基于DSP的神经自适应模糊控制器的应用

基于DSP的神经自适应模糊控制器的应用
基于DSP的神经自适应模糊控制器的应用

基于DSP的神经自适应模糊控制器的应用

摘要模糊控制器应用在许多领域,但由于其控制参数的不稳定性,导致其控制效果达不到控制要求。本文提出了一种将神经网络与模糊控制器相结合的方法,并应用于基于DSP的变频调速系统中。对系统进行仿真实验后,从仿真结果可以得出:该系统具有较好的控制性能,且能达到较高的控制精度。

关键词DSP;神经自适应模糊控制;MATLAB仿真

中图分类号TM346 文献标识码 A 文章编号1673-9671-(2012)071-0190-01

模糊控制具有较强的不确定性知识表达能力,但其自学习能力比较困难;神经网络具有较强的自学习、自适应能力,但其对不确定知识的表达能力比较困难。因此针对双方的特点相互借鉴和利用,形成的新的结构体系——模糊神经网络。这种新技术充分利用神经网络的自学习、自适应能力,在线调整模糊规则,使模糊控制在保持其较强的知识表达能力的同时,并能提高其自适应能力。

1 神经自适应模糊控制器

神经自适应模糊控制器的结构如图1所示。

其中,nr为速度给定值,nf为速度反馈值,e为速度偏差,E为转速偏差,u为输出控制量,K1,K2分别是E和ΔE的量化因子,K3为u的比例因子。

对于模糊控制器来说,提高控制性能的关键是调整控制规则,可由u≈-(E+ΔE)/2来近似归纳其控制查询表。本文在此基础上引入一个加权系数α,因此又可表示为u≈[αE+(1-α)ΔE],通过调整α值,可以改变E、ΔE对u的加权程度,使控制规则的调整变得更为方便,从而提高控制性能。

2 控制系统的硬件设计

系统的硬件设计部分采用TMS320LF2407A来实现智能速度控制,系统由主电路、控制电路、驱动隔离电路和保护电路等组成。主电路采用交—直—交的间接变频装置;逆变部分采用IPM功率模块来控制驱动电路;控制回路包括DSP、LED显示电路、键盘接口电路、电流检测电路、电压检测电路、电动机转速和位置检测电路等。为了以防加电瞬间冲击,过流、过压等故障损坏整流模块和IPM 模块,系统在主电路设置了充、放电电阻和泄能回路。

3 控制系统的软件设计及仿真实验

系统程序包括主程序和两个中断服务子程序。主程序主要负责DSP初始化、速度环运算及故障诊断工作;PWM中断程序主要负责AD转换、SPWM输出以及串行通信等;串行口中断服务程序负责电机参数的接收。

为了验证本设计的科学性和合理性,对整个变频调速控制系统进行仿真实验。实验中采用型号为Y160M2-2的异步电动机,主要参数为:额定功率1.2 kw,额定转速1420 r/min,额定电流3.8 A,额定电压380 V。本文同时给出了神经自适应模糊控制器和传统PID控制器的仿真响应曲线,以便于性能比较。仿真结果如下图所示。

通过比较两者的响应曲线可以看出,神经自适应模糊控制速度调节器,在动态性能方面,其转速响应曲线更为平滑,超调量更小;稳态性能方面,其稳态误差明显小于传统PID控制,说明其稳态性能要优于传统PID控制。

