数学建模作业1(长方形椅子能否在不平的地面上放稳吗)知识交流
椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗?

其次要把椅脚着地用数学符号表示出来。
椅子在不同位置时椅脚与地面的距离不同,当距离为0时,就是椅子四只脚着地,所以这个距离就是椅子位置变量θ的函数。
虽椅子有四只脚,四个距离,但由长方形是中心对称图形可用两个距离函数就行了。
A,C 两脚与地面的距离之和为()f θB,D 两脚与地面的距离之和为()g θ由假设2知道地面为连续曲面所以()f θ,()g θ是连续函数。
由假设3可得对于任意的θ,()f θ,()g θ至少一个为0。
可以假设(0)f =0,(0)g 〉0,而当椅子旋转180度后,对角线AC ,BD 互换,于是()f π〉0,()g π=0。
这样,改变椅子的位置使四只脚着地,就归结为证明如下的数学问题:已知()f θ,()g θ是θ的连续函数, 对任意的θ,()f θ*()g θ=0,而且()(0)0f g π==, (0)0,()0f g π>>。
证明存在0θ,使(0)(0)0f g θθ==。
五、模型求解(显示模型的求解方法、步骤及运算程序、结果)令()()()h f g θθθ=-,则(0)0h <和()0h π>。
由f 和g 的连续性知h 也是连续函数。
根据连续函数的基本性质,比存在0(0)θθπ<<使得(0)0h θ=,即(0)(0)f g θθ=。
最后因为(0)*(0)0f g θθ=,所以(0)(0)0f g θθ==。
文案 编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
生活中的若干建模实例3

p1 p2 这时不公平程度可用 来衡量。 n1 n2 如 p1 120, p2 100, n1 n2 10 p1 p2 则 2 n1 n2
又如 p1 1020, p2 1000, n1 n2 10
pபைடு நூலகம் p2 不妨设 > n1 n2
p1 p2 则 2 n1 n2
显然 p1 - p2 只是衡量的不公平的绝对程度,但是
Q1最大,于是这1席应分给甲系.
Q3最大,于是这1席应分给丙系.
评注
1.席位的分配应对各方都要公平 2.解决问题 的关键在于建立衡量公平程度既合 理又简明的数量指标。 这个模型提出的相对不公平值 它是确定分配方案的前提.
rA , rB
§3 双层玻璃窗的功效问题
我们注意到北方有些建筑物的窗户是双层的,即 窗户装两层玻璃且中间留有一定空隙,如图所示 墙 墙
当总席位增加1席时,计算
Qi p i2 ni ( ni 1) , i =1,2, ,m
则增加的一席应分配给Q值大的一方. 这种席位分配的方法称为Q值法. 下面用Q值法重新讨论本节开始提出的甲乙 丙三系分配21个席位的问题.
先按照比例将整数部分的19 席分配完毕,有
n1 10,n2 6,n3 3
由假设(3),任何位置至少有三只脚着地,所以 对于任意的θ, f ( ), g( ) 至少有一个为0.
当θ=0时,不妨设
g(0) 0, f (0) 0
这样改变椅子的位置使四只脚同时着地就归结 为证明如下的数学命题:
已知f ( )和g ( )都是 的连续函数,对任意 , f ( ) g ( ) 0且g ( 0) 0,f ( 0) 0,则存在 0使 f ( 0 ) g ( 0 ) 0
椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗?

其次要把椅脚着地用数学符号表示出来。
椅子在不同位置时椅脚与地面的距离不同,当距离为0时,就是椅子四只脚着地,所以这个距离就是椅子位置变量θ的函数。
虽椅子有四只脚,四个距离,但由长方形是中心对称图形可用两个距离函数就行了。
A,C 两脚与地面的距离之和为()f θ
B,D 两脚与地面的距离之和为()g θ
由假设2知道地面为连续曲面所以()f θ,()g θ是连续函数。
由假设3可得对于任意的θ,()f θ,()g θ至少一个为0。
可以假设(0)f =0,(0)g 〉0,而当椅子旋转180度后,对角线AC ,BD 互换,于是()f π〉0,()g π=0。
这样,改变椅子的位置使四只脚着地,就归结为证明如下的数学问题:
已知()f θ,()g θ是θ的连续函数, 对任意的θ,()f θ*()g θ=0,而且()(0)0f g π==, (0)0,()0f g π>>。
证明存在0θ,使(0)(0)0f g θθ==。
五、模型求解
(显示模型的求解方法、步骤及运算程序、结果)
令()()()h f g θθθ=-,则(0)0h <和()0h π>。
由f 和g 的连续性知h 也是连续函数。
根据连续函数的基本性质,比存在0(0)θθπ<<使得(0)0h θ=,即(0)(0)f g θθ=。
最后因为(0)*(0)0f g θθ=,所以(0)(0)0f g θθ==。
椅子能在不平的地面放稳的数学模型

