二次函数与一元二次方程2
22.2二次函数与一元二次方程2

22.2 二次函数与一元二次方程1.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( )A.a>0,>0 B.a>0,<0C.a<0,>0 D.a<0,<02.二次函数y=ax2+bx+c,若ac<0,则其图象与x轴( )A.有两个交点 B.有一个交点 C.没有交点 D.可能有一个交点3.y=x2+kx+1与y=x2-x-k的图象相交,若有一个交点在x轴上,则k值为( )1A.0 B.-1 C.2 D.44.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( )A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠05.已知二次函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实根 B.有两个相等实数根 C.有两个异号实数根 D.有两个同号不等实数根6.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥错误!未找到引用源。
B.m>错误!未找到引用源。
C.m≤错误!未找到引用源。
D.m<错误!未找到引用源。
7.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是( )A.a>0B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<08.无论m为任何实数,二次函数y=x2+(2-m)x+m的图象总过的点是()A.(-1,0);B.(1,0)C.(-1,3) ;D.(1,3)9.如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴正半轴上,B点在x轴的负半轴上,则m的取值范围应是()A.m>1B.m>-1C.m<-1D.m<110.下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点 B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧 D.有两个交点,且它们均位于y轴右侧11.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2 C.当n<0时,x1<m<x2 D.当n>0时,m<x1 12.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1 B.﹣1 C.2 D.﹣213.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m< B.﹣3<m<﹣ C.﹣3<m<﹣2 D.﹣3<m<﹣14.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2 C.当n<0时,x1<m<x2 D.当n>0时,m<x1 15.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A.a(x0﹣x1)(x0﹣x2)<0 B.a>0 C.b2﹣4ac≥0 D.x1<x0<x216.若抛物线y=x2-(2k+1)x+k2+2,与x轴有两个交点,则整数k的最小值是____.17.已知一抛物线与x轴的交点为A(-1, 0)、B(m,0),且过第四象限内的点C(1,n),而m+n=-1,mn=-12,则此抛物线关系式是__________.18.已知抛物线的顶点到x轴的距离为3,且与x轴两交点的横坐标为4、2,则该抛物线的关系式为__________________.19.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,由抛物线的特征你能得到含有a、b、c三个字母的等式或不等式为______(写出三个).。
二次函数与一元二次方程二次函数优秀ppt课件

2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
九年级二次函数与一元二次方程的联系和区别

二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。
⑤常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。
对称轴为直线 x =2ab-,。
对称轴与抛物线唯一的交点为抛物线的顶点P 。
特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。
当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。
2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。
Δ= b2-4ac=0时,抛物线与x 轴有1个交点。
Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。
④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。
一元二次方程和二次函数的区别

一元二次方程和二次函数的区别
一元二次方程和二次函数是微积分中重要的概念,它们是解决一元二次方程的有效方法。
尽管它们有很多共性,但也存在很多不同之处。
本文旨在对一元二次方程和二次函数的概念,定义,关系和区别进行探讨,以便更好地理解它们。
一元二次方程可以定义为一个变量的一元二次多项式,它的标准形式为ax2+bx+c=0,其中a,b,c都是常数。
它的解法是求平方根,当a,b,c都不为零时,它的解可以写成x=(-b±√b2-4ac)/2a。
而二次函数是在二维坐标系上表示一个函数图像的方式,它的定义为:y=ax2+bx+c,其中a,b,c都是常数,也可以写成y=f(x),其中f(x)表示一元二次多项式。
一元二次方程和二次函数的最大的关系在于,一元二次多项式是二次函数的表达式,它们有着相同的解。
因此,一元二次方程和二次函数可以互相转换,从而更好地理解。
一元二次方程和二次函数之间存在一些不同之处。
首先,一元二次方程是一元二次多项式的形式,而二次函数是一元二次多项式在二维坐标系上表示的函数图像。
其次,解一元二次方程的方法是求平方根,而求解二次函数的过程是求一元二次多项式的根。
另外,一元二次方程可求出实数解,而二次函数可求出实数解和虚数解。
综上所述,一元二次方程和二次函数有共性,也有不同之处。
一元二次方程是一个一元二次多项式,而二次函数则是该多项式在二维坐标系上表示的函数图像。
它们可以相互转换,以便更好地理解它们,
但它们的解法也有所不同。
由此可见,以上两个概念具有各自的重要性,可以用于解决不同的问题。
二次函数与一元二次方程的联系