4 结束语

本文基于模糊神经网络的控制方法,利用神经网络的自学习、自适应能力,

恒压供水模糊自适应PID控制器的设计_仿真

第30卷第3期2 0 1  1年9月计 算 技 术 与 自 动 化ComutinTechnoloandAutomationVol.30,No.3 Sep .2 0 1 1收稿日期:2011-05-17 作者简介:黄祥源(1974—),男,江苏盐城人,硕士研究生,研究方向:自动控制(E-mail:hxy @czili.edu.cn)。文章编号:1003-6199(2011)03-0056-06 恒压供水模糊自适应PID控制器的设计、 仿真黄祥源 (常州轻工职业技术学院,江苏常州 213164 ) 摘 要: 对遗传算法和传统PID控制作简要的介绍,针对工程整定方法整定的初始值超调量较大,调节时间较长的问题,利用遗传算法对其初值进行整定。利用遗传算法整定出的一组性能较优良的PID初值,结合模糊控制的思想,利用专家系统直接建立模糊规则,进行模糊自适应PID控制器的初步设计,并对恒压供水系统进行仿真,仿真结果满足设计要求。 关键词:模糊控制;PID控制器;恒压供水;Matlab中图分类号:TP312 文献标识码:A Design to Adaptive Fuzzy  PID Controller for Constant-pressure Water SupplyHUANG Xiang-y uan(Changzhou Institute of Light Industry  Technology,changzhou 213164,china) Abstract:This paper gave a brief introduction for the traditional PID control and genetic algorithms.For the larger o-vershoot of tuning initial solution and longer adjustment time from engineering neaten method,the initial values were set byuse of genetic algorithm.The paper set up the fuzzy rules directly and made the preliminary design to the adaptive fuzzy PIDcontroller,and simulated the constant-pressure water supply system according to fuzzy control theory,by a set of good ini-tial PID values from g enetic algorithms,and expert system.Key  words:fuzzy control;PID controller;Constant-pressure water supply;matlab1 引 言 目前恒压供水技术在农业、工业和民用供水系统中已广泛使用,由于系统的负荷变化的不确定性,采用传统的PID算法实现压力控制的动态特性指标很难收到理想的效果。在大多数恒压供水系统中采用传统意义的PID调节器,系统的动态特性指标总是不稳定,通过实际应用中的对比发现应用模糊控制理论形成的控制方案在恒压供水系统中有较好的效果。本方案在常规PID控制器基础上引入模糊控制器,实现被控制对象参数变化在一定范围内模糊PID控制,使恒压供水系统动态静态性能指标保持最优。 2 模糊控制的结构与原理 模糊控制系统是以模糊集理论,模糊语言变量和模糊逻辑推理为理论基础,采用计算机控制技术构成的一种具有闭环结构的数字控制系统,它从行为上模仿人的模糊推理和决策过程,它的组成核心 是具有智能性的模糊控制器[ 1] 。模糊逻辑控制的实质是利用模糊逻辑建立一种“自由模型”的非线性控制算法,在那些采用传统定量技术分析过程过于复杂的过程,或者提供的信息是定性的、非精确的、非确定的系统中,其控制效果是相当明显的。 模糊控制的基本原理框图如图1所示[ 3] 。它的核心部分为模糊控制器,如图1中点划线框中所 示,模糊控制器的控制规律由计算机的程序实现。

基于DSP的神经自适应模糊控制器的应用

基于DSP的神经自适应模糊控制器的应用 摘要模糊控制器应用在许多领域,但由于其控制参数的不稳定性,导致其控制效果达不到控制要求。本文提出了一种将神经网络与模糊控制器相结合的方法,并应用于基于DSP的变频调速系统中。对系统进行仿真实验后,从仿真结果可以得出:该系统具有较好的控制性能,且能达到较高的控制精度。 关键词DSP;神经自适应模糊控制;MATLAB仿真 中图分类号TM346 文献标识码 A 文章编号1673-9671-(2012)071-0190-01 模糊控制具有较强的不确定性知识表达能力,但其自学习能力比较困难;神经网络具有较强的自学习、自适应能力,但其对不确定知识的表达能力比较困难。因此针对双方的特点相互借鉴和利用,形成的新的结构体系——模糊神经网络。这种新技术充分利用神经网络的自学习、自适应能力,在线调整模糊规则,使模糊控制在保持其较强的知识表达能力的同时,并能提高其自适应能力。 1 神经自适应模糊控制器 神经自适应模糊控制器的结构如图1所示。 其中,nr为速度给定值,nf为速度反馈值,e为速度偏差,E为转速偏差,u为输出控制量,K1,K2分别是E和ΔE的量化因子,K3为u的比例因子。 对于模糊控制器来说,提高控制性能的关键是调整控制规则,可由u≈-(E+ΔE)/2来近似归纳其控制查询表。本文在此基础上引入一个加权系数α,因此又可表示为u≈[αE+(1-α)ΔE],通过调整α值,可以改变E、ΔE对u的加权程度,使控制规则的调整变得更为方便,从而提高控制性能。 2 控制系统的硬件设计 系统的硬件设计部分采用TMS320LF2407A来实现智能速度控制,系统由主电路、控制电路、驱动隔离电路和保护电路等组成。主电路采用交—直—交的间接变频装置;逆变部分采用IPM功率模块来控制驱动电路;控制回路包括DSP、LED显示电路、键盘接口电路、电流检测电路、电压检测电路、电动机转速和位置检测电路等。为了以防加电瞬间冲击,过流、过压等故障损坏整流模块和IPM 模块,系统在主电路设置了充、放电电阻和泄能回路。 3 控制系统的软件设计及仿真实验 系统程序包括主程序和两个中断服务子程序。主程序主要负责DSP初始化、速度环运算及故障诊断工作;PWM中断程序主要负责AD转换、SPWM输出以及串行通信等;串行口中断服务程序负责电机参数的接收。 为了验证本设计的科学性和合理性,对整个变频调速控制系统进行仿真实验。实验中采用型号为Y160M2-2的异步电动机,主要参数为:额定功率1.2 kw,额定转速1420 r/min,额定电流3.8 A,额定电压380 V。本文同时给出了神经自适应模糊控制器和传统PID控制器的仿真响应曲线,以便于性能比较。仿真结果如下图所示。 通过比较两者的响应曲线可以看出,神经自适应模糊控制速度调节器,在动态性能方面,其转速响应曲线更为平滑,超调量更小;稳态性能方面,其稳态误差明显小于传统PID控制,说明其稳态性能要优于传统PID控制。 4 结束语 本文基于模糊神经网络的控制方法,利用神经网络的自学习、自适应能力,

