四川大学三相全桥整流及有源逆变实验报告
三相桥式全控整流及有源逆变电路实验报告

实验报告课程名称: 电力电子技术 指导老师: 成绩:__________________ 实验名称: 三相桥式全控整流及有源逆变电路实验 实验类型:__________同组学生姓名:一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
二、实验线路及原理实验线路如图1所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)观察整流状态下模拟电路故障现象时的波形。
图1 三相桥式全控整流及有源逆变电路图四、实验设备(1)MCL 现代运动控制技术实验台主控屏。
(2)给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱。
(3)三相芯式变压器。
(4)滑线变阻器。
(5)双踪记忆示波器。
(6)数字式万用表。
五、实验方法1、接线与调试(1)按图4-7接线,未上主电源之前,检查晶闸管的脉冲是否正常。
打开电源开关,给定电压Ug 有电压显示。
(2)用示波器观察双脉冲观察孔,应有间隔均匀,相互间隔60°的幅度相同的双脉冲。
(3)检查相序,用示波器观察1,2单脉冲观察孔,1脉冲超前2”脉冲60°,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V ~2V 的脉冲。
注:将面板上的Ublf (当三相桥式全控变流电路使用I 组桥晶闸管VT1~VT6时)接地,将I 组桥式触发脉冲的六个按键设置到“接通”。
(5)将给定器输出Ug 接至Uct 端,调节偏移电压Ub ,在Uct=0时,使a=150o 。
此时的触发脉冲波形如图2所示。
图2 触发脉冲与锯齿波的相位关系2、三相桥式全控整流电路(1)按图1接线,将开关“S ”拨向左边的短接线端,给定器上的“正给定”输出为零(逆时针旋到底);合上主电路开关,调节给定电位器,使α角在30°~90°范围内调节(α角度可由晶闸管两端电压uT 波形来确定),同时,根据需要不断调整负载电阻Rd ,使得负载电流Id 保持在0.5A 左右(注意Id 不得超过1A)。
四川大学电力电子实验报告2

三相全控桥整流电路工作原理:三相全控桥整流电路三相全控桥整流电路是由两个三相半波整流电路发展而来,其中一组三相半波可控整流电路为共阴极连接,一组为共阳极连接。
其电路图如商上图所示,共阴极组晶闸管编号为1-3-5,共阳极晶闸管编号为4-6-2,这样编号的目的是为了和晶闸管的导通顺序一致,即晶闸管的导通按照1-2-3-4-5-6时,电路处于临界连续状态°时,带阻感性负载:°时,α=90°时,有源逆变原理:名称——电力电子及电气传动教学实验台型号——MCL-III型包括:降压变压器、MCL-35、两组晶闸管阵列,电力二极管阵列,大功率滑动变阻器,可调电感、导线若干。
:o 0=αUd的波形 U VT的波形Ud的波形 U VT的波形3、α=90°时Ud的波形 U VT的波形4、α=0°,封锁1只晶闸管的脉冲信号时,Ud=120V,其波形为:6、α=0°,封锁共阴极组的2只晶闸管(1号和3号)的脉冲信号时,Ud=67V,其波形为:(2)阻感负载(300Ω+700mH):1、α=30°时Ud的波形 U VT的波形2、α=90°时Ud的波形 U VT的波形3、α=0°,封锁1只晶闸管的脉冲信号时,Ud=122V,其波形为:二、逆变工作Ud的波形 U VT的波形Ud的波形 U VT的波形(2)测定电网实际吸收直流功率Pk=f(Ud)的函数曲线1、数据处理678910(α=30°)图1 带阻感负载时,以封锁VT2的触发信号为例。
由三相桥式全控整流电路(图2)可知,在U(ab)过零变负之前,其情况和带阻性负载时相同。
在U(ab)过零变负之后,由于有电感的存在,段时间内U= U。
,所以波形出现负值。
在下一个自然换相点到来后,通, VT1关断, U再次等于U。
三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验一.实验目的1.熟悉MCL-31A, MCL-33组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二.实验内容1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三.实验线路及原理实验线路如图4-9所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
四.实验所需挂件及附件序号型 号备 注1MCL—32A 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2MCL-31A 低压电源和仪表该挂件包含“给定电源和±15V低压电源”等模块。
3MCL-33 晶闸管主电路和触发电路等该挂件包含“晶闸管”、“二极管”“电感”、“触发电路”等几个模块。
4MEL—03 三相可调电阻5MEL-02 芯式变压器6双踪示波器和万用表自备五.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开MCL-31A电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33的脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。
(5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使=150o。
2.三相桥式全控整流电路按图4-9接线,S拨向左边短接线端,将Rd调至最大(450)。
实验六 三相桥式全控整流及有源逆变电路实验