二次函数与一元二次方程的联系二次函数和一元二次方程是高中数学中的重要概念,它们之间存在着密切的联系。
本文将从几何关系和代数关系两个方面来探讨二次函数与一元二次方程之间的联系。
一、几何关系1. 二次函数的几何意义:二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
它的图像是一条开口向上或向下的抛物线。
对称轴为x = -b/2a,顶点的纵坐标为c - b^2/4a。
抛物线在对称轴上下方呈现关于对称轴对称的特点。
2. 一元二次方程的几何意义:一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为常数且a ≠ 0。
它表示抛物线与x轴的交点位置,也就是方程的解。
如果方程有两个不相等的实数根,则抛物线与x 轴有两个交点;如果方程有一个实数根,则抛物线与x轴有一个切点;如果方程没有实数根,则抛物线与x轴没有交点。
3. 二次函数与一元二次方程的联系:二次函数的图像与一元二次方程的解之间存在着密切的联系。
通过解一元二次方程可以确定二次函数的图像与x轴的交点位置,而通过分析二次函数的图像可以得到一元二次方程的解的情况。
二次函数与一元二次方程的解是一一对应的关系。
二、代数关系1. 二次函数的表达式与一元二次方程:已知二次函数f(x) = ax^2 + bx + c,将其与y = f(x)进行等价转化,可以得到一元二次方程ax^2 + bx + c = y。
这意味着,我们可以通过二次函数的表达式来推导出一元二次方程。
反过来,已知一元二次方程ax^2 + bx + c = 0,将其与y = 0进行等价转化,可以得到二次函数f(x) = ax^2 + bx + c。
这意味着,我们可以通过一元二次方程来确定二次函数的表达式。
2. 二次函数的性质与一元二次方程的解:二次函数的性质可以帮助我们判断一元二次方程的解的情况。
比如,当二次函数开口向上且顶点在x轴上方时,一元二次方程有两个不相等的实数根;当二次函数开口向下且顶点在x轴下方时,一元二次方程无实数根;当二次函数开口向上且顶点在x轴上时,一元二次方程有一个实数根。
《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1
两
(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,
二次函数与一元二次方程(2)一元二次方程的图象解法

驶向胜利 的彼岸
利用二次函数的图象求一元二次方程2x2+x-15=0的近 似根.
由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.
一元二次方程的图象解法
(1).用描点法作二次函数y=3x2-x-1的图象; (2).观察估计二次函数y=3x2-x-1的图象与x 轴的交点的横坐标; 由图象可知,图象与x轴有两个交点,其横坐 标一个在-1与0之间,另一个在0与1之间,分 别约为-0.4和0.8(可将单位长再十等分,借 助计算器确定其近似值). (3).确定方程3x2-x-1=0的解;
驶向胜利 的彼岸
利用二次函数的图象求一元二次方程3x2-x-1=0的近 似根.
由此可知,方程3x2-x-1=0的近似根为:x1≈-0.4,x2≈0.8.
结束寄语
•
不知道并不可怕和有害, 任何人都不可能什么都知 道,可怕的和有害的是不 知道而伪装知道.
驶向胜利 的彼岸
利用二次函数的图象求一元二次方程-2x2+4x+1=0的 近似根.
由此可知,方程-2x2+4x+1=0的近似根为:x1≈-0.2,x2≈2.2.
一元二次方程的图象解法
(1).用描点法作二次函数y=2x2+x-15的图象; (2).观察估计二次函数y=2x2+x-15的图象与 x轴的交点的横坐标; 由图象可知,图象与x轴有两个交点,其横坐 标一个是-3,另一个在2与3之间,分别约为3 和2.5(可将单位长再十等分,借助计算器确 定其近似值). (3).确定方程2x2+x-15=0的解;
驶向胜利 的彼岸
利用二次函数的图象求一元二次方程x2+2x-10=3的近 似根.
二次函数与一元二次方程

