第十届北京市大学生数学甲乙组试题
(北京卷)十年真题(2010)高考数学真题分类汇编专题01集合文(含解析)

1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A 形如
1
1
﹣1﹣2d
d
d
﹣1
其中﹣1≤d≤0.求 k(A)的最大值;
(Ⅲ)对所有满足性质 P 的 2 行 3 列的数表 A,求 k(A)的最大值.
【解答】解:(1)因为 r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8, 所以 k(A)=0.7
A.x | 3 x 2
B.x | 5 x 2
C.x | 3 x 3
【答案】A 【解析】
解: B x | x 3 x | 3 x 3 ,
D.x | 5 x 3
则 A B x | 3 x 2,
故选:A.
2.已知集合 A {x | x2 5x 6 0}, B {x Z |1 x 5} ,则 A B ( )
∴A∩B={x|2<x<3}.
故选:C.
6.【2015 年北京文科 01】若集合 A={x|﹣5<x<2},B={x|﹣3<x<3},则 A∩B=(
)
A.{x|﹣3<x<2}
B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}
【解答】解:集合 A={x|﹣5<x<2},B={x|﹣3<x<3},
A {3, 2, 1, 0,1, 2,3}
∴ A B 1,0,1,2,3 .
故选 B.
4.已知全集U R ,集合 A x | 2x 4 , B {x | (x 1)(x 3) 0} ,则 U A B ( )
历年考题细目表
题型
年份
单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 解答题 解答题
第十七届北京市大学生数学竞赛本科甲、乙组试题解答

第十七届北京市大学生数学竞赛本科甲、乙组试题解答注意:本考卷共九题。
甲组九题全做,乙组只做前七题一、 填空题(每题2分,共20分).___)1(,3)1(,2)1(,1)1(),(,)(.1=''=''='===ϕϕ则且其反函数为有二阶连续导数设严格单调函数f f f y x x f y .83)1(,)(1)()(.8332-='''''-='⋅'''-=''-ϕϕ知由应填解y y y y y y._______|]||||[|1lim,,),π0(.22=+-+<<→→→→→→→βαβαθθθβαθb a b a b a 则为正常数的夹角为与设单位向量.)(2cos 22sin limcos 2lim|]||||[|1limcos 2)()(||.)(22202220222b a abab b a ab ab b a b a b a b a ab b a b a b a b a b a ab+=++=++-+=+-+++=+⋅+=++→→→→→→→→→→→→→θθθθθβαβαθθβαβαβαθθθ得由应填解._______)0(,4211)(.3)100(2=++=f xx x f 则设 )!.100(2)0(,)2()2()2(1214211)(,21||.)!100(2100)100(0130332100-=-=--=++=<-∑∑∞=+∞=f x x x x x x x f x n n n n所以时因为当应填解._______d |sin |.4π20060=⎰x x x.π2006π20062d |sin |π2006d |sin |)π2006(d |sin |)π2006(π2006.π200622π20060π200600π20062)(故)()(应填解=⨯+-=+-=---=⎰⎰⎰I I t t t t t t t t x t I .__,])27[(lim )4(.54=-++>+∞→αα则存在且不为零使极限已知有整数x x x n n n x.51,14,1],)271([lim ])27[(lim .5144=-=-=-++=-++--+∞→+∞→ααααα因此由极限不为零得所以由极限存在可得因为应填解n n x x x x x x x n n n x n x ._____,.1)1(lim ,1,0.611的取值范围为则收敛若且设p a a e n p a n n n npn n ∑∞=∞→=->>).,2(,11,,.1lim )1(lim ),(1~1).,2(1111+∞>-==-∞→-+∞∑∞=-∞→∞→的取值范围应为即则收敛若法知由正项级数的比较判别所以因为应填解p p a a n a e n n ne n n n p n n np n n._____.7222===+A xOy y z a y x 面之间的侧面积与夹在平面圆柱面.4d sin 2d 2.42π02222a t t a s y A a x a y ===⎰⎰-=对称性知曲线积分的几何意义及由应填解.____)(,1)(,0)1(,)(0.8==∂∂+∂∂-==>u f yzx z e e f z f u f u y x 则满足又二元函数且有一阶连续导数时当 .ln )(,0)1(0.||ln )(,1)()()(,.ln u u f f u C u u f u f u u f e u f e yzx z e e u u y x y x ==>+=='='-'=∂∂+∂∂-=所以且由于解出则记应填解._____________1.9==''-'''y x y xy 的通解为 .12,.11),(.1232314232314C x C x C x y x C x p x p x p x y x y x p y C x C x C x +++=+==-'=''-'''=''+++因此通解为的求解公式得根据一阶线性微分方程可化为则令应填解.____),(lim lim ),(lim lim ),0(1tan 1),(.1000=-≠+=→∞→∞→→y x f y x f y x yx y x y x y x f x y y x 则设函数.1),(lim lim ),(lim lim ,1),(lim lim ,0),(lim lim .10000-=-==-→∞→∞→→→∞→∞→→y x f y x f y x f y x f x y y x x y y x 所以因为应填解.)(,1)0(,2π2πtan cos )(sin )10(.x f f x x x x x f 求且,已知分二=<<-++=' .1arcsin arcsin 121)(,1)0(.arcsin arcsin 121)(,arcsin d )arcsin 1(,arcsin 121d 1.d )arcsin 11()(arcsin 11)()2π2π(sin 22221222222+++-==+++-=+=+-++-=-+-+-=+-+-='<<-=⎰⎰⎰x x x x x x f f C x x x x x x f C x x x x x xC x x x x x x x x xx x f t t t t t f x x t )(故又)(所以)(而即,,则令解.)(,1)0(,)()()(,,),()()10(.x f f a f e b f e b a f b a x f b a 求又成立都有等式且对于任意的实数上有定义在设分三='+=++∞-∞ .)(,0)0(),()().())(()]0()([lim )()()(lim)()(lim )(.0)0()0()0()00(0000x x x x x x x x x x xe x f f x C e x f x f e xe e xf f x f e xx f x f e x f e x x f x x f x f f f f f ==+=+=∆-+-∆=∆-+∆=∆-∆+='=+=+∆→∆∆→∆→∆所以又解此微分方程可得得由解.),(1)10(.2200022立体的体积所围成处的切平面与抛物面上任意一点求抛物面分四y x z y x P y x z +=++=.2π])()(1[d d )122(,1)()(,122,,122),(12020222020002020202000222020*******=----=--++-+=≤-+-⎩⎨⎧++-+=+=++-+=++=⎰⎰⎰⎰y y x x yx y x y x y y x x V y y x x D y x y y x x z y x z y x y y x x z y x P y x z DD所围成的立体的体积:求得投影区域处的切平面为在点抛物面解.)0(202,)728(15π2d )1()10(.2222之间的部分和夹在平面为抛物面其中证明分五>==+=∑-≤--⎰⎰∑t tz z y x z S y x .15)728(2)(,15)728(2d 1)1(2)1(),1()(,1,01)1()().,0(,d 1)1(2d d 1)1(d )1()(221022*********π-≤π-=+-π===+-π='+∞∈+-π=++--=--=⎰⎰⎰⎰⎰⎰≤+∑t I r r r r I I t I t t t t I t r r r r y x y x y x S y x t I ty x t所以而的最大值为则解得唯一驻点令证.,2.1112,,,)10(.