MATLAB中产生高斯白噪声
matlab高斯噪声函数

matlab高斯噪声函数(原创版)目录1.Matlab 中生成高斯噪声的方法2.高斯噪声的特点和应用3.椒盐噪声与高斯噪声的区别4.如何在 Matlab 中生成椒盐噪声和高斯白噪声5.滤波器在噪声抑制中的应用正文在 Matlab 中,生成高斯噪声常用的函数是 randn。
该函数可以生成服从正态分布的随机数。
其使用方法为:y = randn(m,n),其中 m 和 n 分别为矩阵的大小。
生成的随机数矩阵 y 中,每个元素都服从均值为 0、方差为 1 的高斯分布。
高斯噪声的特点是其噪声幅度随机,且在图像中的位置固定。
这种噪声在图像处理中很常见,例如在图像传输过程中,信号可能受到高斯噪声的影响。
因此,研究如何生成和处理高斯噪声对于图像处理具有重要意义。
椒盐噪声是一种特殊的高斯噪声,其特点是在图像中的某些位置上噪声幅度较大,形成“椒盐”状。
椒盐噪声与高斯噪声的主要区别在于噪声的幅度分布,椒盐噪声的噪声幅度分布不是正态分布,而是具有较高的峰值和较低的谷值。
在 Matlab 中,可以通过 imnoise 函数生成椒盐噪声。
例如,使用imnoise(I, "salt", m, v) 可以生成椒盐噪声,其中 I 为要添加噪声的图像,m 和 v 分别表示噪声的强度和方差。
除了椒盐噪声,Matlab 中也可以生成高斯白噪声。
高斯白噪声是在频域上呈高斯分布的噪声,其能量分布均匀。
在 Matlab 中,可以使用awgn 函数生成高斯白噪声。
例如,使用 awgn(x, snr) 可以生成高斯白噪声,其中 x 为信号,snr 为信噪比。
在实际应用中,噪声抑制滤波器可以用于去除图像中的噪声。
常见的噪声抑制滤波器包括均值滤波器、中值滤波器和边界保持类滤波器。
均值滤波器的原理是在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值。
中值滤波器则通过取图像中每个像素邻域的中值来实现噪声抑制。
matlab白噪声代码

matlab白噪声代码
白噪声是一种具有均匀能量分布的随机信号,其频率分布在所有频率上都是相等的。
在 Matlab 中,可以通过以下代码生成白噪声信号:
```matlab
Fs = 1000; % 采样率
t = 0:1/Fs:1-1/Fs; % 时间向量
N = length(t); % 信号长度
x = randn(1,N); % 产生随机信号
```
上述代码中,Fs 为采样率,t 为时间向量,N 为信号长度,x 为随机信号。
使用 randn 函数可以产生均值为 0、方差为 1 的高斯白噪声信号。
如果需要产生其它均值和方差的白噪声信号,可以通过以下代码实现:
```matlab
mu = 2; % 均值
sigma = 0.5; % 方差
x = mu + sigma*randn(1,N); % 产生随机信号
```
上述代码中,mu 和 sigma 分别为均值和方差,使用 mu + sigma*randn 函数可以产生均值为 mu、方差为 sigma 的高斯白噪声信号。
高斯白噪声 matlab

