matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

合集下载

matlab高斯噪声函数

matlab高斯噪声函数

matlab高斯噪声函数(原创版)目录1.Matlab 中生成高斯噪声的方法2.高斯噪声的特点和应用3.椒盐噪声与高斯噪声的区别4.如何在 Matlab 中生成椒盐噪声和高斯白噪声5.滤波器在噪声抑制中的应用正文在 Matlab 中,生成高斯噪声常用的函数是 randn。

该函数可以生成服从正态分布的随机数。

其使用方法为:y = randn(m,n),其中 m 和 n 分别为矩阵的大小。

生成的随机数矩阵 y 中,每个元素都服从均值为 0、方差为 1 的高斯分布。

高斯噪声的特点是其噪声幅度随机,且在图像中的位置固定。

这种噪声在图像处理中很常见,例如在图像传输过程中,信号可能受到高斯噪声的影响。

因此,研究如何生成和处理高斯噪声对于图像处理具有重要意义。

椒盐噪声是一种特殊的高斯噪声,其特点是在图像中的某些位置上噪声幅度较大,形成“椒盐”状。

椒盐噪声与高斯噪声的主要区别在于噪声的幅度分布,椒盐噪声的噪声幅度分布不是正态分布,而是具有较高的峰值和较低的谷值。

在 Matlab 中,可以通过 imnoise 函数生成椒盐噪声。

例如,使用imnoise(I, "salt", m, v) 可以生成椒盐噪声,其中 I 为要添加噪声的图像,m 和 v 分别表示噪声的强度和方差。

除了椒盐噪声,Matlab 中也可以生成高斯白噪声。

高斯白噪声是在频域上呈高斯分布的噪声,其能量分布均匀。

在 Matlab 中,可以使用awgn 函数生成高斯白噪声。

例如,使用 awgn(x, snr) 可以生成高斯白噪声,其中 x 为信号,snr 为信噪比。

在实际应用中,噪声抑制滤波器可以用于去除图像中的噪声。

常见的噪声抑制滤波器包括均值滤波器、中值滤波器和边界保持类滤波器。

均值滤波器的原理是在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

将模板中的全体像素的均值来替代原来的像素值。

中值滤波器则通过取图像中每个像素邻域的中值来实现噪声抑制。

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一姓名:张英伟学号:133320085208036 班级:13级理工部3班利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。

●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。

一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。

高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。

2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。

利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。

二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。

2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。

幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。

4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。

(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声 plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴 y5=abs(f4);plot(l2,y5);如有侵权请联系告知删除,感谢你们的配合!。

MATLAB中产生高斯白噪声的两个函数

MATLAB中产生高斯白噪声的两个函数

MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。

WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。

1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。

y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。

y = wgn(m,n,p,imp,state) 重置RANDN的状态。

在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。

POWERTYPE可以是'dBW', 'dBm'或'linear'。

线性强度(linear power)以瓦特(Watt)为单位。

y = wgn(…,OUTPUTTYPE) 指定输出类型。

OUTPUTTYPE可以是'real'或'complex'。

2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。

信噪比SNR以dB为单位。

x的强度假定为0dBW。

如果x是复数,就加入复噪声。

y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。

y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。

y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。

POWERTYPE可以是'dB'或'linear'。

如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数(word文档良心出品)

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数(word文档良心出品)

现代通信原理作业一姓名:张英伟学号:133320085208036 班级:13级理工部3班利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。

●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。

一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。

高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。

2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。

利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。

二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。

2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。

幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。

4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。

(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);plot(l2,y5);。

随机信号及其自相关函数和功率谱密度的MATLAB实现(1)

随机信号及其自相关函数和功率谱密度的MATLAB实现(1)

随机信号分析专业:电子信息工程班级:电子111姓名:***学号:**********指导老师:***随机信号及其自相关函数和功率谱密度的MATLAB实现引言:现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。

它是数字信号处理的重要研究内容之一。

功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。

通过实验仿真可以直观地看出以下特性:(1)功率谱估计中的相关函数法和周期图法所得到的结果是一致的,其特点是离散性大,曲线粗糙,方差较大,但是分辨率较高。

(2)平均周期图法和平滑平均周期图法的收敛性较好,曲线平滑,估计的结果方差较小,但是功率谱主瓣较宽,分辨率低。

这是由于对随机序列的分段处理引起了长度有限所带来的Gibbs现象而造成的。

(3)平滑平均周期图法与平均周期图法相比,谱估值比较平滑,但是分辨率较差。

其原因是给每一段序列用适当的窗口函数加权后,在得到平滑的估计结果的同时,使功率谱的主瓣变宽,因此分辨率有所下降。

摘要:功率谱估计(PSD)的功率谱,来讲都是重要的,是数字信号处理的重要研究内容之一。

功率谱估计可以分为经典谱估计(非参数估计)和现代谱估计(参数估计)。

前者的主要方法有BTPSD 估计法和周期图法;后者的主要方法有最大熵谱分析法(AR 模型法)、Pisarenko 谐波分解法、Prony 提取极点法、其Prony 谱线分解法以及Capon 最大似然法。

中周期图法和AR 模型法是用得较多且最具代表性的方法。

Matlab 是目前极为流行的工程数学分析软件,在它的SignalProcessingToolbox 中也对这两个方法提供了相应的工具函数,这为我们进行工程设计分析、理论学习提供了相当便捷的途径。