实验六三相桥式全控整流及有源逆变电路实验实验六三相桥式全控整流及有源逆变电路实验实验六三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解kc系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件序号12345678型号djk01电源控制屏djk02晶闸管主电路djk02-1三相晶闸管触发电路djk06给定及实验器件djk10变压器实验d42三相可调电阻双踪示波器万用表该挂件包含“触发电路”,“正反桥功放”等几个模块。
该挂件包含“二极管”等几个模块。
该挂件包含“逆变变压器”以及“三相不控整流”。
自备自备备注该控制屏包含“三相电源输出”等几个模块。
三、实验线路及原理实验线路如图3-6及3-7所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为djko2-1中的集成触发电路,由kco4、kc4l、kc42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
芯式变压器图3-6三相桥式全系列往下压整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在djk10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端am、bm、cm,返回电网的电压从高压端a、b、c输出,变压器接成y/y接法。
图中的r均采用d42三相调节器电阻,将两个900ωK817并联形式;电感ld在djk02面板上,采用700mh,直流电甩、电流表由djk02赢得。
图3-7三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源低电压状态下,当引爆电路发生故障(人为演示)时观测主电路的各电压波形。
五、预习要求(1)写作电力电子技术教材中有关三相桥式全系列往下压整流电路的有关内容。
三相桥式整流及逆变电路实验

实验十一三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK02 晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。
4 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
5 DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。
6 D42 三相可调电阻7 双踪示波器自备8 万用表自备三、实验线路及原理实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13 三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。
图中的R均使用D42三相可调电阻,将两个900Ω接成并联形式;电感L d在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。
图3-14 三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。
电力电子专业技术三相桥式全控整流及有源逆变电路实验报告

一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。
整流电路是四种变换电路中最基本的变换电路,应用非常广泛。
对于整流电路,当其带不同负载情况下,电路的工作情况不同。
此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。
在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。
该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。
二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:0°≤α≤π,u ct>0V,u d>0V整流2π≤α≤π,u ct<0V,u d<0V逆变2,u ct=0V,u d=0V临界α=π2注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。
电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。
双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。
(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。
整流电路是一种把交流电源电压转换成所需的直流电压的电路。
AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。
采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。
2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。
2三相桥式全控整流及有源逆变电路实验报告

2三相桥式全控整流及有源逆变电路实验报告
一、实验目的
本次实验的目的是研究三相桥式全控整流及有源逆变电路的工作原理,探讨电路结构和特性,并对实际应用进行探究。
二、实验原理
三相桥式全控整流及有源逆变电路是自主控制全三相调制半桥型整流,并用PGL线圈构成有源逆变电路,将全桥式整流和有源等效件结合,组成的智能放大型结构无功补偿电路。
独特的PGL(Pulse Generator and Logic)系统控制全桥式整流,实现有效的三相调制,并给消耗功率的用电仪表供电。
三、实验装置
本次实验主要使用德国LreUro制造的三相桥式全控整流及有源逆变电路装置,包括输出及控制模块、专用电源模块和保护模块等。
四、实验步骤
1.根据实验原理,组装实验电路。
2.检查电路的丝印和引脚序号是否完整,如有损坏,可以用万用表检查是否符合等电位要求。
3.使用专用电源模块向实验电路供电,将调制输出和有源输出供给恒定电压和频率。
4.测量三相电压输出电流,检查三相等电压,检验实验电路正常工作。
五、实验结果
实验中得出结论:三相桥式全控整流及有源逆变电路能够形成正确的三相输出,具有较高的调制率,输出电压、电流稳定,实际负载能有效的调制,满足有效的实际需求,可以用于智能放大型补偿系统。
实验4 三相桥式全控整流及有源逆变电路实验