模糊控制 - 模糊自适应整定PID控制仿真实验

实验三模糊自适应整定PID控制仿真实验 一、实验目的 1.通过实验了解数字PID控制的原理 2.通过实验实现离散系统的数字 PID 控制仿真 3.通过实验了解模糊自适应整定PID控制的原理 4.通过实验实现模糊自适应整定PID控制仿真 5.通过实验进一步熟悉并掌握Matlab软件的使用方法 二、实验内容 1.针对给定离散系统的输入信号的位置响应,设计离散PID控制器,编制相应的仿真程序。2.若采样时间为1ms ,采用模糊PID控制进行阶跃响应,在第300个采样时间时控制器输出加1.0 的干扰,编制该模糊自适应整定PID系统的Matlab仿真程序 三、实验步骤 1.针对给定离散系统的阶跃信号、正弦信号和方波信号的位置响应,设计离散PID控制器,编制相应的仿真程序。 2.确定模糊自整定PID的算法基础 3.针对 kp, ki , kd 三个参数分别建立合适的模糊规则表 4.画出PID参数的在线自校正工作程序流程图 5.编制该模糊自适应整定PID系统的Matlab仿真程序 四、实验要求 1.设被控对象为: 采样时间为1ms,采用Z变换进行离散化,经过Z变换后的离散化对象为: yout(k)=-den(2)yout(k-1)-den(3)yout(k-2)-den(4)yout(k-3)+num(2)u(k-1) +num(3)u(k-2)+num(4)u(k-3) 针对离散系统的阶跃信号、正弦信号和方波信号的位置响应,设计离散PID控制器。其中,S为 信号选择变量,S=1时为阶跃跟踪,S=2时为方波跟踪,S=3时为正弦跟踪。 2.采样时间为1ms ,采用模糊PID控制进行阶跃响应,在第300个采样时间时控制器输出加1.0的干扰,编制炉温模糊控制系统的Matlab仿真程序 五﹑自适应模糊控制的规则 1﹑控制规则:

自适应模糊神经网络MATLAB代码

function [ c, sigma , W_output ] = SOFNN( X, d, Kd ) %SOFNN Self-Organizing Fuzzy Neural Networks %Input Parameters % X(r,n) - rth traning data from nth observation % d(n) - the desired output of the network (must be a row vector) % Kd(r) - predefined distance threshold for the rth input %Output Parameters % c(IndexInputVariable,IndexNeuron) % sigma(IndexInputVariable,IndexNeuron) % W_output is a vector %Setting up Parameters for SOFNN SigmaZero=4; delta=0.12; threshold=0.1354; k_sigma=1.12; %For more accurate results uncomment the following %format long; %Implementation of a SOFNN model [size_R,size_N]=size(X); %size_R - the number of input variables c=[]; sigma=[]; W_output=[]; u=0; % the number of neurons in the structure Q=[]; O=[]; Psi=[]; for n=1:size_N x=X(:,n); if u==0 % No neuron in the structure? c=x; sigma=SigmaZero*ones(size_R,1); u=1; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); pT_n=GetMeGreatPsi(x,Psi(n,:))'; else [Q,O,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n); end;

