千米。
他们是怎样测出的呢?在数学发展史上,受到天文测量、航海测量和地理测量等方面实践活动的推动。
解三角形的理论不断发展,并被用于解决许多测量问题方面。
二、课题目的和意义:三角形是基本的几何图形,三角形中的数量关系是基本的数量关系,有着极其广泛的应用。
我们将在以前学习的有关三角形、三角函数和解直角三角形的知识基础上,通过对于任意三角形边角关系的研究,发现并掌握三角形中的变长与角度之间的数量关系,并解决一些实际问题。
学而不思则罔,只有通过自己的独立思考才能真正学会数学,同时应当掌握科学的思维方法,特别是学习类比、推广等数学思考方法,提高我们的数学思维能力。
三、设计思想本节重点利用解斜三角形解决相关实际问题.解斜三角形知识在生产实践中有着广泛的应用,解斜三角形有关的实际问题过程,贯穿了数学建模的思想.这种思想就是从实际出发,经过抽象概括,把它转化为具体问题中的数学建模,然后通过推理演算,得出数学模型的解,再还原成实际问题的解.强化上述思维过程,既是本节的重点,又是本节难点.解三角形应用题的另一个难点是运算问题,由于将正弦定理、余弦定理看成几个“方程“,那么解三角形的应用题实质上就是把已知信息按方程的思想进行处理,解题时应根据已知和未知合理选择一个“容易解”的方程,从而是解题过程简洁.同时,由于具体问题中给出的数据通常是近似值,故运算过程一般较为复杂,必须借助于计算器计算,因此要加强训练,达到“算法简炼,算式工整,计算准确”的要求.知识结构:四、实际应用1.测量中正、余弦定理的应用例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米?分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).解:由图知,60CAD ∠=︒. 22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯, 123sin 31B =. 在ABC ∆中,sin 24sin BC B AC A⋅==. 由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅.即2223124224cos60AB AB =+-⋅⋅⋅︒. 整理,得2243850AB AB --=,解得35AB =或11AB =-(舍).A CD 31 2120 35︒ 25︒ 东 北故15AD AB BD =-=(千米).答:此人所在D 处距A 还有15千米.评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.2.航海中正、余弦定理的应用例2 在海岸A 处,发现北偏东45︒方向,距A1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C处的缉私船奉命以/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间?分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求CD 的方位角及由C 到D所需的航行时间.解:设缉私船追上走私船所需时间为t 小时,则有CD =,10BD t =.在ABC △中,∵1AB =,2AC =,4575120BAC ∠=︒+︒=︒, 根据余弦定理可得BC ==根据正弦定理可得2sin120sin 2AC ABC BC︒∠===. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △中,根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===, ∴30BCD =︒△,30BDC ∠=︒,∴BD BC ==则有10t =0.245t ==小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度45︒ 75︒ 30︒ A C D B为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为A 和B ,山顶为M ,山顶到直线的距离为MD .如图,在ABM △中,由已知,得 1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒. 又12018066060AB =⨯=⨯(km ), 根据正弦定理,可得6sin1830'sin 6230'BM ︒=︒, 进而求得6sin1830'sin81sin 6230'MD ︒︒=︒,∴2120MD ≈(m ), 可得山顶的海拔高度为20250212018130-=(m ). 评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号). 分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒,6000CD =,45ACD ∠=︒,根据正弦定理有sin 45sin 60CD AD ︒==︒, 同理,在BCD△中,180135CBD BCD BDC ∠=︒-∠-∠=︒,6000CD =,30BCD ∠=︒,根据正弦定理有sin 30sin1352CD BD ︒==︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,根据勾股定理有:6AB ====.所以炮兵阵地到目标的距离为米.A B D M 30︒ 45︒ 75︒ A C D 15︒评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得sin(18060)sin(60)OP PQ x =︒-︒︒-.