实验四三相桥式全控整流及有源逆变电路实验1.实验目的(1)了解三相全控桥式整流电路的工作原理,研究可控整流电路在电阻—电感性负载时的整流输出电压u d、电流i d、晶闸管承受的电压u VT的波形及工作情况。
(2)了解三相全控桥式有源逆变电路的工作原理,研究在不同的控制角时输出的电压电流波形。
2.实验设备及仪器(1) MCL-Ⅱ型电机控制教学实验台主控制屏;(2) MCL-18控制和检测单元及过流过压保护组件;(3) MCL-33触发电路及晶闸管主回路组件;(4)MEL-03三相可调电阻器组件(900Ω,0.41A);(5)MEL-05波形测试及开关板组件;(6)双踪示波器;(7)万用电表;3.注意事项(1) 整流电路与三相电源连接时,一定要注意相序;(2) 整流电路的负载电阻不宜过小,应使i d不超过0.8A,同时负载电阻不宜过大保证i d超过0.1A,避免晶闸管时断时续;(3) 正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
4.实验步骤1)按图接线,未上主电源之前,检查晶闸管的脉冲是否正常a.用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲。
b.检查相序,用示波器观察“1”“2”单脉冲观察孔,“1”脉冲超前“2”脉冲60°,则相序正确,否则,应调整输入电源。
c.用示波器观察每只晶闸管的控制极,阴极,应有幅值为1V—2V的脉冲。
=0时,触发脉冲滞后同步信号180︒d.调节MCL-33上锯齿波偏移电压,使Uct(即α=150︒)。
e.“交流电源输出调节”旋钮逆时针调到底,主回路串联电阻RP调至最大。
2) 研究三相桥式可控整流电路供电给阻感性负载时的工作情况:a) 将开关S 拨向左侧,接通主电源,顺时针旋转三相调压器,调节主控制屏输出电压UV U 、VW U 、WU U ,从0V 调至220V ;b) 将MCL-18组件上的开关S 1拨至正给定,S 2拨至给定;调节MCL —18上的脉冲移相电位器RP1旋钮,改变控制电压Uct ,观察在不同控制角α时的u d 、i d 、u VT 的波形;c) 记录α=30︒、α=60︒时u d 、i d 、u VT 的波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学电气信息学院实验报告书课程名称:电力电子技术实验项目: 三相全桥整流及有源逆变实验专业班组:电气工程及其自动化105班实验时间:2013年12月16日成绩评定:评阅教师:报告撰写: 学号:同组人员:学号:同组人员:学号:同组人员:学号:电气信息学院专业中心实验室目录一.实验内容1.1实验项目名称 (3)1.2实验完成目标 (3)1.3实验内容及已知条件 (3)二.实验环境2.1 主要设备仪器············································42.2小组人员分工············································5三.电路分析与仿真3.1基本电路 (5)3.2 电路仿真 (6)四.实验过程4.1连接三相整流桥及逆变回路································114.2 整流工作···············································114.3 逆变工作 (14)五.实验数据处理与分析5.1 实验数据与处理 (15)5.2误差分析················································ 16六.思考讨论与感悟6.1 实验思考题··············································166.2实验讨论题·············································· 176.3实验方案、结果可信度分析 (19)6.4 实验感悟 (1)9附件一.实验内容1.1实验名称三相全桥整流及有源逆变实验1.2实验完成目标波形;①观测分析整流状态下(阻性负载、阻-感性负载)ud,uVT②观测分析逆变状态下(阻-感性-反电动势负载)ud,u波形及逆变功率测量;VT1.3实验内容及已知条件①连接三相整流桥及逆变回路◆由三相隔离变压器(MCL-32)二次绕组接至三相降压变压器(MCL-35),输出三相电源(线电压约110~130v)作为三相变流桥的交流输入;◆由三相隔离变压器(MCL-32)二次绕组接至由二极管组成的三相不可控全波整流桥,作为逆变时负载回路的电动势源(大小恒定的电压源);◆由双刀双置开关构成整流和逆变选择回路(严禁主回路带电时切换此开关);◆约定整流、逆变临界控制点为Uct = 0,当Uct﹥0时,处于整流移相控制;Uct﹤0时处于逆变移相控制:②整流工作◆阻性负载测试:双置开关选择整流回路,负载电阻设定为最大(约450 ),加正给定电压。
