2015年七年级下学期数学期中考试试卷
2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。
人教版数学七年级下学期《期中检测试卷》有答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
2015学年度第二学期初一数学期中试卷

--------------------------------装---------------订----------------线---------------------------------- O O OO(装 订 线 内 不 答题)O O O O△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△2015学年度第二学期 初一数学期中试卷考生注意:1.考试时间120分钟.2.全卷共三道大题,总分120分.一、填空题(每小题3分,满分30分)1、如果60m 表示向南走60m ,那么-40m 表示( )。
2、以小明家为起点,向东走为正,向西走为负。
如果小明从家走了30米,又走了-20米,这时小明离家的距离是( )米。
3、根据1.2×4=0.6×8,可以写成比例( )=( )。
4、6A=7B ,那么A :B = ( ):( )。
那么A 和B 成( )比例。
5、一幅图的比例尺是。
A 、B 两地相距140km ,画在这幅图上应是( )cm 。
6、一个零件长8毫米,画在设计图上是16厘米,这幅设计图的比例 尺是( )。
7、六年级同学排队做广播操,每行人数和排成的行数成( )比例;出油率一定,花生油的质量和花生的质量,成( )比例;3x = 2y , x 和y 成( )比例。
8、一个圆柱体的底面直径4分米,高0.5分米,它的侧面积是( )平方分米;它的表面积是( )平方分米;它的体积是( )立方分米。
9、一个圆柱形水池的内壁和底面都要抹上水泥,水池底面直径是4米,水池深15分米。
抹水泥的面积是( )平方米。
10、一个圆锥体与和它等底等高的圆柱体体积相差30立方厘米,这个圆锥体的体积是( )立方厘米。
二、单项选择题(每小题3分,满分30分)1、一包饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于( )克。
A 、155B 、150C 、145D 、160题号 一二三总分核分人 得分△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△O OO O (装 订 线 内 不答 题) O O O O --------------------------------装---------------订----------------线----------------------------------2、圆锥的底面半径扩大2倍,高扩大2倍,体积扩大( )倍。
2015学年第二学期期中考试七年级数学参考答案及评分标准

2015学年第二学期期中考试七年级数学试卷参考答案及评分说明参考答案及评分标准一、选择题:(每题3分,共12分) 1.C ; 2.B ; 3.D ; 4.C .二、填空题:(每题2分,共28分)三、简答题:(每题6分,共30分) 19.解:原式=12123+- (4分) 20.解:原式=221)12(-+- (4分) =2. (2分) =2-. (2分) 21.解:原式=)324(3-+- (4分) 22.解:原式=)3(32)3(3146-⨯-⨯÷ (2分)=321-. (2分) =16161÷ (2分) =38. (2分)23.解: 依题意得:)23(+m +)10(-m =0 (1分) 解得: m =2 (1分) 则: 3m +2=8 [或m -10=-8] (1分)6482= [或64)8(2=-] (1分)所以4643= (1分)答:这个数的立方根是4. (1分)24. (1) 作图、痕迹1分,字母1分; (2) 画图、字母1分;(3) 0 1分;(4) 42 2分.AB25.因为CD ∥EF (已知)所以∠F =∠BCD ( 两直线平行,同位角相等 ) (1分) 因为∠1=∠F (已知)所以 ∠1 = ∠BCD ( 等量代换 ) (3分) 所以 DE ∥ BF ( 内错角相等,两直线平行 ) (2分) 所以∠ADE =∠B ( 两直线平行,同位角相等 ). (1分)26.解:因为∠A =∠ABC=90° (已知)所以∠A +∠ABC=180°(等式性质) (2分) 所以AD ∥BC (同旁内角互补,两直线平行) (1分) 所以∠1=∠DBC (两直线平行,内错角相等) (1分) 因为∠1+∠BFE =180°(已知)所以∠DBC+∠BFE =180°(等量代换) (2分) 所以BD ∥EF (同旁内角互补,两直线平行). (2分)27.(1)解:∠1+∠2=∠3 (1分) 过点P 作PQ ∥1l (1分) 因为1l ∥2l (已知)所以PQ ∥2l (平行线的传递) (1分) 所以∠1=∠APQ , ∠2=∠ BPQ (两直线平行,内错角相等)(1分) 所以∠1+∠2=∠ BPQ +∠APQ =∠3 (等式性质). (1分)(其他解法参照给分)(2)解:∠1+∠3=∠2 (1分) 如图记∠4因为1l ∥2l (已知)所以∠2=∠4(两直线平行,同位角相等) (1分) 因为∠4=∠1+∠3(三角形一个外角等于和它不相邻的两个内角之和)(1分) 所以∠1+∠3=∠2 (等量代换).(其他解法参照给分)(3)∠2+∠4=180°+∠1+∠3. (2分)321 4 BP(第27题图2)2l 1l A。
2015-2016北师大七年级数学下期中试题4套