∴sin(60)3PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 6033S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)326R R ≤-=. 当cos(260)1x -︒=即30x =︒时,S取得最大值26R . 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC 交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.在POQ △中,由正弦定理得:sin(18030)sin(30)R R x =︒-︒︒-, ∴2sin(30)PQ R x =︒-. A B Q P O x M N (1) A B Q P O x M N E D (2)∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).∴当15x =︒时,S 取得最大值2(2R -.∵22(26R R >-, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.。
相似三角形在现实生活中的应用场景

相似三角形在现实生活中的应用场景
相似三角形的判定在现实生活中有广泛的应用,以下是一些常见的应用场景:
1.建筑和工程领域:在建筑设计和工程计算中,相似三角形的判定被用于解
决各种实际问题。
例如,工程师会利用相似三角形原理来计算建筑物的缩放比例,以确定建筑物的外观和尺寸是否符合设计要求。
此外,在桥梁、道路和水利工程的设计和建设中,工程师也需要用到相似三角形的概念来测量斜坡的斜率和角度等参数。
2.地图和导航领域:在地图和导航中,利用相似三角形的原理可以精确地测
量距离和角度。
例如,在地图上测量两点之间的距离时,可以利用相似三角形来计算实际距离。
此外,在导航中,飞行员和船员也需要用到相似三角形的概念来测量飞行或航行的角度和距离,以确保安全飞行或航行。
3.科学实验和观测:在科学实验和观测中,相似三角形的判定也被广泛用于
各种测量和计算。
例如,物理实验中常常需要测量物体的速度、加速度等物理量,这时可以利用相似三角形来测量或计算所需参数。
此外,在天文观测中,天文学家也会用到相似三角形的原理来测量天体的位置和距离。
4.日常生活中的应用:在日常生活中,我们也会遇到一些与相似三角形相关
的应用场景。
例如,摄影时需要调整相机的角度和高度,这时可以利用相似三角形的原理来计算所需的参数。
另外,在测量物体的尺寸或角度时,我们也可以利用相似三角形的概念来进行粗略的估算。
总之,相似三角形的判定在现实生活中有广泛的应用,涉及到建筑、工程、科学实验、导航、摄影等领域。
通过掌握相似三角形的原理和应用技巧,我们可以更好地解决各种实际问题,提高生活和工作的效率和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察这两个图形,说说你发现了什么?
学生在方格纸上画两个三角形,观察图形、思考、汇报。指名汇报。
[设计意图]:通过多种形式的练习使学生了解到:角是由一个顶点和两条边组成的;角的大小与画出的边的长短无关;正方形、长方形、三角形都有直角。学生充分感受到角和直角在生活中的应用。
三、学习效果测评
1、完成第43练习八第7题。
左图中有3个角,中图中有7个角,右图中有8个角。做题时教师要先让学生找,教师作必要的指点。
2、完成第43练习八第8题。
正方形或长方形的盒子上各面共有24个角。教师指导学生数数看一共有多少个角。学生活动。
指名汇报并演示数法。
[设计意图]:变式练习加强学生对角和直角的认识。
学生观察题中的图形然后判断,汇报说明理由。
如第2个图可以引导学生说两条线相接的地方不是一个顶点,而是一段弯曲的线,所以不是角。
2、完成第42练习八第3题。
教师让学生用三角板上的角比一比,或把这两个角做成投影片,把他们重叠起来验证。
学生用三角板上的角比一比,从而验证角的大小。
指名汇报并说明你发现了什么?
课后反思
四、课堂总结
修改意见:
1、还记得上节课我们学了什么内容吗?请在练习本上画出一个角,并写出“角”的各部分名称。
验证前先让学生做个比较:你们看到的是左边的角大还是右边的角大呢?(引发认知冲突)
引导出:角的大小与角的边的长短没有关系,角的张口越大,角就越大。
删除3和4
4换成:
欣赏生活中的角,幻灯片:房子、简笔画的人物等
3、完成第42练习八第4题。
教师先让学生直观判断,再用三角板来检查题里的角是不是直角。
学生先独立直观判断,再用三角板检验。
指名汇报,并说明理由。
4、完成第42练习八第5题。
教师用钉子板或让学生在点子图上照样子画出两个图形,然后用三角板上的直角去检验一下是否是直角。
学生活动。
5、完成第43练习八第6题。
课题:
备课人:修改人:
教学内容:
课本P42、43页及练习八中相应的练习。
教学目标:
紧密结合生活情境及操作活动,学生充分感受到角和直角在生活中的应用。
教学重点:
充分感受到角和直角在生活中的应用,进一步加深对角和直角的把握。
教学难点:
充分感受到角和直角与生活的密切联系。
教学准备:
相关图片、方格纸、正方体和长方体盒子、直尺、三角板等。
教学过程:
一、创设情境
完成第42页练习八的第2题。
出示三角形和四边形。观察这两个图形,你发现了什么?指名汇报。
学生观察图形并思考。计意图]:情境学习,进入新课。
二、合作探究
1、完成第42页练习八第3。
要求观察区分出题中的图形哪些是角,哪些不是角。为什么?说说理由。