高斯白噪声 matlab
【最新版】
目录
1.高斯白噪声的定义与特点
2.MATLAB 中生成高斯白噪声的方法
3.高斯白噪声在各个领域的应用
正文
1.高斯白噪声的定义与特点
高斯白噪声(Gaussian White Noise)是一种随机信号,其取值符合正态分布(高斯分布),具有均值为 0、方差为常数的特性。
白噪声是一种功率谱密度均匀分布的噪声,即在各个频率上的能量分布相同。
高斯白噪声广泛应用于信号处理、通信系统、图像处理等领域。
2.MATLAB 中生成高斯白噪声的方法
在 MATLAB 中,可以使用内置函数`wgn`生成高斯白噪声。
`wgn`函数的用法如下:
```matlab
X = wgn(n, sigma)
```
其中,`n`表示生成的随机数个数,`sigma`表示噪声的方差。
当`n`为向量时,`wgn`函数返回一个包含`n`个高斯白噪声的向量。
例如,我们可以生成一个长度为 10 的高斯白噪声序列:
```matlab
= 10;
sigma = 1;
X = wgn(n, sigma);
```
3.高斯白噪声在各个领域的应用
高斯白噪声在各个领域有广泛的应用,如:
- 通信系统:在通信系统中,高斯白噪声常常作为信道噪声模型,用于评估通信系统的性能;
- 信号处理:在信号处理领域,高斯白噪声常用于信号模型的建立,或者作为加性高斯白噪声(AWGN)与其他噪声模型进行比较;
- 图像处理:在图像处理领域,高斯白噪声可以作为图像的噪声模型,用于图像去噪、图像增强等任务。
总之,高斯白噪声作为一种重要的随机过程,其在各个领域的应用十分广泛。
高斯白噪声 matlab 带宽

高斯白噪声matlab 带宽高斯白噪声(Gaussian White Noise)是指在信号的频谱中,每个频率带宽上都有相同的功率密度。
正如其名,它是一种高斯分布的随机过程,具有相等的功率密度在整个频率范围内。
在MATLAB中,我们可以使用一些技术来生成高斯白噪声,并调整其带宽来满足特定的需求。
首先,我们需要理解高斯白噪声的基本概念。
高斯分布是一种具有钟形曲线的连续概率分布,也被称为正态分布。
白噪声是一种具有等幅度、随机性和平坦频谱的信号。
高斯白噪声是将高斯分布特性应用于白噪声的过程,其频谱具有高斯分布的特点。
在MATLAB中,可以使用randn函数来生成高斯白噪声。
randn函数生成一个具有均值为0和标准差为1的高斯分布的随机序列。
我们可以使用该函数生成一个包含N个样本的高斯白噪声序列:matlabN = 1000; % 样本数量noise = randn(1, N); % 生成高斯白噪声上述代码中,通过指定`N`的值来控制生成噪声的样本数量。
`randn`函数返回一个包含N个样本的行向量,每个样本都是一个从标准高斯分布中随机抽取的数值。
然而,上述生成的噪声序列的带宽是未知的,我们可以使用谱估计技术来估计其带宽。
常见的谱估计方法包括傅里叶变换和自相关函数。
对于高斯白噪声,其功率谱密度(Power Spectral Density,PSD)应该是平坦的。
以下是使用MATLAB中的fft函数进行傅里叶变换得到的高斯白噪声的功率谱密度的估计代码:matlabFs = 1000; % 采样率T = 1/Fs; % 采样间隔L = N; % 数据长度t = (0:L-1)*T; % 时间向量Y = fft(noise); % 对噪声序列进行傅里叶变换P = abs(Y/L).^2; % 估计的功率谱密度f = Fs*(0:(L/2))/L; % 频率区间plot(f, P(1:L/2+1)) % 绘制频谱title('Power Spectral Density')xlabel('Frequency (Hz)')ylabel('PSD')上述代码中,我们首先定义了采样率`Fs`和采样间隔`T`,并计算出数据的长度`L`。
matlab高斯白噪声绘制

matlab高斯白噪声绘制一、概念英文名称:white Gaussian noise; WGN定义:均匀分布于给定频带上的高斯噪声;所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。
这是考察一个信号的两个不同方面的问题。
高斯白噪声:如果一个噪声,它的幅度服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。
热噪声和散粒噪声是高斯白噪声。
二、matlab举例Matlab有两个函数可以产生高斯白噪声,wgn( )和awgn( )。
1. WGN:产生高斯白噪声y = wgn(m,n,p)y = wgn(m,n,p) %产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp)y = wgn(m,n,p,imp) %以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state)y = wgn(m,n,p,imp,state) %重置RANDN的状态。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR)y = awgn(x,SNR) %在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
clear,clc;N=0:1000;fs=1024;t=N./fs;y=3*sin(2*pi*t);x=wgn(1,1001,2);i=y+x;% i=awgn(y,2); subplot(3,1,1),plot(x); subplot(3,1,2),plot(y); subplot(3,1,3),plot(i);。
通过matlab产生wav的白噪声