二次函数与一元二次方程二次函数与一元二次方程是高中数学的重要内容之一。
本文将从概念解释、性质讨论以及实际应用等方面来探讨二次函数与一元二次方程的相关知识。
一、二次函数的定义和性质二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。
其中,a决定了抛物线的开口方向及大小,a>0时抛物线开口向上,a<0时抛物线开口向下;b决定了抛物线在x轴的位置,负责平移抛物线;c决定了抛物线与y轴的截距,负责上下平移。
二次函数的图象一定是一个抛物线,还可以根据抛物线的顶点、焦点等性质进行分类和推导。
例如,顶点坐标为(h,k),则对称轴方程为x = h;当a>0时,抛物线的最小值为k,焦点坐标为(h,k+p);当a<0时,抛物线的最大值为k,焦点坐标为(h,k-p)。
二、一元二次方程的定义和性质一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知数且a≠0。
一元二次方程在数学中具有广泛的应用,解一元二次方程的过程就是求解方程的根,即方程等式两边相等的值。
一元二次方程的解可以分为三种情况:①当b^2 - 4ac > 0时,方程有两个不相等的实数根;②当b^2 - 4ac = 0时,方程有两个相等的实数根;③当b^2 - 4ac < 0时,方程无实数根,但有复数根。
三、二次函数与一元二次方程的关系二次函数和一元二次方程有着密切的联系。
对于任意给定的二次函数y = ax^2 + bx + c,我们可以用x代入函数中,得到一元二次方程ax^2 + bx + c = 0,即将二次函数转化为一元二次方程。
反之,对于一元二次方程ax^2 + bx + c = 0,我们可以通过求解方程的根,得到二次函数的图象的相关信息。
例如,根据二次函数的顶点和焦点的性质,可以通过一元二次方程的解来确定抛物线的开口方向、抛物线与x轴的交点等。
四、二次函数与一元二次方程的应用二次函数与一元二次方程在实际问题中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用二次函数的图象求方程x2-x-3=0的实数根
(精确到0.1). 方法: (1)先作出图象;
Y=x2-x-3
y
(2)写出交点的坐标;
(3)得出方程的解.
-1 O 2 3 x
19
(1)抛物线y x2 2x 3与x轴的交点个数有( ) C.
A.0个 B.1个 C. 2个 D. 3个
范围是( )
A 3< X < 3.23
B 3.23 < X < 3.24
22
练习:
1、抛物线y=x2-x+m与x轴有两个交点,
则m的取值范围是
。
2、如果关于x的方程x2-2x+m=0有两个相等 的实数根,此时抛物线y=x2-2x+m与x轴有
个交点。 3、抛物线y=x2-kx+k-2与x轴交点个数为( ) A、0个 B、1个 C、2个 D、无法确定
22.2 二次函数与一元二次方程
1
y=0 横坐标
无 一 两
2
二次函数
定义
图象
性质 解析式 的求法 应用
数学问题 实际问题
3
问题1:如图,以40m/s的速度将小球沿与地面成300角 的方向击出时,球的飞行路线将是一条抛物线,如果 不考虑空气的阻力,球的飞行h(单位:m)与飞行时 间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问 题: (1)球的飞行高度能否达到15m?如果能,需要多少 飞行时间?
14
15
X轴从的上公面共的点实问例题中与,一你元发二现次二方次程函a x数2
y ax2
bx c
bx c
0a
a
0
0 与 的根
的情况之间存在怎样的关系?
公共点的坐
对应
一元二
标(x,0)的
次的根
横坐标x
x
怎样判断二次函数的图象与轴的公共点个数呢?
y ax2 bx c 中b2-4ac值的正负情况
16
判别式: b2-4ac
b2-4ac>0
b2-4ac=0
二次函数
y=ax2+bx+c (a≠0)
与x轴有两个不 同的交点 (x1,0) (与交点xx2轴,(有0)唯b一,0个)
2a
b2-4ac<0
与x轴没有 交点
图象
y
O
x y
O
x y
O
x
一元二次方程 ax2+bx+c=0
(a≠0)的根
有两个不同的 解x=x1,x=x2
7