2015——2016学年度七年级第二学期期中考试数学试卷1考试时间90分钟;试卷总分100分 一、选择题(每题2分,共16分)1.下列计算正确的是 ( ) A.4442b b b =⋅ B. 633)(x x = C. a a a=÷910D. 2226)3(q p pq =-2.下列语句正确的是 ( ) A.过一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直 C.同位角相等 D.同角的余角相等3.计算3426)(2)2(a a -的结果是 ( ) A.0 B. 122a C 126a -. D. a -4.如图,将一个直角三角板和一把直尺如图所示放置,如果∠α=43°,则∠β的度数是 ( ) A.43° B.47° C.30° D.60°5.图(1)是一个长2m,宽为2n (m>n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是 ( )A. mn 2B. 2)(n m +C. 2)(n m -D. 22n m -6.已知,10=+b a 21=ab ,则22b a +的值为 ( )A.58B.79C.100D.1427.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m )关于时间t(min)的图象,那么符合小明行驶情况的大致图象是( )8.一个三角形的两条边长是6和10,则第三边长可能是 ( ) A.6 B.4 C.16 D. 17二、填空题(每小题2分,共16分)αβ(1)n m(2)D O s t CO s t B O s t A O st9.一种计算机每秒可做9104⨯次运算,它工作2105⨯s 可做运算次数是___________ (用科学记数法表示) 10.计算:015101010⨯÷- =_________ 11.计算:y y xy ÷+)3(=__________12.如图,AB 与CD 相交于点O ,∠AOD+∠BOC=280°,则∠AOC=__________12题图 13题图 15题图 16题图 13.如图,AC ⊥BC 于C,CD ⊥AB 于D,DE ⊥BC 于E,则表示点C 到AB 距离的线段是______,在△ADC 中,表示AD 边上高的线段是_________14.等腰△ABC 的顶角为x °,底角为y °,则y 与x 的关系式为______________ 15.如图,△ABC ≌△DEF,BE=4,AE=1,则DE 的长是______________16.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且△ABC 的面积是4cm 2,则阴影部分的面积等于______________cm 2 三、作图题(共4分)17.已知∠AOB 及一边上的点N (如图),请用尺规过点N 作OA 的平行线,不写作法,保留作图痕迹.四、计算题(18题12分,19题6分,共18分) 18.(1))3()2()21(2232xy y y y -⋅⋅÷-(2) )1032()103()102(253-⨯⋅⨯⋅⨯(3) 1221241232⨯- (4) )521()521()12(22-⋅+-+-x x x19.先化简,再求值:[]xy y x xy xy ÷+--+42)2)(2(22,其中x=10,y=251-E D B A CB E A DFO C D B A五、解答题(每小题6分,共12分) 20.一个角的余角比这个角的补角的31还小10°,求这个角(1) 写出y 与x 的关系式(2) 卖多少千克的苹果,可得14.5元?若卖出苹果10千克,则应得多少元?六、解答题(22题6分,23题8分,24、25各10分,共34分) 22.在下列空白处填上适当的内容:如图,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4. 可推出BC ∥EF 解:因为AB ∥DE 所以∠_____=∠_____(____________________________) 因为∠1=∠2,∠3=∠4 所以∠2=∠_____ (____________________________) 所以BC ∥EF(____________________________)23.如图,CD 是∠ECB 的平分线,∠ECB=50°,∠B=70°,DE ∥BC,求∠EDC 和∠BDC 的度数24.小华骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题: (1)小华家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小华骑车速度最快,最快的速度是多少米/分? (3)小华在书店停留了多少分钟?(4)本次上学途中,小华一共行驶了多少米?FED C A B 4321(5)如果小华到校后立刻以300米/分的匀速度回家,请在原图上画出小华回家所用时间与离家距离的关系图象25. 如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点O,根据下列条件,求出∠BOC的度数(1)已知∠ABC+∠ACB=100°,则∠BOC=(2)已知∠A=90°,求∠BOC的度数(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系AOC。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版

七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
重庆一中七年级(下)期中数学试卷