自适应神经模糊推理系统及其仿真应用

自适应神经模糊推理系统及其仿真应用 刘雨刚,耿立明,杨威 辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛(125105) 摘 要:本文介绍了自适应神经模糊推理系统的结构,以及如何用MATLAB 模糊工具箱提供的ANFIS 应用工具仿真,完成训练模糊神经网络。 关键词:自适应神经模糊推理系统,MATLAB ,模糊神经网络 0 引言 由Jyh-Shing R.Jang 提出的自适应神经模糊推理系统[1],是一种基于Takagi -Sugeno 模型的模糊推理系统(简称ANFIS )。研究表明,当输入模糊集采用非梯形/非三角形的隶属函数时,Sugeno 型模糊系统需要的模糊规则及输入的模糊集的个数较少。 1 基于Takagi -Sugeno 模型的自适应神经模糊推理系统 所考虑的模糊推理系统有两输入和,单输出f 。 1x 2x 对于零阶T-S 模糊模型,模糊规则的第i 条规则有如下形式: ⑴ 后件为恒值:Ri : ),...,2,1( , 221121n i f y Then A x A x If i i i ==是和是 ⑵ 后件为一阶线性方程:Ri : 0,1,2)(j ),( ,...,2,1 ),( , 221102*********是常数是和是=++===ij i i i i i i i a x a x a a x x f n i x x f y Then A x A x If 式中,Ri 表示第i 条规则,Ai 表示模糊子集,即{NL ,NM ,NS ,ZO ,PS ,PM ,PL}={“负 大”,“负中”,“负小”,“零”,“正小”,“正中”,“正大”}。 在T-S 模型中,每条规则的结论部分是个线性方程,表示系统局部的线性输入/输出关系,而系统的总输入是所有线性子系统输出的加权平均,可以表示全局的非线性输入输出关系,所以,T-S 模型是一种对非线性系统局部线性化的描述方法,它具有非常重要的研究意义和广泛的应用范围[2]。 典型的单交叉路口东、南、西、北四个方向,每个方向均有右行、直行和左行三股车流。依据各个车道的车流信息,以路口流通能力最大或排队候车的时间最短为目标,通过设计自适应神经模糊推理系统,对交叉路口交通信号进行控制,实时确定各个相位的配时,具体地 说每一相交通信号的配时e i (i=1,2,3,4) 由该相位的主队列w1、后继相的主队列w2两者确定,当前相的主队列起决定作用,后继相的主队列起调节作用。所谓主队列是一个相位两个方向中车辆等待数较大的等待队列。 2 ANFIS 的结构 根据给出的模糊系统模型,输入为w1和w2,模糊标记取{负大,负中,负小,零,正小,正中,正大},由此可构造出一个具有模糊功能的神经网络,如图1所示的ANFIS 结构

神经网络与模糊控制考试题及答案汇总

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是 、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1) ; (2) 。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、和。判断性规则控制性规则数据