时达到最大问两针尖相离的速度何与设时针和分针分别长后再次重合小时经过再由大变小由小变大两针针尖间的距离逐渐后分针和时针在零点重合分六a a 两针尖分离的速度为之间的距离为故尖的位置分别为此时,时针和分针两针和度为时针分针分别转动了角时刻,小时,所以在分针的角速度为小时,为由题意知时针的角速度解],116,0[,611cos 45)6cos 2cos 2()6sin 2sin 2(,),2cos 2,2sin 2(),6cos ,6sin (,26]116,0[/2/62221∈π-=π-π+π-π=πππππ=βπ=α∈π=ωπ=ωt t a t a t a t a t a S B A t a t a B t a t a A t tt.54.5410112,1120],116,0[,)611cos 45(2611cos 5)611(cos 218121],116,0[,611cos 456sin311322两针尖分离速度最大秒分经过度最大,即从重合开始小时后两针尖分离的速即在解得驻点令=='∈π-+π-ππ-='∈π-ππ='=t v t t t t v t t t a S v .1),0,1()1,0(,),()10(.22yfx x f y y x f f y x f ∂∂=∂∂=+=点满足方程上至少存在两个不同的证明在单位圆周且有一阶连续偏导数设二元函数分七证 令),sin ,(cos )(θθθf F =则在区间),π2()2π()0(,)(]2,0[F F F F ==且可导上θπ由罗尔定理知至少存在两个不同的点),π2,0(,∈ηξ使得,0)()(='='ηξF F而),sin ,(cos cos )sin ,(cos sin )(θθθθθθθy x f f F +-=' 将ηξ,代入上式即得结论.以下两题乙组考生不做.1111211)10(.nen e ne n n<⎪⎭⎫ ⎝⎛--<>,求证:设整数分八证 先证不等式 .01)11ln()11(1)11(1>+--⇔<--nnnnenen设],1,0[,)1ln()1()(∈+--=x x x x x f ),1,0(,0)1ln()(∈>--='x x x f所以上在]1,0[)(x f 单增, 0)0(=f ,当)1,0(∈x 时, ,0)1ln()1()(>+--=x x x x f 故 .01)11ln()11()1(>+--=nnnnf再证不等式 .01)11ln()211ln(1)11(121>----⇔--<nn n n n e ne n设 ),1,0[,)1ln()21ln()(∈----=x x x x x x f),1,0(,1112)21ln()(∈--+---='x xx x x x f),1,0(,0)1()2()55()1(1)2(221)(22222∈>--++=-+----=''x x x x x x x x x x f所以上在)1,0[)(x f '单增, 0)0(='f ,当)1,0(∈x 时01112)21ln()(>--+---='xx x x x f ,所以上在]1,0[)(x f 单增, 0)0(=f ,当)1,0(∈x 时0)1ln()21ln()(>----=x x xx x f ,故 .01)11ln()211ln(1)1(>----=nn n n n f.21d )(]1,0[,,0d )(,1|)(|,]1,0[)()10(.10成立都有证明对于任意的且上连续在闭区间设函数分九≤∈=<⎰⎰ba x x fb a x x f x f x f证 不妨假设.b a < 若,21≤-a b 则;21)(d )(≤-=⎰a b f x x f baξ若,21>-a b 则)1()()(d )(d )(d )(10b f a f x x f x x f x x f b aba -+=+≤⎰⎰⎰ηξ.21)(1<--≤a b。
2010年北京高考试题数学理解析版

2010年普通高等学校招生全国统一考试数学(理)(北京卷)解析本试卷分第I卷和第n卷两部分。
第I卷1至2页、第n卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第I卷(选择题共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)集合P={x^Z 0Exc3}, M ={x w Rx2兰9},则PI M =(A) {1,2} (B) {0,1,2} (C){x|0 w x<3} (D) {x|0 < x < 3}1, B •解析:P Jo,1,2〉, M = I-3 4,3】,因此P^M hb,1,2"(2)在等比数列taj中,印=1 ,公比q H1 .右a m = 8182838485,则m=解析:很容易看出这是一个面向我们的左上角缺了一小块长方体的图形,不难选出答案。
(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为3—个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该4A .解析:基本的插空法解决的排列组合问题,几何体的俯视图为(A ) 9(B) 10(C) 11(D) 122, C.8m二內比比印比=q qm =11(B ) A8C9 AX (D ) A8C7将所有学生先排列,有A种排法,然后将两位老师插入9个空解析:2 3 4 10 10q q =q = ,因正(主)視图此有中,共有A 9种排法,因此一共有 A 8A 9种排法。
(5) 极坐标方程(;?-1 )^-7:) =0 ( T _0)表示的图形是(B )两条直线解析:原方程等价于 '二1或-二,前者是半径为1的圆,后者是一条射线。
(6)若a , b 是非零向量,“ a 丄b ”是“函数f (x)二(xa - b)・(xb - a)为一次函数”的(A )两个圆(C ) 一个圆和一条射线(D ) —条直线和一条射线(A )充分而不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件6, B .解析:f (x) =(xa b)L(xb2—a) =(a b)x +(b— a )x —a ,b ,如a 丄b ,则有a ,b=0,如果同时有 b = a ,则函数恒为0,不是一次函数,因此不充分,而如果 f(x)为一次函数,则a ^0,因此可得a _b ,故该条件必要。
2010年北京高考文科数学试题及答案

2010年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A )4+8i (B)8+2i (C )2+4i (D)4+i⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是(A )45 (B)35 (C )25 (D)15⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数(5)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:(6)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 3αα+(C )3sin 1αα+ (D )2sin cos 1αα-+(8)如图,正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题12概率统计文(含解析)