七年级(下)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.下列表情中是轴对称图形的是()A. B. C. D.2.计算2x2•(-3x)3的结果是()A. -18x5B. -54x5C. -54x6D. -18x63.三角形的两边长分别为2cm和8cm,第三边长为整数,这样的三角形共()A. 3个B. 4个C. 5个D. 无数个4.如图,直线a、b被直线c所截,a∥b,∠1=∠2,若∠4=65°,则∠3等于()A. 30°B. 50°C. 65°D. 115°5.已知a=4,b=-2,则代数式a2-b2+4b的值为()A. 3B. 2C. 5D. 46.在△ABC中,∠A:∠B:∠C=2:3:4,则△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 形状无法确定7.如图,∠B=∠C,AB=AC=4cm,D为AC的中点,则BE的长为()A. 1cmB. 1.5cmC. 2cmD. 2.5cm8.如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A. AB=AEB. BC=EDC. ∠C=∠DD. ∠B=∠E9.如图,OB、OC分别平分∠ABC与∠ACB,MN∥BC,若AB=38,AC=24,则△AMN的周长是()A. 62B. 66C. 75D. 7810.如图,表格列出了一项实验的统计数据中变量y与x之间的关系,试问下面的哪个cmA. y=x2B. y=2xC. y=x+15D.11.下列图形都是由两样大小的小圆圈按一定规律组成的,其中第①个图形中一共有7个小圆圈,第②个图形中一共有13个小圆圈,第③个图形中一共有21个小圆圈,…,按此规律排列,则第⑧个图形中小圆圈的个数为()A. 68B. 88C. 91D. 9312.关于多项式-3x2+6x+7的说法正确的是()A. 有最大值7B. 有最小值7C. 有最大值10D. 有最小值10二、填空题(本大题共8小题,共24.0分)13.水是由氢氧两种元索组成的,1个氢原子的直径为0.0000000012米,则该直径用科学记数法表示为______米.14.一个角的余角为75°,则这个角的补角为______.15.如图,要在湖两岸A,B两点之间修建一座观赏桥,由于条件限制,无法直接测量A、B两点间的距离,于是小明想出来这样一种做法:在AB的垂线BF上取两点C、D,使BC=CD,再定出BF的垂线DE,使A,C,E三点在一条直线上,这时测得DE=50米,则AB=_________米.16.若5x-3y-2=0,则25x÷23y=______.17.等腰三角形的一个内角为40°,则顶角的度数为______.18.若(x2-ax+b)(x+3)的积中,不含x的一次项和二次项,则a+b=______.19.如图,等腰△ABC中,AB=AC,∠BAC=45°,AD⊥BC于D.过C作CE⊥AB于E,交AD于H,EF⊥AC于F,交AD于G,连接BH.下列结论:①S△AEH:S△ACH=AE:AC;②EG∥BH;③AH=2CH;④AD=EF;⑤AC=CE+GE.其中正确的是______.20.如图,△ABC的面积为6,D、E分别是AC、AB上的点,AD=CD,AE:BE=2:1.连接BD、CE使其交于F点,连接AF并延长交BC于H.则四边形BEFH的面积为______.三、计算题(本大题共3小题,共28.0分)21.计算:(1)(2)(a+b)2-a(b-a)-2a222.先化简,再求值:[(x+2y)2+(2x-y)(2x+y)-(x-3y)(x-y)]÷x,其中x、y满足|x-3|+y2+4y+4=0.23.(1)已知x-y=2,xy=8,求x2+xy+y2的值;(2)已知m+n=6,求+(1-m)(1-n)的值.四、解答题(本大题共5小题,共50.0分)24.如图,点A、D、E、C在同一条直线上,AB=DE,AB∥DF,AC=DF,求证:BC=EF.25.重庆某景区在五一节假期迎来客流高峰,售票大厅需要长时间排队购票,经调查发现,售票大厅每天于售票前30分钟开门,自开门后,每分钟都有a名游客源源不断地涌入售票大厅排队购票,每个售票窗口每分钟出售门票3张.票开始时,只开了两个售票窗口,20分钟后,考虑到游客数量多,于是又新增了若干个窗口.已知排队等候购票的人数y(人)与开门时间x(分钟)之间的关系如图所示.(规定每人只购一张票)(1)求a的值;(2)求当x=80时,排队等候购票的游客人数.26.如图,△ABC中,AC=AB,点E为AB边上的中点,AD∥CB,且AD=CB,∠1=∠2.(1)若AB=10,求AH的长;(2)若F为DA延长线上一点,连接CF,使CF=AD-AF,求证:∠CFD=2∠2.27.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a1=1,第二个橄榄数为a2=121,第三个橄榄数为a3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式:1=121=12321=……根据以上材料,回答下列问题(1)11111112=______;将123454321变形为对称式:123454321=______.(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m,a n的各数位之和的差能被m-n整除(m=1,2…9,n=1,2…9,m>n)28.已知△ABC是边长为6cm的等边三角形,动点P、Q同时出发,分别在三角形的边或延长线上运动,他们的运动时间为t(s).(1)如图1,若P点由A向B运动,Q点由C向A运动,他们的速度都是1cm/s,连接PQ.则再次运动过程中,当PQ∥BC时,t的值是多少?请说明理由;(2)如图2,若P点由A向B运动,Q点由A出发,沿射线AC方向运动.当P 到达B点时,两点均停止运动.P的速度为1cm/s,Q的速度为4cm/s,连接PQ、BQ.当PQ=BQ时,t的值是多少?请说明理由;(3)如图1,P、Q两点分别由A、C出发后,都按逆时针方向沿△ABC的三边运动.P的速度为5cm/s,Q的速度为2cm/s.请问:经过几秒钟,点P与点Q第2018次在△ABC的哪条边上相遇?(直接写出答案)答案和解析1.【答案】C【解析】解:四个选项中,是轴对称图形的为故选:C.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是熟练掌握轴对称图形的概念.2.【答案】B【解析】解:原式=2x2•(-27x3)=-54x5,故选:B.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【答案】A【解析】解:设第三边的长为x,则8-2<x<8+2,所以6<x<10.∵x为整数,∴x可取7,8,9.故选:A.