椅子能在不平的地面放稳的数学模型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!椅子在不平的地面上放稳是一个常见但又非常重要的问题。
数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题

1 椅子能在不平的地面上放稳得问题的拓展.模型假设对椅子和地面应该作一些必要的假设:1.椅子的四条腿一样长,椅脚与地面接触处可视为一个点。
四脚的连线呈长方形。
2.地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上连续曲面。
3.对于脚的间距和椅腿的长度而言,地面时相对平坦的,使椅子在任何位置至少有三个脚同时着地。
模型构成中心问题是用数学语言把椅子的四只脚同时着地的条件和结论表示出来。
首先要用变量把椅子的位置,注意到椅脚连线呈长方形。
以中心为对称点,长方形绕中心的旋转正好代表了椅子位置的改变,于是因此可以用旋转角度这一变量表示椅子的位置。
在图中角线B’D’与X轴重合,椅子绕中心点O轴旋转角度θ后。
长方形A’B’C’D’转至ABCD位置。
用θ(对角线与x 轴的夹角)表示椅子位置,椅脚与地面距离为θ的函数.A,C 两脚与地面距离之和 ~ f (θ,),B,D 两脚与地面距离之和 ~ g (θ)地面为连续曲面 F (θ) , g(θ)是连续数.椅子在任意位置至少三只脚着地.对任意θ, f(θ ), g (θ )至少一个为0.已知: f (θ ) , g (θ )是连续函数 ;对任意θ, f (θ• g (θ )=0 ;且 g (0)=0, f (0) > 0.证明:存在θ0,使 f (θ0) = g (θ0) = 0.模型求解证明;设长方形的长为a ,宽为b。
将椅子旋转θ=2arctanb/a,对角线AC取代BD的位置。
由g(0)=0,f(0) > 0 ,知f(2arctanb/a)=0 ,g(2arctanb/a )>0.或,g(2arctanb/a )=0(1)f(2arctanb/a)=0 ,g(2arctanb/a )=0,桌子能放平衡。
(2)f(2arctanb/a)=0 ,g(2arctanb/a )>0令h(θ)= f(θ)–g(θ), 则h(0)>0和h(2arctanb/a)<0.由 f, g的连续性知 h为连续函数, 据连续函数的基本性质, 必存在θ0 , 使h(θ0)=0, 即f(θ0) = g(θ0) .因为f(θ) • g(θ)=0, 所以f(θ0) = g(θ0) = 0.第一题一根1米长的水平弹性绳子,存在A端和B端。
数学建模椅子平衡问题 蜗牛爬行问题 船渡河问题

1 椅子能在不平的地面上放稳得问题的拓展.模型假设对椅子和地面应该作一些必要的假设:1.椅子的四条腿一样长,椅脚与地面接触处可视为一个点。
四脚的连线呈长方形。
2.地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上连续曲面。
3.对于脚的间距和椅腿的长度而言,地面时相对平坦的,使椅子在任何位置至少有三个脚同时着地。
模型构成中心问题是用数学语言把椅子的四只脚同时着地的条件和结论表示出来。
首先要用变量把椅子的位置,注意到椅脚连线呈长方形。
以中心为对称点,长方形绕中心的旋转正好代表了椅子位置的改变,于是因此可以用旋转角度这一变量表示椅子的位置。
在图中椅线B’D’与X轴重合,椅子绕中心点O轴旋转角度θ后。
长方形A’B’C’D’转至ABCD位置。
用θ(对角线与x 轴的夹角)表示椅子位置,椅脚与地面距离为θ的函数.A,C 两脚与地面距离之和 ~ f (θ,),B,D 两脚与地面距离之和 ~ g (θ)地面为连续曲面 F (θ) , g (θ)是连续数.椅子在任意位置至少三只脚着地.对任意θ, f (θ ),g (θ )至少一个为0.已知: f (θ ) , g (θ )是连续函数 ;对任意θ, f (θ)• g (θ )=0 ;且g (0)=0, f(0) > 0.证明:存在θ0,使 f (θ0) = g (θ0) = 0.模型求解证明;设长方形的长为a ,宽为b。
将椅子旋转θ=2arctanb/a,对角线AC取代BD的位置。
由g(0)=0,f(0) > 0 ,知f(2arctanb/a)=0 ,g(2arctanb/a )>0.或,g(2arctanb/a )=0(1)f(2arctanb/a)=0 ,g(2arctanb/a )=0,桌子能放平衡。
(2)f(2arctanb/a)=0 ,g(2arctanb/a )>0令h(θ)= f(θ)–g(θ), 则h(0)>0和h(2arctanb/a)<0.由 f, g的连续性知 h为连续函数, 据连续函数的基本性质, 必存在θ0 , 使h(θ0)=0, 即f(θ0) = g(θ0) .因为f(θ) • g(θ)=0, 所以f(θ0) = g(θ0) = 0.第一题一根1米长的水平弹性绳子,存在A端和B端。
椅子能否放稳