MATLAB 中产生高斯白噪声MATLAB 中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN 用于产生高斯白噪声,AWGN 则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m 行n 列的高斯白噪声的矩阵,p 以dBW 为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN 的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p 的单位。
POWERTYPE 可以是’dBW’, ‘dBm’或’linear’。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE 可以是’real’或’complex’。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x 中加入高斯白噪声。
信噪比SNR 以dB 为单位。
x 的强度假定为0dBW。
如果x 是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER 是数值,则其代表以dBW 为单位的信号强度;如 果SIGPOWER 为’measured’,则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN 的状态。
y = awgn(…,POWERTYPE) 指定SNR 和SIGPOWER 的单位。
POWERTYPE 可以是’dB’或’linear’。
如果POWERTYPE 是’dB’,那么SNR 以dB 为单位,而SIGPOWER 以dBW 为单位。
如果POWERTYPE 是’linear’,那么SNR 作为比值来度量,而SIGPOWER 以瓦特为单位。
(word完整版)高斯白噪声的matlab实现

通信系统建模与仿真实验一、高斯白噪声的matlab 实现要求:样本点:100 1000标准差:0.2 2 10均值: 0 0.2白噪声如果噪声的功率谱密度在所有的频率上均为一常数,即)/(),(,)(0Hz W f n f P n +∞<<-∞=式中:0n 为常数,责成该噪声为白噪声,用)(t n 表示。
高斯白噪声的matlab实现1.样本点为1000、均值为0、标准差为0.2时,高斯白噪声分布为下图所示:程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i));endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft));plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)。
噪声调幅干扰matlab