专题12概率统计历年考题细目表题型年份考点试题位置单选题2016 概率2016年北京文科06单选题2015 统计2015年北京文科04单选题2012 概率2012年北京文科03单选题2010 概率2010年北京文科03填空题2015 统计2015年北京文科14填空题2010 统计2010年北京文科12解答题2019 概率统计综合题2019年北京文科17解答题2018 概率统计综合题2018年北京文科17解答题2017 概率统计综合题2017年北京文科17解答题2016 概率统计综合题2016年北京文科17解答题2015 概率统计综合题2015年北京文科17解答题2014 概率统计综合题2014年北京文科18解答题2013 概率统计综合题2013年北京文科16解答题2012 概率统计综合题2012年北京文科17解答题2011 概率统计综合题2011年北京文科16历年高考真题汇编1.【2016年北京文科06】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.【解答】解:从甲、乙等5名学生中随机选出2人,基本事件总数n10,甲被选中包含的基本事件的个数m4,∴甲被选中的概率p.故选:B.2.【2015年北京文科04】某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.3.【2012年北京文科03】设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P故选:D.4.【2010年北京文科03】从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P,故选:D.5.【2015年北京文科14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.6.【2010年北京文科12】从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为10=3人.故答案为:0.03,3.7.【2019年北京文科17】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.8.【2018年北京文科17】电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【解答】解:(Ⅰ)总的电影部数为140+50+300+200+800+510=2000部,获得好评的第四类电影200×0.25=50,故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)获得好评的电影部数为140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=372,估计这部电影没有获得好评的概率为10.814,(Ⅲ)故只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,则使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.9.【2017年北京文科17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.10.【2016年北京文科17】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,∵用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,∴w至少定为3立方米.(2)当w=3时,该市居民的人均水费为:(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,∴当w=3时,估计该市居民该月的人均水费为10.5元.11.【2015年北京文科17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √×√√217 ×√×√200 √√√×300 √×√×85 √×××98 ×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为0.2,同时购买甲和丙的概率为0.6,同时购买甲和丁的概率为0.1,故同时购买甲和丙的概率最大.12.【2014年北京文科18】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1 [0,2) 62 [2,4)83 [4,6)174 [6,8)225 [8,10)256 [10,12)127 [12,14) 68 [14,16) 29 [16,18) 2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)【解答】解:(Ⅰ)由频率分布表知:1周课外阅读时间少于12小时的频数为6+8+17+22+25+12=90,∴1周课外阅读时间少于12小时的频率为0.9;(Ⅱ)由频率分布表知:数据在[4,6)的频数为17,∴频率为0.17,∴a=0.085;数据在[8,10)的频数为25,∴频率为0.25,∴b=0.125;(Ⅲ)数据的平均数为1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小时),∴样本中的100名学生该周课外阅读时间的平均数在第四组.13.【2013年北京文科16】如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.14.【2012年北京文科17】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a >0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:S2[],其中为数据x1,x2,…,x n的平均数)【解答】解:(1)由题意可知:厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为;(2)由题意可知:生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为;(3)由题意可知:∵a+b+c=600,∴a,b,c的平均数为200∴,∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c=0时,有s2=80000.15.【2011年北京文科16】以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P.考题分析与复习建议本专题考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型等,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型等,预测明年本考点题目会比较稳定,备考方向以知识点用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率等为重点较佳.最新高考模拟试题1.如图是1990年-2017年我国劳动年龄(15-64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是()A.2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B.2010年后我国人口数量开始呈现负增长态势C.2013年我国劳动年龄人口数量达到峰值D.我国劳动年龄人口占总人口比重极差超过6%【答案】B 【解析】解:A 选项,2000年我国劳动年龄人口数量增幅约为6000万,是图中最大的,2000年我国劳动年龄人口数量占总人口比重的增幅约为3%,也是最多的.故A 对.B 选项,2010年到2011年我国劳动年龄人口数量有所增加,故B 错.C 选项,从图上看,2013年的长方形是最高的,即2013年我国劳动年龄人口数量达到峰值,C 对,D 选项,我国劳动年龄人口占总人口比重最大为11年,约为74%,最小为92年,约为67%,故极差超过6%.D 对. 故选:B .2.一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( ) A .3 B .2.1 C .0.3D .0.21【答案】B 【解析】∵290(),x N δ~,且()700.2P x <=,所以()1100.2P x >=∴()901100.50.20.3P x <<=-=, ∴()10,0.3X B ~,X 的方差为()100.310.3 2.1⨯⨯-=.故选B .3.小张刚参加工作时月工资为5000元,各种用途占比统计如下面的条形图.后来他加强了体育锻炼,目前月工资的各种用途占比统计如下面的拆线图.已知目前的月就医费比刚参加工作时少200元,则目前小张的月工资为( )A .5500B .6000C .6500D .7000【答案】A 【解析】由条形图可知,刚参加工作的月就医费为:500015%750⨯=元 则目前的月就医费为:750200550-=元∴目前的月工资为:55010%5500÷=元本题正确选项:A4.若,a b 是从集合{}1,1,2,3,4-中随机选取的两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( ) A .320B .310C .925D .35【答案】B 【解析】从集合{}1,1,2,3,4-中随机选取的两个不同元素共有2520A = 种要使得函数()5ab f x x x =+是奇函数,必须,a b 都为奇数共有236A = 种则函数()5ab f x x x =+是奇函数的概率为632010P == 故选B5.