设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.4.【答案】B【解析】解:∵a∥b,∠4=65°,∴∠1=∠4=65°,∵∠1=∠2,∴∠2=65°,∴∠3=180°-∠1-∠2=50°,故选:B.先根据平行线的性质得出∠4=∠1,根据∠1的度数求出∠2的度数,根据平角的定义即可得到结论.本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【答案】D【解析】解:当a=4,b=-2时,原式=42-(-2)2+4×(-2)=16-4-8=4,故选:D.将a、b的值代入代数式,依据有理数的运算顺序计算可得.本题主要考查代数式的求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.6.【答案】A【解析】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°∴2x+3x+4x=180°∴x=20°∴∠A=40°,∠B=60°,∠C=80°∴△ABC是锐角三角形故选:A.由题意可设∠A=2x,∠B=3x,∠C=4x,由三角形内角和定理可列方程2x+3x+4x=180°,可求x的值,可求∠A=40°,∠B=60°,∠C=80°,即可求解.本题考查了三角形内角和定理,利用方程的思想解决问题是本题的关键.7.【答案】C【解析】解:在△ABD和△ACE中,∴△ABD≌△ACE(ASA),∴AE=AD,∵AC=4cm,D为AC的中点,∴AD=2cm,∴AE=2cm,∴BE=2cm,故选:C.利用ASA判定△ABD≌△ACE,根据全等三角形的性质可得AE=AD,再利用中点定义可得AD长,进而可得AE长,然后可得BE的长.此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.8.【答案】B【解析】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,A、加上条件AB=AE可利用SAS定理证明△ABC≌△AED;B、加上BC=ED不能证明△ABC≌△AED;C、加上∠C=∠D可利用ASA证明△ABC≌△AED;D、加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:B.由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.此题主要考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.【答案】A【解析】解:∵OB平分∠ABC,∴∠ABO=∠OBC,∵MN∥BC,∴∠OBC=BOM,∴∠ABO=∠BOM,∴BM=OM,同理可得CN=ON,∴△AMN的周长=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC,∵AB=38,AC=24,∴△AMN的周长=24+38=62.故选:A.根据角平分线的定义可得∠ABO=∠OBC,再根据两直线平行,内错角相等可得∠OBC=BOM,从而得到∠ABO=∠BOM,根据等角对等边的性质可得BM=OM,同理可得CN=ON,然后求出△AMN的周长=AB+AC,代入数据进行计算即可得解.本题考查了等腰三角形的判定与性质,主要利用了等角对等边的性质,两直线平行,内错角相等的性质,熟记性质是解题的关键.10.【答案】D【解析】解:从表格中可以看到x表示的量始终是y表示的量的2倍,∴y=x;故选:D.从表格中可以看到x表示的量始终是y表示的量的2倍,即可求表达式;本题考查变量之间的关系,函数的表示方法;能够通过表格观察出两个变量之间的倍数关系是解题的关键.11.【答案】C【解析】解:∵第①个图形中一共有7个小圆圈:7=1+2+3+1=6+1=3×2+12;第②个图形中一共有13个小圆圈:13=2+3+4+22=3×3+22;第③个图形中一共有21个小圆圈:21=3+4+5+32=3×4+32;…∴第n个图形中小圆圈的个数为:3(n+1)+n2;∴第⑧个图形中小圆圈的个数为:3×9+82=91;故选:C.由已知图形中小圆圈个数,知第n个图形中空心小圆圈个数为3(n+1)+n2,由此代入求得第⑧个图形中小圆圈的个数.此题考查规律型:图形的变化类,利用数形结合找出图形之间的联系,找出规律是解决问题的关键.12.【答案】C【解析】解:-3x2+6x+7=-3(x2-2x+1)+7+3=-3(x-1)2+10.因为(x-1)2≥0,所以-3(x-1)2≤0,所以-3(x-1)2+10≤10,所以多项式-3x2+6x+7的最大值是10.故选:C.利用配方法将-3x2+6x+7转化为两非负数和的性质,然后求最值.考查了配方法的应用和非负数的性质.配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.13.【答案】1.2×10-9【解析】解:0.0 000 000012=1.2×10-9.故答案是:1.2×10-9.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】165°【解析】解:90°+75°=165°.故答案为:165°.根据一个角的补角比它的余角大90°进行计算.本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【答案】50【解析】分析此题考查全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.由对顶角相等,两个直角相等及BD=CD,可以判断两个三角形全等;所以AB=DE=50米.解答解:根据题意可知∠B=∠D=90°,BC=CD,∠ACB=∠ECD∴△ABC≌△EDC(ASA)∴AB=DE=50米.故答案为:50.16.【答案】4【解析】解:∵5x-3y=2,∴原式=25x-3y=22=4,故答案为:4.根据同底数幂的运算法则即可求出答案.本题考查同底数幂的运算,解题的关键是熟练运用同底数幂的运算法则,本题属于基础题型.17.