一元二次方程

合集下载

一元二次方程公式

一元二次方程公式

一元二次方程公式
一元二次方程的公式是:x=−b±b2−4ac2a(b2−4ac≥0)。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。

其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程的求解方法
1、公式法
在一元二次方程y=ax²+bx+c(a、b、c是常数)中,当△=b²-4ac>0时,方程有两个解,根据求根公式x=(-b±√(b²-4ac))/2a即刻求出结果;△=b²-4ac=0时,方程只有一个解x=-b/2a;△=b²-4ac<0时,方程无解。

2、配方法
将一元二次方程化成顶点式的表达式y=a(x-h)²+k(a≠0),再移项化简为(x-h)²=-k/a,开方后可得方程的解。

3、因式分解法
通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,即交点式的表达式y=a(x-x1)(x-x2),再分别令这两个因式等于0,它们的解就是原方程的解。

方程计算公式

方程计算公式

方程的公式是什么?
1、一元一次方程:ax+b=0(a,b为常数,且a≠0)
2、二元一次方程:x=(-b±√(b²-4ac))/2a。

3、一元二次方程:ax+bx+c=0(a≠0)。

其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

4、三元一次方程:ax+by+cz=d。

5、直线方程:
(1)一般式:Ax+By+C=0 (其中A、B不同时为0) 适用于所有直线
直线l1:A1x+B1y+C1=0
直线l2:A2x+B2y+C2=0
两直线平行时:A1/A2=B1/B2≠C1/C2
两直线垂直时:A1A2+B1B2=0
两直线重合时:A1/A2=B1/B2=C1/C2
两直线相交时:A1/A2≠B1/B2
(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)。

当k不存在时,直线可表示为x=x0
(3)截距式:若直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为:x/a+y/ b=1。

所以不适用于和任意坐标轴垂直的直线和过原点的直线。

一元二次方程求根公式德尔塔

一元二次方程求根公式德尔塔

一元二次方程求根公式德尔塔
我们要找出一元二次方程的求根公式,也就是德尔塔(Δ)的公式。

首先,我们需要了解一元二次方程的一般形式和它的求根公式。

一元二次方程的一般形式是:ax^2 + bx + c = 0,其中a、b、c是常数,a≠0。

这个方程的求根公式是:
x = (-b ± √(Δ)) / (2a)
其中,Δ是德尔塔,它是一个判别式,用于确定方程的根的性质。

德尔塔(Δ)的公式是:
Δ = b^2 - 4ac
这个公式用于计算一元二次方程的根的数量和类型。

现在我们已经知道了一元二次方程的求根公式和德尔塔(Δ)的公式。

计算结果为:德尔塔(Δ) = -4ac + b2
所以,一元二次方程的德尔塔(Δ)的公式是:Δ = b^2 - 4ac。

一元2次方程实数根的判定

一元2次方程实数根的判定

一元2次方程实数根的判定
一元2次方程实数根的判定方法是:
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)
即Δ大于零,有两个不相等的实根;Δ等于零,有一个实根;Δ小于零,无实根。

因此一元2次方程有实数根,Δ大于或者等于零。

知识拓展
一元二次方程
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。

其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程成立必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不
是一元二次方程(是无理方程)。

②只含有一个未知数;③未知数项的最高次数是2 。

、。

一元二次方程式

一元二次方程式

四、一元二次方程式就一般而言,凡是使得方程式等号成立的数称之为方程式的解;而使得多项式的值为零的数称之为多项式的根。

因此,一元二次方程式的解就是所对应的二次多项式的根。

所以,我们也称此类方程式的解为根。

我们将首先介绍常见的一元二次方程式的三种解法:因式分解法、配方法和公式解。

然后,利用判别式来探讨两根的特性,最后再讨论根与系数之间的关系。

4-1 一元二次方程式的解法【因式分解法】因为一元二次方程式20ax bx c ++=(a 、b 和c 为实数且a ≠0)的左式为二次多项式,如果我们能将这个多项式因式分解成两个一次多项式的乘积,就很容易求得方程式的解。