某企业的一种商品的产量与单位成本数据如下表: 产量x (万件)14 16182022单位成本y (元/件) 1210 7a3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( )A .4.5B .5C .5.5D .6【答案】B 【解析】1416182022901855x ++++===1210733255a a y +++++==()x y Q , 在线性回归方程ˆ 1.1528.1y x =-+上 1.151828.1=7.4y \=-?则32=7.45a+解得5a = 故选B6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .900【答案】A 【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为( ) A .56B .45C .34D .23【答案】B 【解析】设A 为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数2615n C ==,恰好抽到2幅不同种类包含的基本事件个数21132212m C C C ==,则恰好抽到2幅不同种类的概率为()124155m P A n ===. 故选:B .8.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32C .0.36D .0.64【答案】C 【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为:W 010010x y ≤≤⎧⎨≤≤⎩,“进站时间的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =⨯-⨯=,则36()0.36100A S P A S Ω===. 选C .9.一个盒子中放有大小相同的4个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为_______. 【答案】25【解析】设4个白球编号为:1,2,3,4;1个黑球为:A从中任取两个球的所有可能结果为:12、13、14、1A、23、24、2A、34、3A、4A,共10种所取的两个球不同色的有:1A、2A、3A、4A,共4种∴所求概率为:42105 P==本题正确结果:2 510.已知某中学高三理科班学生共有800人参加了数学与物理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号。
北京市十年高考数学真题(2013-2022)与优质模拟题精华汇编专题01集合与常用逻辑(解析版)

大数据之十年高考真题(2013-2022)与优质模拟题(北京卷)专题01集合与常用逻辑真题汇总1.【2022年北京卷01】已知全集U={x|−3<x<3},集合A ={x|−2<x≤1},则∁U A=()A.(−2,1]B.(−3,−2)∪[1,3)C.[−2,1)D.(−3,−2]∪(1,3)【答案】D【解析】由补集定义可知:∁U A={x|−3<x≤−2或1<x<3},即∁U A=(−3,−2]∪(1,3),故选:D.2.【2021年北京1】已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.(−1,2)B.(−1,2]C.[0,1)D.[0,1]【答案】B由题意可得:A∪B={x|−1<x≤2},即A∪B=(−1,2].故选:B.3.【2020年北京卷01】已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}【答案】D【解析】A∩B={−1,0,1,2}∩(0,3)={1,2},故选:D.4.【2018年北京理科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}【答案】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.5.【2018年北京理科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉A C.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A【答案】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y >4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.6.【2017年北京理科01】若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【答案】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.7.【2016年北京理科01】已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}【答案】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1}.故选:C.8.【2016年北京理科08】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选:B.9.【2014年北京理科01】已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【答案】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.10.【2014年北京理科08】学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【答案】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.11.【2013年北京理科01】已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【答案】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.12.【2018年北京理科20】设n为正整数,集合A={α|α=(t1,t2,…t n),t k∈{0,1},k=1,2,…,n},对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…y n),记M (α,β)=12[(x 1+y 1﹣|x 1﹣y 1|)+(x 2+y 2﹣|x 2﹣y 2|)+…(x n +y n ﹣|x n ﹣y n |)](Ⅰ)当n =3时,若α=(1,1,0),β=(0,1,1),求M (α,α)和M (α,β)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M (α,β)是奇数;当α,β不同时,M (α,β)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M (α,β)=0,写出一个集合B ,使其元素个数最多,并说明理由.【答案】解:(I ) M (α,α)=1+1+0=2,M (α,β)=0+1+0=1.(II )考虑数对(x k ,y k )只有四种情况:(0,0)、(0,1)、(1,0)、(1,1),相应的x k +y k −|x k −y k |2分别为0、0、0、1,所以B 中的每个元素应有奇数个1,所以B 中的元素只可能为(上下对应的两个元素称之为互补元素): (1,0,0,0 )、(0,1,0,0)、(0,0,1,0)、(0,0,0,1), (0,1,1,1)、(1,0,1,1)、(1,1,0,1)、(1,1,1,0), 对于任意两个只有1个1的元素α,β都满足M (α,β)是偶数,所以四元集合B ={(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1)}满足 题意, 假设B 中元素个数大于等于4,就至少有一对互补元素, 除了这对互补元素之外还有至少1个含有3个1的元素α,则互补元素中含有1个1的元素β与之满足M (α,β)=1不合题意, 故B 中元素个数的最大值为4.(Ⅲ) B ={(0,0,0,…0),(1,0,0…,0),(0,1,0,…0),(0,0,1…0)…, (0,0,0,…,1)},此时B 中有n +1个元素,下证其为最大.对于任意两个不同的元素α,β,满足M (α,β)=0,则α,β中相同位置上的数字不能同时为1, 假设存在B 有多于n +1个元素,由于α=(0,0,0,…,0)与任意元素β都有M (α,β)=0, 所以除(0,0,0,…,0)外至少有n +1个元素含有1,根据元素的互异性,至少存在一对α,β满足x i =y i =l ,此时M (α,β)≥1不满足题意,故B 中最多有n +1个元素.1.已知集合A ={1,2,3},B ={x|x (2−x )≥0},则A ∩B =( ) A .