模糊神经网络在智能控制中的应用研究

模糊神经网络在智能控制中的应用研究1 郑子杰,王虎 武汉理工大学信息工程学院,武汉 (430070) E-mail :zhzijie.27@https://www.360docs.net/doc/0d3493272.html, 摘 要:本文简要介绍了神经网络(Neural Network )及模糊神经网络(Fuzzy Neural Network )的特点以及发展状况,并给出了模糊神经网络在智能控制中的几种应用,同时指出了今后研究中有待解决的一些问题,并对模糊神经网络技术将来的发展及其在工程上的应用作了展望。 关键词:神经网络,模糊神经网络,FFNC ,智能控制 中图分类号: TP183 文献标识码:A 1. 神经网络简介 神经网络是仿效生物处理模式以获得智能信息处理功能的理论。神经网络着眼于脑的微观网络结构,通过大量神经元的复杂连接,采用由底到顶的方法,通过自学习、自组织和非线性动力学所形成的并行分布方式,来处理难于语言化的模式信息[1]。自1943年第一个神经网络模型—MP 模型被提出至今,神经网络的发展十分迅速,特别是1982年提出的Hopfield 神经网络模型和1985年Rumelhart 提出的反向传播算法BP ,使Hopfield 的模型和多层前馈型神经网络成为用途广泛的神经网络模型,在语音识别、模式识别、图像处理和工业控制等领域的应用颇有成效。 神经网络的核心由其基本结构、学习规则及其工作方式三大部分组成。 1.1 基本结构 神经网络是由大量神经元广泛互连而成的复杂网络系统。单一神经元可以有许多输入、输出。神经元之间的相互作用通过连接的权值体现。神经元的输出是其输入的函数。常用的函数类型有:线性函数、Sigmoid 型函数和阈值型函数[2]。虽然单个神经元的结构和功能极其简单和有限,而大量神经元构成的网络系统其行为却是丰富多彩的。图1表示出单个神经元和Hopfield 模型的结构。 在图1(a)中, i u 为神经元的内部状态, i θ为阈值,i x 为输入信号, ij w 表示从j u 到i u 连接的权值, i s 表示外部输入信号,则神经元的输入为-i i j j i i n e t w x s θ=+∑,输出为 ()i i y f n e t =,其中f 是神经元的转 换函数。 在图1(b)中。Hopfield 模型是由许多神经元构成的互连网络,适当选取神经元兴奋模式的初始状态,则网络的状态将逐渐到达一个极小点即稳定点、从而可以联想出稳定点处的样本。 神经网络的基本特征是: (1)大规模并行处理。神经网络能同时处理与决策有关的因素,虽然单个神经元的动作速度不快,但网络的总体处理速度极快。 1本课题得到教育部重点项目(03120)(基于FSOC 嵌入式微控制器设计与研究)的资助。

智能控制导论报告BP神经网络模糊控制

智能控制导论实验报告 2012-01-09 姓名:常青 学号:0815321002 班级:08自动化 指导老师:方慧娟

实验一:模糊控制器设计与实现 一、实验目的 1.模糊控制的特征、结构以及学习算法 2.通过实验掌握模糊自整定PID的工作原理 二、实验内容 已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 三、实验设备 Matlab 7.0软件/SIMULINK 四、实验原理 1.模糊控制 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。

针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e 和误差变化率ec 为模糊控制器的两个输入,则在e 的论域上定义语言变量“误差E ” ,在ec 的论域上定义语言变量“误差变化EC ” ;在控制量u 的论域上定义语言变量“控制量U ” 。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e ,对误差取微分得到误差变化率ec ,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 2.PID 控制 在模拟控制系统中,控制器最常用的控制规律是PID 控制。PID 控制器是一种线性控制器。它根据给定值与实际输出值之间的偏差来控制的。其传递函数的形式是:)1 1()(s T s T k s G D I p ++ =,PID 控制原理

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

模糊自适应PID控制..

《系统辨识与自适应控制》 课程论文 基于Matlab的模糊自适应PID控制器仿真研究 学院:电信学院 专业:控制工程 姓名:王晋 学号:

基于Matlab 的模糊自适应PID 控制器仿真研究 王晋 (辽宁科技大学 电信学院 鞍山) 摘 要:传统PID 在对象变化时,控制器的参数难以自动调整。将模糊控制与PID 控制结合,利用模糊推理方法实现对PID 参数的在线自整定。使控制器具有较好的自适应性。使用MATLAB 对系统进行仿真,结果表明系统的动态性能得到了提高。 关键词: 模糊PID 控制器;参数自整定;Matlab ;自适应 0引言 在工业控制中,PID 控制是工业控制中最常用的方法。但是,它具有一定的局限性:当控制对象不同时,控制器的参数难以自动调整以适应外界环境的变化。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用模糊控制理论的方法[1] 模糊控制已成为智能自动化控制研究中最为活跃而富有成果的领域。其中,模糊PID 控制技术扮演了十分重要的角色,并目仍将成为未来研究与应用的重点技术之一。到目前为止,现代控制理论在许多控制应用中获得了大量成功的范例。然而在工业过程控制中,PID 类型的控制技术仍然占有主导地位。虽然未来的控制技术应用领域会越来越宽广、被控对象可以是越来越复杂,相应的控制技术也会变得越来越精巧,但是以PID 为原理的各种控制器将是过程控制中不可或缺的基本控制单元。本文将模糊控制和PID 控制结合起来,应用模糊推理的方法实现 对PID 参数进行在线自整定,实现PID 参数的最佳调整,设计出参数模糊自整定PID 控制器,并进行了 Matlab/Simulink 仿真[2] 。仿真结果表明,与常规PID 控制系统相比,该设计获得了更优的鲁棒性和动、静态性及具有良好的自适应性。 1 PID 控制系统概述 PID 控制器系统原理框图如图1所示。将偏差的比例(K P )、积分(K I )和微分(K D )通过线性组合构成控制量,对被控对象进行控制,K P 、K I 和K D 3个参数的选取直接影响了控制效果。 / 图1 PID 控制器系统原理框图 )( t u 比例 积分 微分 被控对)(t r )(t c )(t e