【答案】100°或40°【解析】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°-40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.已知等腰三角形的一个内角为40°,则这个角有可能是底角,也有可能是顶角,所以应该分情况进行分析,从而得到答案.此题主要考查等腰三角形的性质及三角形内角和定理的运用;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.18.【答案】12【解析】解:(x2-ax+b)(x+3)=x3+3x2-ax2-3ax+bx+3b=x3+(3-a)x2+(-3a+b)x+3b,∵(x2-ax+b)(x+3)的积中,不含x的一次项和二次项,∴3-a=0,-3a+b=0,解得:a=3,b=9,∴a+b=3+9=12,故答案为:12.先根据多项式乘以多项式法则展开,合并同类项,根据已知得出等式3-a=0,-3a+b=0,求出a、b即可.本题考查了多项式乘以多项式,能得出算式3-a=0,-3a+b=0是解此题的关键.19.【答案】①②⑤【解析】解:①作HM⊥AC于M,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∵CE⊥AB于E,∴HM=HE,∵S△AEH=AE×HE,S△ACH=AC×HM,∴S△AEH:S△ACH=AE:AC,①正确;②∵EF⊥AC于F,CE⊥AB于E,∠BAC=45°,∴△AEF和△ACE是等腰直角三角形,∠CEB=∠AEH=90°,∴∠AEF=45°,AF=EF,AE=CE,∴AF=CF,∵AB=AC,AD⊥BC于D,∴BD=CD,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴EH=EB,AH=CB,∴△BEH是等腰直角三角形,∴EH=BE,∠EBH=45°=∠AEF,∴EG∥BH,②正确;∴AH=2BD≠2CH,③不正确;④∵AC=2AF=2EF,∴AC=EF,∵AC>AD,∴AD≠EF,④不正确;⑤∵AD平分∠BAC,∴∠BAD=22.5°,∴∠EGH=22.5°+45°=67.5°,∠EHG=90°-22.5°=67.5°,∴∠EGH=∠EHG,∴GE=EH=BE,∴AC=AB=AE+BE=CE+GE,⑤正确;正确的是①②⑤;故答案为:①②⑤.①作HM⊥AC于M,由角平分线的性质得出HM=HE,由三角形面积公式即可得出①正确;②证明△AEF和△ACE是等腰直角三角形,得出∠AEF=45°,AF=EF,AE=CE,证明△AEH≌△CEB得出EH=EB,AH=CB,得出△BEH是等腰直角三角形,得出EH=BE,∠EBH=45°=∠AEF,证出EG∥BH,②正确;③由AH=CB,得出AH=2BD≠2CH,③不正确;④由AC=2AF=2EF,得出AC=EF,得出AD≠EF,④不正确;⑤证出∠EGH=∠EHG,得出GE=EH=BE,得出AC=AB=AE+BE=CE+GE,⑤正确;即可得出结论.本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定、平行线的判定等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.20.【答案】1【解析】解:如图,作DJ∥EC交AB于J,交AH于K,作DG∥BC交AH于G.∵DJ∥EC,AD=DC,∴AJ=JE,AK=KF,∴EF=2JK,DJ=2EF,CF=2DK,设JK=m,则EF=2m,DJ=4m,DK=3m,CF=6m,∴EF:CF=1:3,∵AE=2BE,∴BE=EJ,∵EF∥DJ,∴BF=DF,∵GD∥BH,∴∠GDF=∠FBH,∵∠GFD=∠HFB,BF=DF,∴△DFG≌△BFH(ASA),∵DG∥CH,AD=DC,∴AG=GH,∴CH=2DG,∴BH=2CH,∵BE=AB,∴S△BEC=S△ABC=6=2,∵EG=EC,∴S△BEF=S△BEC=,S△BFC=,∵BH=BC,∴S△BHF=×=,∴S四边形BEFH=+=1.故答案为1.如图,作DJ∥EC交AB于J,交AH于K,作DG∥BC交AH于G.想办法证明EF:FC=1:3,BH:CH=1:2,求出△BEF,△BFH的面积即可.本题考查三角形的面积,平行线的性质,等高模型等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.21.【答案】解:(1)原式=-1-+×1=+=;(2)原式=a2+2ab+b2-ab-a2-2a2=-2a2+ab+b2;【解析】(1)根据实数的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.22.【答案】解:原式=(x2+4xy+4y2+4x2-y2-x2+4xy-3y2)÷x=(4x2+8xy)÷x=4x+2y,由|x-3|+y2+4y+4=|x-3|+(y+2)2=0,得到x=3,y=-2,则原式=12-4=8.【解析】原式中括号中利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,合并后再利用多项式除以单项式法则计算得到最简结果,已知等式变形后,利用非负数的性质求出x与y的值,代入计算即可求出值.此题考查了整式的混合运算-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)原式=x2-2xy+y2+3xy=(x-y)2+3xy当x-y=2,xy=8时,=28;(2)原式=+1-(m+n)+mn=+1-(m+n)=+1-(m+n)当m+n=6时,原式=18+1-8=11.【解析】(1)根据完全平方公式即可求出答案.(2)根据完全平方公式以及整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【答案】证明:∵AB∥DF∴∠A=∠FDE,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)∴BC=EF【解析】由“SAS”可证△ABC≌△DEF,可得BC=EF.