{1,2}B .{1,3}C .{2,3}D .{1,2,3}模拟好题【答案】A【解析】因为A={1,2,3}B={x|x(2−x)≥0}={x|x(x−2)≤0}={x|0≤x≤2}所以A∩B={1,2},故选:A.2.已知集合A={−2,−1,0,1,2},B={x|x2≥1},则A∩B=()A.{−1,0,1}B.{−2,−1,1,2}C.{x|−1≤x≤1}D.{x|x≤−1或x≥1}【答案】B【解析】因集合A={−2,−1,0,1,2},B={x|x2≥1}={x|x≤−1或x≥1},所以A∩B={−2,−1,1,2}.故选:B3.已知集合A={x|0<x<2},B={x|x≥1},则A∪B=()A.{x|x>0}B.{x|1≤x<2}C.{x|x≥1}D.{x|0<x<2}【答案】A【解析】∵A={x|0<x<2},B={x|x≥1},∴A∪B={x|x>0}.故选:A.4.已知集合A={x|x<0或x>1},则∁R A=()A.{x|0<x<1}B.{x|0≤x<1}C.{x|0<x≤1}D.{x|0≤x≤1}【答案】D【解析】由题意知:∁R A={x|0≤x≤1}.故选:D.5.已知集合A={x|−2<x<2},B={−2,0,1,2},则A∩B=()A.{−1,0,1}B.{0,1}C.{−2,0,1,2}D.{−1,0,1,2}【答案】B【解析】因为A ={x |−2<x <2 },B ={−2,0,1,2}, 所以A ∩B ={0,1}, 故选:B.6.已知集合A ={x ∣−1<x <2},B ={x ∣0≤x ≤3},则A ∩B =( ) A .{x ∣−1<x ≤3} B .{x ∣0≤x <2} C .{x ∣0≤x ≤3} D .{x ∣−1<x <2}【答案】B 【解析】依题意可知{−1<x <20≤x ≤3,解得0≤x <2,所以A ∩B ={x ∣0≤x <2}, 故选:B .7.已知集合M ={x |lg (x −1)≤0 },N ={x||x |<2 }.则M ∪N =( ) A .∅ B .(1,2) C .(−2,2] D .{−1,0,1,2}【答案】C 【解析】根据题意,lg(x −1)≤0⇒0<x −1≤1⇒1<x ≤2, 则集合M ={x|lg(x −1)≤0}={x|1<x ≤2},|x|<2⇒−2<x <2,则N ={x||x|<2}={x|−2<x <2}, 则M ∪N ={x|−2<x ≤2}=(−2,2]; 故选:C8.设集合A ={x |y =lg (3−2x )},集合B ={y |y =√1−x},则A ∩B =( ) A .(−∞,1] B .(−∞,32) C .[0,32) D .(32,+∞)【答案】C【解析】y =lg (3−2x ),3−2x >0⇒x <32,函数的定义域是(−∞,32),所以A =(−∞,32),y =√1−x ≥0,所以B =[0,+∞),所以A ∩B =[0,32). 故选:C9.已知集合A ={x |0<x <2},B ={x |x 2−1≤0},那么A ∪B =( ) A .{x |0<x ≤1}B .{x |−1≤x <2}C .{x |−1≤x <0}D .{x |1≤x <2}【答案】B 【解析】∵集合A ={x |0<x <2},B ={x |x 2−1≤0}={x |−1≤x ≤1}, ∴A ∪B ={x |−1≤x <2}. 故选:B .10.若全集U =R ,A ={x ∣x <1},B ={x ∣x >−1},则( ) A .A ⊆B B .B ⊆AC .B ⊆∁U AD .∁U A ⊆B【答案】D 【解析】因为A ={x ∣x <1},B ={x ∣x >−1}, 所以∁U A ={x ∣x ≥1},所以∁U A ⊆B 故选:D11.已知集合A ={x ∈N|−1≤x <3},U ={−2,−1,0,1,2},则∁U A 为( ) A .{0,1,2} B .{1,2} C .{−2,−1,0} D .{−2,−1}【答案】D 【解析】由集合A ={x ∈N|−1≤x <3},即A ={0,1,2},U ={−2,−1,0,1,2} 所以∁U A ={−2,−1} 故选:D12.在△ABC 中,A =π4,则“sinB <√22”是“△ABC 是钝角三角形”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】如果sinB <√22,由于B 是三角形的内角,并且A =π4, 则0<B <π4,A +B <π2 ,△ABC 是钝角三角形, 所以sinB <√22是充分条件;如果△ABC是钝角三角形,不妨设B=2π3,则sinB=√32>√22,所以sinB<√22不是必要条件;故选:A.13.设全集U={x∈R|x≥1},集合A={x∈R+|x2≥3},则∁U A=()A.[1,√3)B.[1,√3]C.(√3,+∞)D.[√3,+∞)【答案】A【解析】由题意,集合A={x|x≥√3}又由U={x∈R|x≥1},所以∁U A={x|1≤x<√3}=[1,√3).故选:A.14.已知集合A={−4,−3,−2,−1,0,1,2,3,4},B={x|x2<9},则A∩B=()A.{0,1,2,3,4}B.{−3,−2,−1,0,1,2,3}C.{−2,−1,0,1,2}D.(−3,3)【答案】C【解析】由题意,集合B={x|x2<9}={x|−3<x<3},又由集合A={−4,−3,−2,−1,0,1,2,3,4},所以A∩B={−2,−1,0,1,2}.故选:C.15.已知集合A={x∈N|x2−2x−3≤0},B={x|x<2},则A∩B=()A.{x|−1≤x<2}B.{−1,0,1}C.{0,1}D.{1}【答案】C【解析】解不等式x2−2x−3≤0得:−1≤x≤3,因此A={0,1,2,3},而B={x|x<2},所以A∩B={0,1}.故选:C16.设函数f(x)的定义域为R,则“f(x)是R上的增函数”是“任意a>0,y=f(x+a)−f(x)无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】若f (x )是R 上的增函数,则对任意a >0,显然x +a >x ,故f (x +a )>f (x ),即y =f (x +a )−f (x )>0无零点,满足充分性;反之,若对任意a >0,f (x +a )<f (x ),即f (x +a )−f (x )<0,满足y =f (x +a )−f (x )无零点,但f (x )是R 上的减函数,不满足必要性,故“f (x )是R 上的增函数”是“任意a >0,y =f (x +a )−f (x )无零点”的充分而不必要条件. 故选:A.17.已知函数f (x )的定义域为R ,则“存在M ∈R ,对任意x ∈R ,均有f (x )≤M ”是“f (x )有最大值”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】只有当∃M ∈R ,∀x ∈R ,f(x)≤M 且∃x 0∈R ,使得f(x 0)=M ,这时f(x)有最大值, 反之,若f (x )有最大值,则存在M ∈R ,对任意x ∈R ,均有f (x )≤M 成立.所以函数f (x )的定义域为R ,则“存在M ∈R ,对任意x ∈R ,均有f (x )≤M ”是“f (x )有最大值”的必要不充分条件. 故选:B18.已知无穷数列{an }满足an +1=an +t (t 为常数),Sn 为{an }的前n 项和,则“t ≥0”是“{an }和{Sn }都有最小项”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】∵an +1=an +t ,∴数列{an }为等差数列,且公差为t ,①当t ≥0时,若t =0,a 1=﹣2时,数列{an }为常数列,且an =﹣2, ∴Sn =﹣2n 为减函数,无最小项,∴充分性不成立, ②当{an }和{Sn }都有最小项, ∵an =a 1+(n ﹣1)t =tn +(a 1﹣t ), Sn =na 1+n (n−1)2t =t 2n 2+(a 1−t2)n ,则{t =0a 1≥0 或t >0,∴t ≥0,∴必要性成立, ∴t ≥0是{an }和{Sn }都有最小项的必要不充分条件, 故选:B .19.已知集合A ={x|x 2≤4},B ={x|log 2x ≥1},则A ∪B =( ) A .[−2,2] B .{2} C .[2, +∞) D .[−2, +∞)【答案】D 【解析】A ={x|x 2≤4}={x|−2≤x ≤2},B ={x|log 2x ≥1}={x|x ≥2} 则A ∪B ={x|−2≤x ≤2}∪{x|x ≥2}={x|x ≥−2} 故选:D20.已知数列{a n }的通项为a n =n 2−2λn ,则“λ<0”是“∀n ∈N ∗,a n+1>a n ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】由题意,数列{a n }的通项为a n =n 2−2λn ,则a n+1−a n =(n +1)2−2λ(n +1)−n 2+2λn =2n +1−2λ>0, 即λ<2n+12=n +12,对∀n ∈N ∗恒成立,当n =1时,n +12取得最小值32,所以λ<32,所以“λ<0”是“∀n ∈N ∗,a n+1>a n ”的充分不必要条件. 故选:A.。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题09立体几何文(含解析)