我们以下面的例子来说明这种解法。

【范例1】求22151x x +=-的解。

【解】 利用移项可把原方程式改写为 2252x x -+= 0。

由因式分解,可得2252x x -+= (21)(2)x x -- 因此,原方程式改写为(21)(2)x x --= 0 所以,可得210x -=或20x -= 即12x =或2x =。

【类题练习1】求231030x x ++=的解。

【配方法】我们也可以利用平方根的概念来解方程式,例如将2420x x -+=改写为2(2)2x -=的形式,进而解得2x =2420x x -+=⇒242x x -=-两边同加22 ⇒22222222x x -⋅⋅+=-+左式可写成完全平方式 ⇒ 2(2)2x -=∵右式为正,两边开平方 ⇒ 2x -=⇒ 2x =上面的例子是利用配成完全平方式的方法,先将方程式改写成 (x -h )2=k 的形式。

当0≥k 时,我们就可以利用平方根的概念来解题: 即 2()0x h k -=≥两边同时开方 ⇒ x -h =移项 ⇒ x = h注:x = h ±表示x = h x = h我们将这个方法称为配方法,也就是配成完全平方的意思。

以下的例题继续来说明这种解法。

【范例2】求下列各方程式的解:(1) 2680x x -+= (2) 22460x x +-=【解】 (1) 2680x x -+=⇒2238x x -⋅⋅=-⇒22223383x x -⋅⋅+=-+⇒ 2(3)1x -=⇒31x -=±⇒ x -3 = 1或x -3 =-1⇒ x = 2或x = 4(2) 22460x x +-=⇒2230x x +-=⇒223x x +=⇒22221131x x +⋅⋅+=+⇒2(1)4x +=⇒12x +=±⇒12x +=或12x +=-⇒1x =或3x =-在上例中,我们当然也可用十字交乘法来做因式分解。