本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.25.【答案】解:(1)由题意可得,50a-20×3×2=280,解得,a=8,即a的值是8;(2)当50≤x≤104时,设y与x的函数关系式为y=kx+b,,得,即当50≤x≤104时,y与x的函数关系式为y=-4x+480,当x=80时,y=-4×80+480=160,答:当x=80时,排队等候购票的游客有160人.【解析】(1)根据题意和函数图象中的数据可以求得a的值;(2)根据函数图象中的数据可以求得当50≤x≤104时y与x的函数关系式,然后将x=80代入函数解析式中即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.【答案】解:(1)∵点E为AB边上的中点,AB=10∴AE=BE=5∵AB=AC∴∠B=∠ACB,∵AD∥BC∴∠DAC=∠BCA=∠CBA,且∠1=∠2,AD=BC∴AH=BE=5(2)如图,连接FE,并延长FE交BC于点M,∵AD∥BC∴∠BAF=∠B,∠AFE=∠BME,且AE=BE∴△AFE≌△BME(AAS)∴EF=ME,AF=BM∵△ADH≌△BCE∴AD=BC∵CF=AD-AF,∴CF=BC-BM=CM且EF=ME∴∠2=∠FCE∴∠FCB=2∠2∵AD∥BC∴∠CFD=∠FCB=2∠2【解析】(1)由“ASA”可证△ADH≌△BCE,可得AH=BE=AB=5;(2)连接FE,并延长FE交BC于点M,由“AAS”可证△AFE≌△BME,可得EF=EM,由等腰三角形的性质和平行线的性质可得∠CFD=2∠2.本题考查了全等三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.27.【答案】1234567654321【解析】解:(1)根据题中给出的定义,直接可得:11111112=1234567654321,123454321=;故答案为1234567654321,;(2)设十位数字是x,个位数字是y,x>y,10x+y+10y+x=11(x+y)=121,∴x+y=11,∴这个两位数是65,74,83,92;(3)a m的各数位之和1+2+3+…+m+(m-1)+…+2+1==m2,a n的各数位之和1+2+3+…+m+(m-1)+…+2+1==n2,∴a m,a n的各数位之和的差为m2-n2=(m+n)(m-n),∵m>n,∴任意两个橄榄数a m,a n的各数位之和的差能被m-n整除.(1)根据题中给出的定义,直接可得:(2)设十位数字是x,个位数字是y,根据题意得到x+y=11,进而确定两位数;(3)根据数的规律求得a m的各数位之和m2,a n的各数位之和n2,然后因式分解证明结论;本题考查新定义,字母表示数,自然数求和,因式分解;能够理解定义,熟练掌握因式分解,自然数求和方法是解题的关键.28.【答案】解:(1)由题意可知:AP=t,CQ=t,BP=6-t,当PQ∥BC时,则有BP=CQ,∴6-t=t,解得:t=3,即当PQ∥BC时,t=3s;(2)作QM⊥BP于M,如图2所示:由题意得:AP=t,AQ=4t,则BP=6-t,∵PQ=BQ,∴PM=BM=BP=3-t,∴AM=t+3-t=t+3,∵△ABC是等边三角形,∴∠A=60°,∴∠AQM=30°,∴MQ=2AM,∴4t=2(t+3),解得:t=2,即当PQ=BQ时,t的值2s;(3)因为V P>V Q,只能是点P追上点Q,即点P比点Q多走2017倍的△ABC的周长和AB+BC的路程之和时,点P与点Q第2018次在△ABC边上相遇,设经过x秒后P与Q第2018次相遇,依题意得:5x-2x=2017×18+12,解得:x=12106(秒),∴P点共运动的长度为:12106×5=60530(cm),60530÷18=3362……14,即点P从点A绕△ABC3362圈后余14cm,∴在AC边上相遇;综上所述,经过12106秒钟,点P与点Q第2018次在△ABC的AC边上相遇.【解析】(1)由题意可知AP=t,CQ=t,当PQ∥BC时,则有BP=CQ,即6-t=t,即可得出结果;(2)作QM⊥BP于M,由题意得:AP=t,AQ=4t,则BP=6-t,由等腰三角形的性质得出PM=BM=BP=3-t,得出AM=t+3,由等边三角形的性质得出∠A=60°,得出∠AQM=30°,由直角三角形的性质得出MQ=2AM,得出方程,解方程即可;(3)由题意V P>V Q,只能是点P追上点Q,即点P比点Q多走2017倍的△ABC的周长和AB+BC的路程之和时,点P与点Q第2018次在△ABC边上相遇,设经过x秒后P求出P点共运动的长度为:12106×5=60530(cm),除以18即可得出结果.本题是三角形综合题目,考查了等边三角形的性质、等腰三角形的性质、平行线的性质、直角三角形的性质、列一元一次方程以及一元一次方程的解法等知识;本题综合性强,熟练掌握等腰三角形的性质是解题关键.。
最新华东师大版七年级数学下册各章综合测验及期中期末试卷(精选配套习题,含答案)

华东师大版七年级数学下册习题第六章一元一次方程 (1)第七章一次方程组 (9)第八章一元一次不等式 (16)第九章多边形 (23)第十章轴对称、平移与旋转 (31)期中试卷 (39)期末测试 (46)第六章一元一次方程一、选择题(每小题3分,共30分)1.下列是一元一次方程的是( )A.8+72=2×40 B.9x=3x-8C.5y-3 D.x2+x-1=02.解方程x-13-4-x2=1时,去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=6 3.研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:①去括号,得1+8x-12=5x-1-3x;②移项,得8x-5x+3x=-1-1+12;③合并同类项,得6x=10;④未知数系数化为1,得x=5 3 .对于上面的解法,你认为( )A.