专题09立体几何历年考题细目表历年高考真题汇编【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()1.A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D.3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD,PD.PC═该几何体最长棱的棱长为:故选:C.4.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴(﹣3,﹣3,3),设P(x,y,z),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA|=|PC|=|PB1|,|PD|=|PA1|=|PC1|,|PB|,|PD1|.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底10,S后,S右10,S左6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为: 4,故棱锥的表面积为:16+16,故选:B.7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A.B.C.D.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.8.【2010年北京文科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.10.【2019年北京文科13】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S(1+2)×1,棱柱的高为1,故棱柱的体积V,故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC,在Rt△BCD中,BD,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.14.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC S△ABC2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC1×1.17.【2016年北京文科18】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC 且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC,∴AB=2,OC=1,∴S△VAB,∵OC⊥平面VAB,∴V C﹣VAB•S△VAB,∴V V﹣ABC=V C﹣VAB.19.【2014年北京文科17】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB,∴V E﹣ABC S△ABC•AA1(1)×2.20.【2013年北京文科17】如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC,又DE⊄平面A1CB,∴DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F,又A1F⊥CD,∴A1F⊥平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,∴DE⊥A1C,又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,∴A1C⊥平面DEP,从而A1C⊥平面DEQ,故线段A1B上存在点Q,使A1C⊥平面DEQ.22.【2011年北京文科17】如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB,CE =EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE.【解答】证明:(Ⅰ)设AC于BD交于点G.因为EF∥AG,且EF=1,AG AC=1,所以四边形AGEF为平行四边形,所以AF∥EG,因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(Ⅱ)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题AD与BD所成的角为()1.在正方体中, 1A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D 1C 1,AB ∥D 1C 1,可知AD 1∥BC 1, 所以∠DBC 1就是异面直线AD 1与BD 所成角,在正方体ABCD-A 1B 1C 1D 1中,BC 1、BD 和DC 1是其三个面上的对角线,它们相等. 所以△DBC 1是正三角形,∠DBC 1=60° 故异面直线AD 1与BD 所成角的大小为60°. 故选:C . 2.在正方体中,用空间中与该正方体所有棱成角都相等的平面α去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S ,周长为l ,则( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值【答案】C 【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等, 如图:与面1A BD 平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN ,其中分别为其所在棱的中点,由正方体的性质可得22EF =, ∴六边形的周长l 为定值32. ∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变, 故S 与l 均为定值,故选C.3.在四面体P ABC -中,ABC ∆为等边三角形,边长为3,3PA =,4PB =,5PC =,则四面体P ABC -的体积为( )A .3B .23C .11D .10【答案】C 【解析】如图,延长CA 至D ,使得3AD =,连接,DB PD , 因为,故ADB ∆为等腰三角形,又,故,所以即,故CB DB ⊥,因为,所以,所以CB PB ⊥,因,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD , 所以,因A 为DC 的中点,所以,因为,故PDC ∆为直角三角形,所以,又,而4PB =,故即PBD ∆为直角三角形, 所以,所以,故选C.4.若,a b 是不同的直线,,αβ是不同的平面,则下列命题中正确的是( ) A .若,则αβ⊥B .若,则αβ‖C .若,则αβ‖D .若,则αβ‖ 【答案】C 【解析】A 中,若,平面,αβ可能垂直也可能平行或斜交,不正确; B 中,若,平面,αβ可能平行也可能相交,不正确;C 中,若,a b αβ⊥⊥,则,a b 分别是平面,αβ的法线,a b ‖必有αβ‖,正确;D 中,若,平面,αβ可能平行也可能相交,不正确.故选C.5.某几何体的三视图如图所示,则该几何体的外接球的体积是( )A .23π B .32π C .3π D .43π 【答案】B 【解析】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的. 故:该几何体的外接球为正方体的外接球,所以:球的半径,则:.故选:B . 6.如图,正方体中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A 【解析】 解:正方体中,过点1,,A E C 的平面截去该正方体的上半部分后, 剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A.7.下列说法错误的是()A.垂直于同一个平面的两条直线平行B.若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C.