基于神经网络的永磁同步电动机模糊自适应控制

基于神经网络的永磁同步电动机模糊自适应控制! 许振伟蒋静坪骆再飞 "浙江大学电气工程学院杭州#$%%&’( )*++,-.-/01234560758)57/9:9;-:3.5663*7-8630<57= >?@A B C D B E F E G C HF E C H I E C J?K@G E L B E "M K N N B H B K L O N B P Q R E P G N O C H E C B B R E C H S@A B T E G C HU C E V B R W E Q X S Y G C H Z A K?S#$%%&’( -;:07-40[CQ A E WI G I B R S D BI R K I K W BGP K C Q R K N W P A B\B L K R Q A BW I B B]W B R V KP K C Q R K N K L^_‘_D E Q AL?Z Z XG]G I Q E V B P K C Q R K N a G W B]K CC B?R G N C B Q D K R b c[CK R]B RQ KE\I R K V BQ A B R K a?W Q C B W W K L Q A B W X W Q B\S D B?W B K C d N E C B W B N L d N B G R C E C H Q B P A d C E e?B Q KK a Q G E CW Q B IB R R K R Q KW?a W Q E Q?B L K R Q A B R B H?N G R Q K Q G N L B B]a G P bB R R K R S G C]Q A BN B G R C E C HG C]P K C Q R K N Q G b BI N G P BW E d \?N Q G C B K?W N X c f A BI R B P E W E K CG C]R K a?W Q C B W WK L Q A BW X W Q B\ G R B B g P B N N B C Q c =h i

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

自适应模糊控制几个基本问题的研究进展

自适应模糊控制几个基本问题的研究进展 谢振华程江涛耿昌茂 (海军航空工程学院青岛分院航空军械系青岛 266041 ) 周德云 (西北工业大学西安 710072 ) [摘要] 综述了模糊控制系统的稳定性分析、系统设计及系统性能提高三个基本问题的研究 ,简述了应用研究 ,最后对自适应模糊控制的理论和应用进行了展望。 关键词模糊控制自适应控制鲁棒性稳定性 1 引言 自从 L. A. Zadeh提出模糊集合论以来 ,基于该理论形成一门新的模糊系统理论学科 ,在控制、信号处理、模式识别、通信等领域得到了广泛的应用。近年来 ,有关模糊控制理论及应用研究引起了学术界的极大兴趣 ,取得了一系列成功的应用和理论成果 ,与早期的模糊控制理论和应用相比有了很大的发展。模糊控制理论成为智能控制理论的一个重要分支。 一般来讲 ,模糊控制理论研究的核心问题在于如何解决模糊控制中关于稳定性和鲁棒性分析、系统的设计方法 (包括规则的获取和优化、隶属函数的选取等 )、控制系统的性能 (稳态精度、抖动及积分饱和度等 )的提高等问题 ,这己成为模糊控制研究中的几个公认的基本问题。其中 ,稳定性和鲁棒性问题的研究最为热烈 ,从早期基于模糊控制器的“多值继电器”等价模型的描述函数分析法 ,扩展到相平面法、关系矩阵分析法、圆判据、L yapunov稳定性理论、超稳定理论、基于滑模控制器的比较法、模糊穴 -穴映射及数值稳定性分析方法等非线性理论方法。设计方法的研究也倍受关注 ,主要表现在对规则的在线学习和优化、隶属函数参数的优化修正等应用了多种思想 ,如最优控制的二次型性能指标、自适应、神经网络、遗传算法等思想。稳态性能的改善一直是模糊控制学者所关注。 围绕上述几个基本问题 ,出现了多变量模糊控制[1 ,2 ] 、模糊神经网络技术 [3 ] 、神经模糊技术 [4 ] 、自适应模糊控制 [5] 、模糊系统辨识[6 ] 等热点研究领域。在模糊控制理论与应用方面 ,日本学者取得了很大的成就[7] ,我国学者在这方面也付出了不懈的努力 ,并取得了许多重要的成果。所有这些工作促进了模糊控制的理论和应用的快速发展。 本文拟对近几年自适应模糊控制几个基本问题的研究现状作一总结 ,希望能从这一侧面反映其研究情况和发展动向。主要内容包括 :( 1 )稳定性分析问题的研究 ;( 2 )系统设计方法的研究 ;( 3)系统性能提高的研 究 ;( 4 )应用研究情况。 2 稳定性分析 众所周知 ,任何一个自动控制系统 ,首先必须是稳定的 ,否则这个系统就无法工作。因此 ,在控制系统的分析和设计中 ,系统的稳定性研究占有重要的地位 ,模糊控制系统也是如此。由于模糊系统本质上的非线性和缺乏统一的系统描述 ,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和