完全正确 B.变形错误的是①C.变形错误的是② D.变形错误的是③4.当x=3时,下列方程成立的个数有( )①-2x-6=0;②|x+2|=5;③(x-3)(x-1)=0;④13x=x-2.A.1个 B.2个 C.3个 D.4个5.已知关于x的方程2x+m-8=0的解是x=3,则m的值为( ) A.2 B.3 C.4 D.56.单项式3a3b2x与-13b4(x-12)a3是同类项,那么x的值是( )A.-1 B.1 C.-14D.147.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于正方体的重量的个数为( )A.2个 B.3个 C.4个 D.5个8.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( ) A.54+x=80%×108 B.54+x=80%(108-x)C.54-x=80%(108+x) D.108-x=80%(54+x)9.将x0.5-10.7=1变形为10x5=1-107,其错在( )A.不应将分子、分母同时扩大10倍 B.移项未改变符号C.去括号出现错误 D.以上都不是10.小明需要在规定时间内从家里赶到学校,若每小时走5千米,可早到20分钟;若每小时走4千米,就迟到15分钟.设规定的时间为x小时,则可列方程为( )A.5(x-2060)=4(x+1560) B.5(x+2060)=4(x-1560)C.5(x-1560)=4(x+2060) D.5(x+1560)=4(x+2060)二、填空题(每小题3分,共15分)11.若2x=-5x+3,则2x+___=3,依据是.12.当x =____时,代数式3x -28的值是2. 13.已知x =4是关于x 的一元一次方程(即x 为未知数)3a -x =x2+3的解,则a =____.14.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为____元.15.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇……以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转____周,时针和分针第一次相遇.三、解答题(共75分) 16.(8分)解下列方程:(1)x 2-7=5+x; (2)x -32-2x +13=1.17.(9分)截至2020年底,某省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?18.(9分)已知关于x的方程4x+2m-1=3x的解比关于x的方程3x+2m =6x+1的解大4,求m的值及这两个方程的解.19.(9分)已知小明骑车和步行的速度分别为240米/分钟,60米/分钟,小红每次从家步行到学校所需时间相同,请你根据小红和小明的对话内容(如图),求小明从家到学校的路程和小红从家步行到学校所需的时间.20.(9分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.21.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?22.(10分)某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,甲队单独完成该项工程需20天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独做,每天各可完成多少工作量?单独完成这项工程乙需要多少天?(2)若工程管理部门决定从这两个队中选一个单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7·化为分数形式.由于0.7·=0.777……,设x =0.777……①, 则10x =7.777……②,②-①得9x =7,解得x =79,于是得0.7·=79.同理可得0.3·=39=13,1.4·=1+0.4·=1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】(1)0.5·=________,5.8·=________;(2)将0.2·3·化为分数形式,写出推导过程; 【能力提升】(3)0.3·15·=________,2.01·8·=________;(注:0.3·15·=0.315315……,2.01·8·=2.01818……) 【探索发现】(4)①试比较0.9·与1的大小:0.9·________1;(填“>”“<”或“=”)②若已知0.2·85714·=27,则3.7·14285·=________.(注:0.2·85714·=0.285714285714……)答案选择题:1-5:BCBCA 6-10:BDBBA 填空题:11._5x 等式的性质 12. 6 13.3 14.415. 1211 解答题16..(1)x =-24 (2)x =-1717. 解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个,根据题意,得10+x +5+x =49,解得x =17,∴x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个18. 解:m =-1,第一个方程的解是x =3,第二个方程的解是x =-1 19. 解:设小红从家步行到学校所需时间为x 分钟,则小明从家步行到学校需(x +2)分钟,小明从家到学校骑车需(x -4)分钟,则240×(x -4)=60×(x +2),解得x =6,∴小明从家到学校的路程为240×(6-4)=480(米),小红从家步行到学校需6分钟20. 解:(1)设成人人数为x 人,则学生人数为(12-x)人.根据题意,得35x +352(12-x)=350.解得x =8.所以学生人数为12-8=4(人),成人人数为8人 (2)如果买团体票,按16人计算,共需费用:35×0.6×16=336(元).336<350,所以购团体票更省钱21. 