一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D.一条直线与一个平面内的无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,A正确;由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,B正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行,C正确;当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,D错误,故选D.-中,8.《九章算术》中,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的四棱锥P ABCD=,点E,F分别为PC,PD的中点,则图中的PD⊥平面ABCD,底面ABCD是正方形,且PD CD鳖臑有()A.2个B.3个C.4个D.5个【答案】C 【解析】由题意,因为PD ⊥底面ABCD ,所以PDDC ,PD BC ⊥,又四边形ABCD 为正方形,所以BC CD ⊥,所以BC ⊥平面PCD ,BC PC ⊥,所以四面体PDBC 是一个鳖臑, 因为DE ⊂平面PCD ,所以BC DE ⊥,因为PD CD =,点E 是PC 的中点,所以DE PC ⊥, 因为,所以DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑, 同理可得,四面体PABD 和FABD 都是鳖臑, 故选C.9.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π 【解析】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =, 得,PAB ∆是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,,则O 为棱锥P ABC -的外接球球心, 外接球半径,∴该三棱锥外接球的表面积为,故答案为48π.10.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为3,圆心角为23π的扇形,则该圆锥的体积为_______. 【答案】223π 【解析】因为展开图是半径为3,圆心角为23π的扇形,所以圆锥的母线3l =,圆锥的底面的周长为,因此底面的半径1r =,根据勾股定理,可知圆锥的高,所以圆锥的体积为.11.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列正确命题序号是_____. (1)若m α,n α∥,则m n ∥ (2)若m α⊥,m n ⊥则n α∥(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥; (4)若m β⊂,αβ,则m α【答案】(3)(4) 【解析】 若,则m 与n 可能平行,相交或异面,故(1)错误; 若则n α∥或n α⊂,故(2)错误; 若且m n ⊥,则αβ⊥,故(3)正确;若,由面面平行的性质可得m α,故(4)正确;故答案为:(3)(4) 12.长方体的底面ABCD 是边长为1的正方形,若在侧棱1AA 上存在点E ,使得,则侧棱1AA 的长的最小值为_______.【答案】2 【解析】设侧棱AA 1的长为x ,A 1E =t ,则AE =x ﹣t ,∵长方体ABCD ﹣A 1B 1C 1D 1的底面是边长为1的正方形, ∠C 1EB =90°, ∴,∴2+t 2+1+(x ﹣t )2=1+x 2, 整理,得:t 2﹣xt+1=0,∵在侧棱AA 1上至少存在一点E ,使得∠C 1EB =90°, ∴△=(﹣x )2﹣4≥0, 解得x≥2.∴侧棱AA 1的长的最小值为2. 故答案为2.13.如图,在Rt ABC ∆中,1AB BC ==,D 和E 分别是边BC 和AC 上一点,DE BC ⊥,将CDE ∆沿DE 折起到点P 位置,则该四棱锥P ABDE -体积的最大值为_______.【答案】327【解析】在Rt ABC ∆中,由已知,1AB BC ==,DE BC ⊥,所以设,四边形ABDE 的面积为,当CDE ∆⊥平面ABDE 时,四棱锥P ABDE -体积最大, 此时,且,故四棱锥P ABDE -体积为,,30,3x ⎛⎫∈ ⎪ ⎪⎝⎭时,0V '> ;时,0V '<,所以,当33x =时,max 327V =. 故答案为32714.三棱锥P ABC -的4个顶点在半径为2的球面上,PA ⊥平面ABC ,ABC 是边长为3的正三角形,则点A 到平面PBC 的距离为______. 【答案】65【解析】△ABC 是边长为3的正三角形,可得外接圆的半径2r asin60==︒2,即r =1.∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h2,那么球的半径R2,解得h=2,又由知,得'65d =故点A 到平面PBC 的距离为65故答案为65. 15.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为_______.【答案】3 【解析】设圆柱和圆锥的底面半径为R ,则圆柱的高1h =R ,圆锥的母线长为L ,因为圆柱与圆锥的侧面积相等, 所以,,解得:L =2R ,得圆锥的高为2h =3R ,所以,圆锥与圆柱的高之比为33RR=. 故答案为:3 16.直三棱柱中,,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________. 【答案】16π. 【解析】如图,在Rt ABC ∆中,设,则.分别取11,AC A C 的中点12,O O ,则12,O O 分别为111Rt A B C ∆和Rt ABC ∆外接圆的圆心, 连12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心. 连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1, 即,∴6ac =.在2Rt OO C ∆中,可得,∴,当且仅当a c =时等号成立,∴O 球表面积的最小值为16π. 故答案为:16π.17.在三棱锥P ABC -中,ABC ∆是边长为4的等边三角形,,25PC =.(1)求证:平面PAB ⊥平面ABC ;(2)若点M ,N 分别为棱BC ,PC 的中点,求三棱锥N AMC -的体积V . 【答案】(1)见证明;(2) 26=3V 【解析】(1)取AB 中点H ,连结PH ,HC .∵,4AB =,∴PH AB ⊥,22PH =. ∵等边ABC ∆的边长为4 ∴23HC =,又25PC = ∴∴90PHC ∠=, 即PH HC ⊥ 又∵,AB平面ABC ,CH ⊂平面ABC ∴PH ⊥平面ABC ,又PH ⊂平面PAB ∴平面PAB ⊥平面ABC(2)∵点M ,N 分别为棱BC ,PC 的中点 ∴点N 到平面ABC 的距离为1=22PH 且∴三棱锥N AMC -的体积18.如图所示,三棱柱中,90BCA ∠=°,1AC ⊥平面1A BC .(1)证明:平面ABC ⊥平面11ACC A ;(2)若,11A A A C =,求点1B 到平面1A BC 的距离.【答案】(1)见解析;(2)3 【解析】 (1)证明:1AC ⊥平面1A BC ,.,,BC ∴⊥平面11ACC A .又BC ⊂平面ABC ,∴平面ABC ⊥平面11ACC A .(2)解:取AC 的中点D ,连接1A D .,.又平面ABC ⊥平面11ACC A ,且交线为AC ,则1A D ⊥平面ABC .1AC ⊥平面1A BC ,,∴四边形11ACC A 为菱形,.又11A A A C =,1A AC ∴是边长为2正三角形,13A D ∴= .面11BB C C ,1BB ⊂面11BB C C1AA ∴面11BB C C设点1B 到平面1A BC 的距离为h .则.,,3h ∴=.所以点1B 到平面1A BC 的距离为3.19.在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且=BE BF ,将AED ,DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A (如右图).(1)求证:A D EF '⊥; (2)当13BF BC =时,求点A 到平面DEF 的距离. 【答案】(1)见解析;(2)375【解析】(1)由ABCD 是正方形及折叠方式,得:A E A D '⊥',A F A D '⊥',,A D ∴'⊥平面A EF ', 平面A EF ',.(2),,,52DEFS∴=设点A 到平面DEF 的距离为d ,,,解得375d =. ∴点A 到平面DEF 的距离为375.20.