1元二次方程的公式法

1元二次方程的公式法

1元二次方程的公式法一元二次方程啊,这可是数学里的一个重要知识点。

咱们先来说说啥是一元二次方程,它的一般形式是 ax² + bx + c = 0 ,这里的 a、b、c 都是常数,而且 a 还不能等于 0 。

要说一元二次方程的公式法,那可是解决这类问题的一把“万能钥匙”。

公式法就是 x = [-b ± √(b² - 4ac)] / (2a)。

这公式看起来有点复杂,但是只要搞清楚每个字母代表的意思,用起来那叫一个顺手。

我记得有一次给学生们讲这个知识点的时候,有个学生就特别迷糊,怎么都理解不了。

我就拿了个很简单的例子,比如说 x² + 2x - 3 = 0 ,这里 a = 1,b = 2,c = -3 。

咱们把这些数字带进公式里,先算 b² - 4ac ,就是2²- 4×1×(-3)= 16 。

然后再把b 和算出来的这个值带到公式里,x = [-2 ± √16] / (2×1),算出来 x₁ = 1 ,x₂ = -3 。

那孩子眼睛一下子亮了,直说:“老师,原来这么简单!”在实际应用中,公式法可厉害了。

比如说要算一个物体的运动轨迹,或者算一个工程的进度啥的,都可能用到一元二次方程的公式法。

而且啊,这公式法还能检验我们前面用其他方法解出来的答案对不对。

咱再说说怎么能熟练掌握这个公式法。

首先,得把那几个字母代表啥记得牢牢的,可别弄混了。

然后就是多做几道题,俗话说得好,熟能生巧嘛。

还有啊,有些同学一看到根号就害怕,其实没啥好怕的,不就是个数学符号嘛,就把它当成一个普通的运算符号就行。

还有计算的时候要仔细,别粗心大意,一个小数字弄错了,结果可就全错啦。

总的来说,一元二次方程的公式法虽然看起来有点复杂,但只要咱们用心去学,多练习,就一定能掌握好,让它成为我们解决数学问题的有力武器。

就像那个一开始迷糊的同学,后来不也搞明白了嘛。

方程的七种类型

方程的七种类型

方程的七种类型方程是数学中的重要概念,它描述了数学对象之间的关系。

在代数学中,方程可分为七种类型,分别是一元一次方程、一元二次方程、一元三次方程、一元四次方程、二元一次方程、二元二次方程和二元三次方程。

本文将分别介绍这七种类型的方程。

一、一元一次方程一元一次方程是最简单的方程类型,它的形式为ax + b = 0,其中a和b是已知常数,x是未知数。

解一元一次方程的关键在于找到x 的值使得等式成立。

通过移项、合并同类项和化简等步骤,可以求解出x的值。

例如,方程2x + 3 = 7的解为x = 2。

二、一元二次方程一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x是未知数。

解一元二次方程的方法有多种,常用的方法是配方法和求根公式。

配方法通过将方程变形为完全平方式,进而求解出x的值。

求根公式是通过使用二次根式来求解方程。

例如,方程x^2 - 5x + 6 = 0的解为x = 2或x = 3。

三、一元三次方程一元三次方程是形如ax^3 + bx^2 + cx + d = 0的方程,其中a、b、c、d为已知常数,x是未知数。

解一元三次方程的方法有多种,常用的方法是巴斯卡法和牛顿迭代法。

巴斯卡法通过将方程进行化简,然后使用求根公式求解出x的值。

牛顿迭代法是通过逐次逼近方程的解,直到满足一定的精度要求。

例如,方程x^3 - 3x^2 + 3x - 1 = 0的解为x = 1。

四、一元四次方程一元四次方程是形如ax^4 + bx^3 + cx^2 + dx + e = 0的方程,其中a、b、c、d、e为已知常数,x是未知数。

解一元四次方程的方法有多种,常用的方法是费拉里法和求根公式。

费拉里法通过将方程进行变形,进而转化为两个二次方程的形式,然后使用求根公式求解出x的值。

求根公式是通过使用四次根式来求解方程。

例如,方程x^4 - 10x^3 + 35x^2 - 50x + 24 = 0的解为x = 1或x = 2或x = 3或x = 4。

一元二次方程的解法十字相乘法

一元二次方程的解法十字相乘法

对于多项式 x2 +(a+b)x+ab
x
a
步骤:
1.竖分二次项与常数项;
x
b
2.交叉相乘,积相加;
3.检验确定,横写因式。
x2 ax+bx=(a+b)x ab
即:x 2+(a+b)x+ab=(x+a)(x+b)
十字相乘法: 借助十字交叉线分解因式的方法
对于二次三项式的分解因式, 借用一个十字叉帮助我们分解因式, 这种方法叫做十字相乘法。
=(x-2)(x+5)
当常数项是负数 时,分解的两个 数异号,其中绝 对值较大数符号 与一次项系数符 号相一致。
因式分解时,不但要 注意首尾分解,而且 需十分注意一次项系 数,才能保证因式分 解的正确性。
练习 因式分解:
(1) x2 + 5x+ 6
(2)
课后练习:分解因式 (x-y)2+(x-y)-6
总结:
二次多项式x2+px+q在分解因式时: 如果常数项q是正数,那么把它分解成两个 同号因数,它们的符号与一次项系数p的符 号相同;
如果常数项q是负数,那么把它分解成两个 异号因数,其中绝对值较大的因数与一次 项系数p的符号相同; 对于分解的两个因数,还要看它们的和是 不是等于一次项系数。
总结:
2.
3.
4.
1.2 一元二次方程的解法
——十字相乘法
复习回顾
一、计算:
(1) (x+1)(x+ 2)
(2)
(3)
(4) 总结:
复习回顾
反过来: (1)
(2)
(3)
(4) 所以:
= (x+1)(x+2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档