1)观测并记录整流状态下α≈0O,60O,90O时ud、u波形(注意限制Id≤0.8VTA);2)α≈0O时封锁任1只晶闸管的脉冲信号,记录ud的波形及大小值;3)α≈0O时封锁任2只晶闸管的脉冲信号,记录ud的波形及大小值;(一次:共阴极组2只;一次:阴极阳极组各1只)◆阻-感(300Ω+700mH )负载测试:双置开关选择整流回路,观测并记录α=30O,90O时ud、u波形(注意限制Id≤0.8A);α= 0O时任意封VT锁1只和2只晶闸管的脉冲信号,记录ud的波形及大小值。
③逆变工作断掉主回路电源,将负载回路切换到逆变条件,注意逆变电动势源的直流极性。
◆选负给定信号,保持负载为(450Ω+700mH),再合上电源,观测逆变状态下β=60O,90O时ud,u波形;VT◆在恒定负载情况下(电阻450Ω,电感700mH,直流反电动势E基本恒定),在最大逆变移相范围内,测定电网实际吸收直流功率Pk = f (Ud)的函数曲线(不低于8组数据点)。
已知,三相全控桥电源回路输出端等效内阻Rn=26Ω。
思考:如何近似估算电网吸收的电功率?二.实验环境2.1主要设备仪器实验台:华纬MCL-Ⅲ型电力电子及电气传动教学实验台(浙江大学求是公司)图2-1实验台示波器:Tektronix TDS1012示波器(带宽:100MHZ最高采样频率:1GS/s)图2-2示波器数字万用表:图2-3 数字万用表2.2 小组人员分工1.实验阶段线路连接及检查:移相可调电位器及电阻的调节:数字万用表的操作及测量:示波器操作的及测量:数据记录及计算:2.报告撰写报告主体撰写:实验仿真:数据处理分析:特性曲线与拟合:思考题的整理:讨论内容整理:图片整理与使用:讨论与拓展思考:三.实验仿真3.1 基本电路图3-1三相全桥整流及有源逆变实验3.2 电路仿真如果按照所做电力电子实验的实际电路图进行仿真,则需要考虑电路中隔离变压器和三相降压变压器的作用,以及保证实验安全的吸收功率电阻的作用。
所绘出的电路图进行仿真时总会出现各种仿真错误或者出现波形不一致。
故我们组从原理上给予Multisim的电路图,以及我们查阅资料获得的相关Matlab 仿真的实验图。
图3-2仿真电路整流工作连接图图3-3仿真电路逆变工作连接图我们先对阻性负载测试进行仿真,参照图3-2仿真连接图。
记录整流状态下α≈0°,60°,90°时Ud,Uvt波形(注意限制Id≤0.8A);图3-4 α≈0°时Id,Ud,Uvt波形图3-5 α≈60°时Id,Ud,Uvt波形图3-6 α≈90°时Id,Ud,Uvt波形模拟α≈0°时封锁任1只晶闸管的脉冲信号,记录Id,Ud,Uvt波形,如图3-7所示; 模拟α≈0°时封锁任2只晶闸管的脉冲信号,记录Ud的波形(一次:共阴极组2只,如图3-8所示;一次:阴极阳极组各1只,如图3-9所示)。
图3-7 α≈0°时封锁任1只晶闸管Id,Ud,Uvt波形图3-8 α≈0°时封锁任2只阴阳晶闸管Id,Ud,Uvt波形图3-9α≈0°时封锁任一阴一阳晶闸管Id,Ud,Uvt波形接着我们进行阻-感(300+ 700mH )负载仿真:记录α=30°,90°时Id,Ud, Uvt波形。
图3-10 α=30°时Id,Ud, Uvt波形图3-11α=90°时Id,Ud, Uvt波形模拟α= 0O时任意封锁1只,和2只共阴极晶闸管以及一阴一阳晶闸管的脉冲信号,记录Ud的波形。
图3-12 α= 0O时任意封锁1只晶闸管Ud波形图3-13 α= 0O时封锁2只共阴极晶闸管Ud波形图3-14 α= 0O时封锁一阴一阳晶闸管Ud波形最后按照图3-3接线逆变工作电路,选负给定信号保持负载为(450Ω+700mH),模拟记录逆变状态下β=60°,90°时Id,Ud,Uvt波形。
图3-15逆变状态下β=60°时Id,Ud,Uvt波形图3-16 逆变状态下β=90°时Id,Ud,Uvt波形四.实验过程4.1连接三相整流桥及逆变回路由三相隔离变压器(MCL-32)二次绕组接至三相降压变压器(MCL-35),输出三相电源(线电压约110~130v)作为三相变流桥的交流输入;由三相隔离变压器(MCL-32)二次绕组接至由二极管组成的三相不可控全波整流桥,作为逆变时负载回路的电动势源(大小恒定的电压源);由双刀双置开关构成整流和逆变选择回路(严禁主回路带电时切换此开关);约定整流、逆变临界控制点为Uct = 0,当Uct﹥0时,处于整流移相控制;Uct﹤0时处于逆变移相控制;本次实验的线路连接在实验前已由指导老师完成,实验电路图如图3-1所示,实验过程中的实际接线图如图2-1所示。