关键词:随机信号 自相关系数 功率谱密度实验原理:随机信号X(t)是一个随时间变化的随机变量,将X (t )离散化,即以Ts 对X (t )进行等间隔抽样,得到随机序列X(nTs),简化为X(n)。

高斯白噪声 matlab

高斯白噪声 matlab

高斯白噪声matlab摘要:1.高斯白噪声的定义和特性2.MATLAB 中生成高斯白噪声的方法3.高斯白噪声在各个领域的应用正文:1.高斯白噪声的定义和特性高斯白噪声(Gaussian White Noise)是一种在各个频率上具有相同能量分布的随机信号,它是信号处理领域中常见的一种噪声模型。

高斯白噪声具有以下特性:- 它的概率密度函数服从正态分布(高斯分布),即均值为0,方差为常数σ的正态分布。

- 在各个频率上的能量分布是均匀的,即具有平坦的功率谱。

- 高斯白噪声是各态历经(ergodic)的,这意味着在一个长时间内,信号的任何一段样本都是可能出现的。

2.MATLAB 中生成高斯白噪声的方法在MATLAB 中,可以使用内置函数`wgn`来生成高斯白噪声。

以下是一个简单的示例:```matlab% 指定信号的长度= 1000;% 生成高斯白噪声oise = wgn(n, 1);% 显示噪声信号figure;plot(noise);title("高斯白噪声示例");```其中,`wgn`函数的第一个参数`n`表示信号的长度,第二个参数`1`表示信号的均值为1。

需要注意的是,`wgn`函数生成的高斯白噪声是在均值为0,标准差为1 的条件下生成的,因此在实际应用中,可能需要根据需要对信号进行缩放。

3.高斯白噪声在各个领域的应用高斯白噪声在许多领域都有广泛的应用,包括通信、信号处理、图像处理等。

例如,在通信系统中,高斯白噪声常常被用作信道噪声的模型,以研究信道对信号传输性能的影响;在图像处理中,高斯白噪声可以作为随机噪声加入到图像中,以生成具有自然随机纹理的效果。

matlab产生高斯白噪声

matlab产生高斯白噪声

matlab产生高斯白噪声产生一个长度为L、均值为零、功率为N的复数高斯白噪声用这种方法:1,X = sqrt(N/2) * ( randn(1,L) + j * randn(1,L) );根据随机过程理论,功率包含直流功率和交流功率,方差就是交流功率,这里均值为零,也就是总功率等于方差所以保证X的方差为N就行了。

2,X = wgn( L,1,N,'linear','complex');产生长为L的复高斯白噪声,均值为0,功率为N(线性)MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。

WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。

1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。

y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。

y = wgn(m,n,p,imp,state) 重置RANDN的状态。

在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。

POWERTYPE可以是'dBW', 'dBm'或'linear'。

线性强度(linear power)以瓦特(Watt)为单位。

y = wgn(…,OUTPUTTYPE) 指定输出类型。

OUTPUTTYPE可以是'real'或'complex'。

2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。

信噪比SNR以dB为单位。

x的强度假定为0dBW。

如果x是复数,就加入复噪声。

y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。

(word完整版)高斯白噪声的matlab实现

(word完整版)高斯白噪声的matlab实现

通信系统建模与仿真实验一、高斯白噪声的matlab 实现要求:样本点:100 1000标准差:0.2 2 10均值: 0 0.2白噪声如果噪声的功率谱密度在所有的频率上均为一常数,即)/(),(,)(0Hz W f n f P n +∞<<-∞=式中:0n 为常数,责成该噪声为白噪声,用)(t n 表示。

高斯白噪声的matlab实现1.样本点为1000、均值为0、标准差为0.2时,高斯白噪声分布为下图所示:程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i));endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft));plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代通信原理作业一
姓名:张英伟学号:8036 班级:13级理工部3班
利用matlab完成:
●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦
波信号上,绘出波形。

●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波
形。

一、白噪声区别及产生方法
1、定义:
均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。

高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。

2、matlab仿真函数:
rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:
z2=a+(b-(a))*rand(m,n)............(公式1)
randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。

利用公式:
z1=a+b*randn(1,n).................(公式2)
可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。

二、自相关函数与功率谱密度之间的关系
1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。

2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

3、维纳-辛钦定理:
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。

幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。

4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。

(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)
二、源代码及仿真结果
1、正弦波
x=(0:0.01:2); %采样频率100Hz
y1=sin(10*pi*x); %产生频率5Hz的sin函数
plot(x,y1,'b');
2、高斯白噪声+正弦波
z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');
y2=y1+z1; %叠加高斯白噪声的正弦波
plot(x,y2,'b');
3、均匀白噪声+正弦波
z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');
y3=y1+z2; %叠加均匀白噪声的正弦波
plot(x,y3,'b');
4、高斯白噪声序列自相关函数及功率谱密度
z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计
plot(lags,r1);
f1=fft(r1);
f2=fftshift(f1); %频谱校正
l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴
y4=abs(f2);
plot(l1,y4);
5、均匀白噪声序列自相关函数及功率谱密度
z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计
plot(lags,r2);
f3=fft(r2);
f4=fftshift(f3); %频谱校正
l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);
plot(l2,y5);。

相关文档
最新文档