噪声调幅干扰matlab噪声调幅干扰(matlab)是指在使用调幅技术传输信息时,由于外部环境的干扰,例如电磁干扰、杂波等,导致接收端收到的信号带有噪声。
这种噪声可能会严重影响信息的传输质量,使得接收端无法正确地解码信息。
因此,如何有效地减小或消除噪声对调幅信号的干扰,成为了一项重要的研究课题。
在matlab上,我们可以使用不同的方法来模拟噪声调幅干扰,以便更好地研究和解决这个问题。
下面,我们将详细介绍几种常见的噪声调幅干扰模拟方法及其解决方案。
1.高斯白噪声干扰模拟高斯白噪声是指在一段时间内,所有频率上的幅度都是随机的,且平均功率密度相等的噪声。
在matlab中,我们可以使用“awgn”函数来生成高斯白噪声。
例如,我们可以使用以下代码生成一个带有高斯白噪声的调幅信号:t = 0:0.001:1; % 生成时间序列fc = 100; % 载波频率Ac = 1; % 载波幅度fs = 1000; % 采样频率Am = 0.5; % 调制信号幅度fm = 10; % 调制信号频率m = Am*cos(2*pi*fm*t); % 生成调制信号c = Ac*cos(2*pi*fc*t); % 生成载波信号s = (1+m).*c; % 生成调幅信号SNR = 5; % 信噪比(dB)s_n = awgn(s, SNR, 'measured'); % 加入高斯白噪声在上述代码中,我们使用“awgn”函数将调幅信号加入高斯白噪声,其中“SNR”是信噪比,用于控制噪声的强度。
在实际应用中,我们可以通过调整信噪比来模拟不同强度的噪声。
为了减小高斯白噪声对调幅信号的干扰,我们可以使用数字滤波器进行滤波。
例如,我们可以使用低通滤波器将高斯白噪声滤除,以获得更清晰的调幅信号。
2.频率干扰模拟频率干扰是指由于外部环境变化等因素导致调幅信号的载波频率发生变化,从而造成接收端无法正确解码的现象。
在matlab中,我们可以使用“fmdemod”函数来模拟频率干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB中产生高斯白噪声,涉及到awgn和wgn函数
MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声
y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:
y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或
'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或
'complex'。
2. AWGN:在某一信号中加入高斯白噪声
y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。
y = awgn(…,POWERTYPE)指定SNR和SIGPOWER的单位。
POWERTYPE可以是'dB'或'linear'。
如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。
如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER 以瓦特为单位。
注释
1. 分贝(decibel,dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。
例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。
2. 分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。
3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。
0 dBm = 1 mW
10 dBm = 10 mW
20 dBm = 100 mW
也可直接用randn函数产生高斯分布序列,例如:
程序代码
y=randn(1,2500);
y=y/std(y);
y=y-mean(y);
a=0.0128;
b=sqrt(0.9596);
y=a+b*y;
就得到了 N ( 0.0128, 0.9596 ) 的高斯分布序列
产生指定方差和均值的随机数
设某个随机变量x均值为mu,方差为var^2,若要产生同样分布的随机变量y,但使新的随
机变量参数改变,均值为mu_1,方差为var_1^2,可以用如下公式进行变换:
y=var_1/var*(x-mu)+mu_1,其中x为随机变量,其余为常数(原分布参数)。
具体到正态分布,若要产生均值为u,方差为o^2的M*N的随机数矩阵,可以用y=o*randn(M,N)+u得到。
对于均匀分布,若要产生[a,b]区间的均匀分布的M*N的随机数矩阵,则可以用y=rand(M,N)*(b-a)+a得到。
%===========================================================%
上述资料基本上完整地描述了原始问题,不过有几点内容附带说明一下:
1. 首先更正一个错误,我认为在“生成N ( 0.0128, 0.9596 ) 的高斯分布序列”的程序中,应该改为以下的代码:
程序代码
y=randn(1,2500);
y=y-mean(y);
y=y/std(y);
a=0.0128;
b=sqrt(0.9596);
y=a+b*y;
2. 上面资料最后部分隐含了一个出自zhyuer 版友的结论:
%==========================zhyuer===================================%
1) rand产生的是[0,1]上的均匀分布的随机序列
2) randn产生均值为0,方差为1的高斯随机序列,也就是白噪声序列;
%===================================================================% 也就是说,可以直接使用上面两个函数对原始信号添加噪声(例如
y=x+rand(length(x),1)或者y=x+randn(length(x),1))
3.事实上,无论是wgn还是awgn函数,实质都是由randn函数产生的噪声。
即,wgn函数中调用了randn函数,而awgn函数中调用了wgn函数。
下面就我熟悉的“向已知信号添加某个信噪比(SNR)的高斯白噪声”来说明一下,不过如果大家阅读过awgn的实现代码就不用看下去了,呵呵。
从上述可知,这个任务可以使用awgn函数实现,具体命令是:awgn(x,snr,’measured’,'linear’),命令的作用是对原信号f(x)添加信噪比(比值)为SNR的噪声,在添加之前先估计信号f的强度。
这里涉及三个问题:在awgn这个函数中,SNR是如何计算的?什么是信号的强度?awgn函数具体是如何添加噪声的?事实上,前两个问题是相关的,因为根据定义,SNR就是信号的强度除以噪声的强度,所以,首先
来讲讲信号的强度。
其实信号的强度指的就是信号的能量,在连续的情形就是对f(x)平方后求积分,而在离散的情形自然是求和代替积分了。
在matlab中也是这样实现的,只不过多了一个规范化步骤罢了:
sigPower = sum(abs(sig(:)).^2)/length(sig(:))
这就是信号的强度。
至此,SNR的具体实现也不用多说了(注:由于采用的是比值而非db,所以与下面“计算信噪比”所使用的方式不同,即没有求对数步骤)。
最后说说awgn函数具体是如何添加噪声的。
事实上也很简单,在求出f的强度后,结合指定的信噪比,就可以求出需要添加的噪声的强度
noisePower=sigPower/SNR。
由于使用的是高斯白噪声即randn函数,而randn 的结果是一个强度为1的随机序列(自己试试sum(randn(1000,1).^2)/1000就知道了,注意信号的长度不能太小)。
于是,所要添加的噪声信号显然就是:sqrt(noisePower)*randn(n,1),其中n为信号长度。