(2)解方程 20=20t5t2 t24t+4=0 t1=t2=2 当球飞行2秒时,它的高度为20米
8
(3)球的飞行高度能否达到20.5m?如果能,
需要多少飞行时间?
20.5 h
你能结合图形指出
O
t
为什么球不能达到 20.5m的高度?
9
(3)解方程 20.5=20t+5t2 t24t+4.1=0 因为(4)244.1<0,所以方程无解。 球的飞行高度达不到20.5米
23
知识点一
C
24
C
25
D
26
B
27
A
28
(1,0),(2,0)
29
30
解:(1)由图象可知:x1=1,x2=3. (2)由图象可知:x>2; (3)由图象可知:设该二次函数为y=a(x-2)2+2, ∵(1,0)在该抛物线上, ∴a(1-2)2+2=0, ∴a=-2, ∴y=-2(x-2)2+2=-2x2+8x-6. ∴-2x2+8x-6-k=0. ∵上述方程有两个不等实根, ∴Δ=b2-4ac=64-8(6+k)>0, ∴k<2.
10
(4)球从飞出到落地要用多少时间?
h
你能结合图形指出
为什么在两个时间
O
t
球的高度为0m吗?
11
(4)解方程 0=20t5t2 t24t=0 t1=0, t2=4 当球飞行0秒和4秒时,它的高度为0米。 即0秒时球从地面飞出,4秒时球落回地面。
12
从上面实例中,我们可以发现二次函数与一元二次
有两个相等的
解
b
x1=x2= 2a
没有实数根
17
二次函数与一元二次方
程二次函数y=ax2+bx+c的图象和x轴交点有三种情况:
(1)有两个交点 (2)有一个交点
b2 – 4ac > 0 b2 – 4ac= 0 b2 – 4ac< 0
(若3)抛没物有线交点y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0 18
量x的值.
13
观察:下列二次函数的图象与x轴有公共点吗?如果有, 公共点横坐标是多少?当x取公共点的横坐标时,函数的 值是多少?由此,你得出相应的一元二次方程的解吗?
(1)y=x2+x-2 (2)y=x2-6x+9 (3)y=x2-x+1
二次函数y=ax2+bx+c的图象和x轴交点的横坐 标与一元二次方程ax2+bx+c=0的根有什么关系?
4
(1)球的飞行高度能否达到15m?如果能,需要
多少飞行时间?
h 15
O1
3
t
你能结合图形指出 为什么在两个时间
5
解:(1)解方程 15=20t5t2 t24t+3=0 t1=1,t2=3
6
(2)球的飞行高度能否达到20m?如果能,需要多少 飞行时间?
你能结合图形指出 为什么只在一个时间 球的高度为20m?
(2)抛物线y m x2 3x 3m m2 经过原点, 则其顶点顶 ( 点 ຫໍສະໝຸດ ,坐 3)标为__________.
24
(3)关于x的一元二次方程x2 x n 0没有实数根, 则 抛物线y x2 x n的顶点在( A) .
A.第一象限 B.第二象限 C.第三象限 D.第四象限
b
1 1
2a = 21 = 2 >0
4acb2 41(n)(1)2 4n1
1
4a =
41
= 4 n< 4 4n>1 4n1>0
4n1 4
>0顶点在第一象限
21
根据下列表格的对应值:
x
3.23 3.24
3.25
3.26
y=ax2+bx+c
-0.06 -0.02 0.03
0.09
判断方程Cax2+bx+c=0 (a≠0,a,b,c为常数)一个解x的
方程有紧密的关系。请你归纳其存在的关系?
从以上可以看出 ,
已知二次函数 y的值为 m, 求 相应自变量 x的 值,就是求相应一元二次方程的解 .
例如,已知二次函数y=-X2+4x的值为3,求自
变量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0
就是已知二次函数y=X2-4x+3的值为0,求自变
20
解:(1) b24ac=2241(3)=16>0 有两个交点 (2)抛物线经过原点 0=3m+m2 m(m+3)=0 m=3 m=0(舍去)
但m=3时抛物线的解析式为y=3x23x=3(x2+x+
1 4
)+
3 4
=3(x+
1 2
)2+
3 4
顶点为(
1 2
,
3 4
)
1 (3) b24ac<0 (1)241(n)<0 1+4n<0 n< 4