如图,四棱锥S ABCD -中,SD ⊥平面ABCD ,//AB CD ,AD CD ⊥,SD CD =,AB AD =,2CD AD =,M 是BC 中点,N 是SA 上的点.(1)求证://MN 平面SDC ; (2)求A 点到平面MDN 的距离. 【答案】(1)见证明;(2)127d = 【解析】(1)取AD 中点为E ,连结ME ,NE ,则//ME DC ,因为ME ⊄平面SDC ,所以//ME 平面SDC ,同理//NE 平面SDC . 所以平面//MNE 平面SDC ,从而因此//MN 平面SDC .(2)因为CD AD ⊥,所以ME AD ⊥.因为SD ⊥平面ABCD ,所以SD CD ⊥,ME SD ⊥.所以ME ⊥平面SAD . 设2DA =,则3ME =,2NE =,,10MD =,5ND =.在MDN ∆中,由余弦定理,从而,所以MDN ∆面积为72. 又ADM ∆面积为12332⨯⨯=. 设A 点到平面MDN 的距离为d ,由得732d NE =, 因为2NE =,所以A 点到平面MDN 的距离127d =. 21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,3PA =,//AB CD ,AB AD ⊥,,2AB =,E 为侧棱PA 上一点.(Ⅰ)若13PE PA =,求证:PC //平面EBD ; (Ⅱ)求证:平面EBC ⊥平面PAC ;(Ⅲ)在侧棱PD 上是否存在点F ,使得AF ⊥平面PCD ?若存在,求出线段PF 的长;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,线段PF 长32. 【解析】 (Ⅰ)设,连结EG ,由已知AB//CD ,DC 1=,AB 2=,得.由1PE PA 3=,得AE 2EP=. 在ΔPAC 中,由AE AGEP GC=,得EG //PC . 因为EG ⊂平面EBD ,PC ⊄平面EBD , 所以PC //平面EBD .(Ⅱ)因为PA ⊥平面ABCD ,BC ⊂平面ABCD , 所以BC PA ⊥. 由已知得AC 2=,BC 2=,AB 2=,所以.所以BC AC ⊥. 又,所以BC ⊥平面PAC .因为BC ⊂平面EBC , 所以平面EBC ⊥平面PAC .(Ⅲ)在平面PAD 内作AF PD ⊥于点F ,由DC PA ⊥,DC AD ⊥,,得DC ⊥平面PAD .因为AF ⊂平面PAD ,所以CD AF ⊥. 又,所以AF ⊥平面PCD .由PA 3=,AD 1=,PA AD ⊥, 得3PF 2=. 22.已知三棱柱的底面ABC 是等边三角形,侧面AA C C ''⊥底面ABC ,D 是棱BB '的中点.(1)求证:平面DA C '⊥平面ACC A '';(2)求平面DA C '将该三棱柱分成上下两部分的体积比. 【答案】(1)见证明;(2)1:1 【解析】(1)取,AC A C ''的中点,O F ,连接OF 与C A '交于点E , 连接DE ,,OB B F ',则E 为OF 的中点,,且,所以BB FO '是平行四边形.又D 是棱BB '的中点,所以DE OB .。
第十届全国大学生数学竞赛决赛参考答案

阅卷人
1; 又设数列
), 严格单调减少且
lim an = 0. 计算
2 lim nan n!1
解. 由于 f (x ) 在区间 ( 1; 1) 内三阶连续可导, f (x ) 在点 x = 0 处有 Tayor 公式 f (x ) = f (0) + f 0 (0)x + f 00 (0) 2 f 000 (0) 3 x + x + o(x 3 ); 2 3! 1, 所以 1 3 x + o(x 3 ): 6 (1)
(8 分) (10 分)
(11 分)
得
分
阅卷人
n!1
七、 (本题满分 11 分) 设 fun g1 n=1 为单调递减的正实数列, 1 X lim un = 0, fan g1 为一实数列 , 级数 an un 收敛, 证明: n=1
n=1 n!1
lim (a1 + a2 +
+ an )un = 0:
分
阅卷人 座位号 证明. 令 y = x
1 1 , 则 y0 = 1 + > 0. 故函数 y (x ) 在 [˛; ˇ ] 上严格单调增加. 记 y (x ) 的反 nx nx 2 Ä 1 1 函数为 x (y ), 则 x (y ) 定义在 ˛ ;ˇ 上, 且 n˛ nˇ x 0 (y ) = 1 y 0 (x ) = 1 > 0: 1 1 + nx 2
密封线 答题时不要超过此线
得
分
一、 填空题 (本题满分 30 分, 共 5 小题, 每小题 6 分)
阅卷人 8p ˆ < 1 ˆ : Z
准考证号
(1) 设函数 y =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每空2分,满分20分)
1. 设 y = x sin x, y 则
3
(10)
(0) = .
2. 设 y = f (x) 具 有二 导 , f ′(x) 阶 数 且 = f ( x), 该 数满 的 则 函 足 微分 程 方 2 为 .
n
.
2/10
设 曲 其 6. 有 面z = x + f ( y z), 中 f 可 导 则 曲 在 一 处 切 面 与 , 该 面 任 点 的 平 必 向 {,} . 量 111 , sin x x ≥ 0 7. f (x) = x 设 , ∫ f (x 1)dx 则 e 1 x < 0 = . 1 1 1 8. n =1+ x + +L+ , 1+1 1+ 2 1+ 2 +L+ n 则lim xn = .
π
5/10
四、证明:若q(x) < 0,则方程 y′′ + q(x) y = 0的任一非零解至多有一个零点 .
五 已 锐 ABC, 取 P(x, y), 、 知 角 若 点 令 f (x, y) =| AP | + | BP | + | CP( | 示 段 | | 表 线 的 度 . 证 : f (x, y) 取 长 ) 明 在 极值 点P 的 0 处 向 P A P B PC 所 的 相 . , 量 0 ,0 ,0 夹 角 等
n=1
∞
Sn = u1 + u2 +L+ un, 明 证 : un (1) ∑ 发 ; 散 n=1 Sn un ( )∑ 2 收 . 2 敛 n=1 Sn
10/10
∞
∞
7/10
七 设 f (x) 具 二 导 , f ′′(x) 、 有 阶 数 且 ≥ 0, ∈(∞,+∞), (x) 在[0, a] 上 续 x g 连 (a > 0), 明 证 : 1 a 1 a ∫0 f [g(t)]dt ≥ f [a ∫0 g(t)dt]. a
8/10
以下两题乙组同学不做
Q 八 设P(x, y)、 (x, y) ∈C , 且 任 实 、 对 意 数
n→∞
3/10
设 满 9. f (x) ∈C[π ,π ] 且 足 f (x +π ) = f (x), 则 f (x)的 氏 数a2n = (n =1,2,L 傅 系 ).
1 ≤ y≤x 10. I = ∫∫ f (x, y)dxdy 设 ,其中D: x , D 1≤ x ≤ 2 则I 在极坐标下的二次积分为 .
1
x0、 0和 意 实 R, 有 y 任 正 数 皆
∫ P(x, y)dx +Q(x, y)dy = 0,
L
y
L
其 L是 圆 中 半 : y = y0 + R (x x0 ) ,
2 2
C
A
O
9/10
(x0 , y0 ) B
则P(x, y) ≡ 0 Q(x, y) ≡ 0. ,
x
九 设 数∑un un > 0 发 , 、 级 ( ) 散 又
6/10
六 设 利 为i, 复 计 ( 谓 、 年 率 依 利 算 所 复 , 指 一 时 , 存 所 利 是 过 定 间 将 款 生 利 自 转 本 再 利 , 逐 息 动 为 金 生 息 并 期 滚 ) 欲 第n 年 提 n 元 n 动 , 在 末 取 (
2
=1, 2, L, 永 能 此 取 问 ) 并 远 如 提 , 开 始 少 要 入 金 多 元 最 至 需 存 本 为 少 ( 后 需 算 与n 无 的 果 ? 要 出 关 结 )
1/10
π
3. 具有n个不 等 相 实根 n次 项式 的 多 ,其 一阶 导数 不 的 相等 实根至少 有 个 .
4. f (x) 有一阶 设 连续导数 ,且 f (0) = 0, f ′(0) =1 则lim (1+ f (x)) ,
x→0 1 l. x) dx = ∫ (ln
4/10
二 设u = f (xyz), (0) = 0 f ′(1) =1 且 、 , f , u 2 2 2 = x y z f ′′′(xyz), u. 求 xyz
3
三 设 f (x) 在[a, b] 上连 , (a, b)内 、 续 在 可 导 0 ≤ a < b ≤ . 证明 (a, b)内 少 , 在 至 存在 2 两 ξ1、ξ2,使 点 a +b sin ξ2 f ′(ξ2 ) tan = f ′(ξ1) . 2 cosξ1