1 椅子在不平的地面上能放稳吗(一)问题的分析与假设由三点构成一个平面可知,通常情况下,在不平的地面椅子是三只脚着地,如果要达到放稳的要求,必须是四只椅脚同时着地。
问题中,椅子四脚呈长方形,在以下建模过程中,为方便讨论,我们作出以下假设:(1)椅子的四条腿一样长,椅脚与地面点接触,四角连线呈矩形;(2)地面高度连续变化,可视为数学上的连续曲面;(3)地面相对平坦,使椅子在任意位置至少三只脚同时着地。
(二)模型的建立与求解问题的解决,是通过建立直角坐标系,利用矩形的对角线平分且相等,以AC所在直线作为X轴,以垂至于AC的直线作为为Y轴,以矩形的中心点为原点建立直角坐标系。
如图所示:错误!用对角线AC与X轴的夹角α表示椅子当前的位置,此时,可设椅脚与地面的距离是α的函数。
椅子的四脚与地面应有四个距离的函数,但由于矩形的对称性,对角上的两点距离之和可用一个函数表示。
设A,C两脚与地面的距离之和为,B,D两脚与地面的距离之和为。
已知地面是连续曲面,椅子可在任意位置至少三只脚着地,把已知条件转化为数学问题为已知,是连续函数,即α为任意值,·=0总成立;且。
现只需证明存在α0,使。
现给出证明方法:开始α=0,将椅子旋转角度大小为∠AOB=a,此时对角线AC和BD互换。
由,知,。
令, 则有。
因为,为连续函数,所以也为连续函数,根据连续函数的基本性质,必存在α0使=0,即,又因为·=0,所以可得,证毕。
由证明的结果看,在不平的平面上,椅子呈矩形四脚距离地面的距离能同时为零,即椅子能在不平的地面放平稳。
若椅子的四脚呈等腰梯形,同理可证这样的椅子也能在不平的地面上放稳。
简单数学建模应用例子

5
建模实例
图中椅脚连线为正 方形ABCD,对角线 AC与x轴重合 椅子 绕中心点旋转角度 后,正方形ABCD转 至A`B`C`D`的位置, 所以对角线AC与x
2024/5/10
6
建模实例
轴的夹角 表示了椅子的位置。 其次要把椅子脚着地,用数学符号表示出 来,如果用某个变量表示椅脚与地面的竖 直距离,那么当这个距离为零时就是椅脚 着地了,椅子在不同的位置椅脚与地面的 距离不同,所以这个距离就是位置变量 的 函数。
2024/5/10
27
建模实例
阻滞增长模型(Logistic模型)
将增长率r表示为人口x(t)的函数r(x),按照前 面的分析,r(x)应是x的减函数。一个最简单的 假设是设 r(x)为x的线性函数, r(x)=r-sx, s>0, 这里r相当于x=0时的增长率,称为固有增长率, 它与指数模型中的增长率r不同,显然,对于 任意的x>0,增长率r(x)<r。为确定系数s的意 义,引入自然资源和环境条件所能容纳的最大 人口数量xm, 称为最大人口容量。
2024/5/10
15
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
2024/5/10
14
建模实例
用状态变量表示某一岸的人员状况,决策变量 表示船上的人员状况,可以找出状态随决策变 化的规律。问题转化为在状态的充许变化范围 内,确定每一步的决策,达到渡河的目标 模型的过成: 记第k次渡河前此岸的商人数为xk随从数为yk, k=1,2,……,xk , yk =0,1,2,3,将二维向量 sk=(xk,yk)定义为状态,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其次,把椅脚是否着地用数学形式表示出来.
我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C 和B,D对换了.因此,记
A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)•g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g (θ0)=0成立。