模糊自适应PID控制器

模糊自适应PID控制器 的设计

模糊自适应PID 控制器的设计 一、 模糊自适应原理 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制方法,作为智能控制的一个重要分支,在控制领域获得了广泛应用,模糊控制与传统控制方式相比具有以下突出优点: ·不需要精确的被控对象的数学模型; ·使用自然语言方法,控制方法易于掌握; ·鲁棒性好,能够较大范围的适应参数变化; ·与常规PID 控制相比,动态响应品质优良。 常规模糊控制器的原理如图1所示: 图1 模糊控制系统框图 PID 控制规律: 1 01()[()()()] p D I d u t k e t e t dt T e t T dt =++? 式中:p k ---比例系数; I T ---积分时间常数; D T ---微分时间常数。 在工业生产中过程中,许多被控对象随着负荷变化或干扰因素影响,其对象特性参数或结构发生改变。自适应控制运用现代控制理论在线辨识对象特征参 数,实时改变其控制策略,使控制系统品质指标保持在最佳范围内,但其控制效果的好坏取决于辨识模型的精确度,这对于复杂系统是非常困难的。因此,在工业生产中过程中,大量采用的仍然是PID 算法,PID 参数的整定方法很多,但大多数都以对象特性为基础。 随着计算机技术的以展,人们利用人工智能的方法将操作人员的调整经验作为知识存入计算机中,根据现场实际情况,计算机能自动调整PID 参数,这样就出现了智能PID.这种控制器把古典的PID 控制与先进的专家系统相结合,实现系统的最佳控制。这种控制必须精确地确定模型,首先将操作人员长期实践积累

模糊神经网络控制器的优化设计

文章 @=D N =D CM 9=C 8

络辨识器!"##$ 及被控对象%控制器的输入为偏差&和偏差变化率’&(输出为控制量)%神经网络辨识器!"##$ 用来逼近被控对象输出( 由其提供被控对象输出对输入的导数信息 %B (@4*(+C B 4*(+(D(E - 输出>A @B !+$4H I @B 4678!?@B !+$ $(@4*(+C B 4*(+(D E -式中F @B 与G @B 分别为高斯函数的中心值及宽度值参数2J $第三层!模糊规则层$> 该层的每个结点代表*条规则2输入>?!J $!B 5*$E ;K 4A !+$*B A !+$ +K ( B 4*(+(D(E C K 4*(+(D(E -输出>A !J $@4H @ 4?!J $@(@4*(+(D L !4E +$-M $第四层!输出层$> 所有规则层结点均与该层结点连接(完成解模糊(每个连接权代表该条规则输出隶属函数的中心值2 输入>?!M $ 4N L O 4* A O !J $P O (P O 为输出层连接权值-输出>A !M $4)Q 4 ?!M $ N L O 4* A !J $ O - * **第R 期 模糊神经网络控制器的优化设计 万方数据