解:(1)∵裁剪时x 张用A 方法,∴裁剪时(19-x)张用B 方法.∴侧面的个数为6x +4(19-x)=(2x +76)个,底面的个数为:5(19-x)=(95-5x)个 (2)由题意,得2(2x +76)=3(95-5x),解得x =7,∴盒子的个数为2×7+763=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子22. 解:(1)甲的工作量为120,由题意得乙每天完成的工作量为112-120=130,∴乙单独完成的天数为1÷130=30(天),∴甲、乙两队单独做,每天完成的工作量分别为120,130;单独完成这项工程乙需要30天 (2)设乙队每天的工程费用为x 元,则甲队的费用为(x +150)元,∴12x +12(x +150)=13 800, 解得x =500,x +150=650(元),甲单独完成所需费用为20×650=13 000(元),乙单独完成所需费用为30×500=15 000(元),故从节约资金的角度考虑,应选择甲工程队23. 解:(1)由题意知0.5·=59,5.8·=5+89=539,故答案为:59 539(2)0.2·3·=0.232323……,设x =0.232323……①,则100x =23.2323……②,②-①,得99x =23,解得x =2399,∴0.2·3·=2399(3)同理,0.3·15·=315999=35111,2.01·8·=2+110×1899=11155,故答案为:55111 11155(4)①0.9·=99=1,故答案为:= ②3.7·14285·=3+714285999999=3+57=267.故答案为:267第七章 一次方程组一、选择题(每小题3分,共30分)1.已知2x -3y =1,用含x 的代数式表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x2.方程组⎩⎨⎧3x +2y =7①,4x -y =13②,下列变形正确的是( )A .①×2-②消去xB .①-②×2消去yC .①×2+②消去xD .①+②×2消去y 3.方程组⎩⎨⎧x -y =3,3x -8y =14的解为( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2C.⎩⎨⎧x =-2y =1D.⎩⎨⎧x =2y =-14.已知有理数x ,y 满足|x +6y -7|+6x +y =0,则x +y 的值是( ) A .1 B.32 C.52D .35.二元一次方程3x +y =10在正整数范围内解的组数是( )A .1B .2C .3D .46.已知⎩⎨⎧x =3,y =2是二元一次方程组⎩⎨⎧ax +by =5,ax -by =1的解,则b -a 的值为( )A .0B .1C .2D .37.如果方程组⎩⎨⎧4x +3y =7,kx +(k -1)y =3的解x ,y 的值相等,则k 的值为( )A .2B .0C .1D .-28.对于有理数x ,定义f (x )=ax +b ,若f (0)=3,f (-1)=2,则f (2)的值为( )A .5B .4C .3D .1 9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A.⎩⎨⎧11x =9y (10y +x )-(8x +y )=13B.⎩⎨⎧10y +x =8x +y 9x +13=11yC.⎩⎨⎧9x =11y (8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y (10y +x )-(8x +y )=13 10.阅读理解:a ,b ,c ,d 是实数,我们把符号⎪⎪⎪⎪⎪⎪a b c d 称为2×2阶行列式,并且规定:⎪⎪⎪⎪⎪⎪ab cd =a ×d -b ×c ,例如:⎪⎪⎪⎪⎪⎪3 2-1 -2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解可以利用2×2阶行列式表示为⎩⎪⎨⎪⎧⎪⎪⎪⎪x =D xD y =D yD ;其中D =⎪⎪⎪⎪⎪⎪a 1 b 1a 2b 2,D x =⎪⎪⎪⎪⎪⎪c 1 b 1c 2 b 2,D y =⎪⎪⎪⎪⎪⎪a 1 c 1a 2 c 2. 问题:对于用上面的方法解二元一次方程组⎩⎨⎧2x +y =1,3x -2y =12时,下面说法错误的是( )A .D =⎪⎪⎪⎪⎪⎪2 13 -2=-7 B .D x =-14C .D y =27 D .方程组的解为⎩⎨⎧x =2y =-3二、填空题(每小题3分,共15分)11.若关于x ,y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3,y =2,则a =____.12.若二元一次方程组⎩⎨⎧x +y =3,3x -5y =4的解为⎩⎨⎧x =a ,y =b ,则a -b =____.13.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知一束鲜花的价格是____元.14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为___.15.若关于x ,y 的二元一次方程组⎩⎨⎧3x -my =5,2x +ny =6的解是⎩⎨⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎨⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是____. 三、解答题(共75分)16.(8分)解方程组:(1)⎩⎨⎧x +y =1,4x +y =10; (2)⎩⎪⎨⎪⎧x +32+y +53=6,x -43+2y -35=23.17.(9分)已知a +b =9,a -b =1,求2(a 2-b 2)-ab 的值.18.(9分)用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2.②时,两位同学的解法如下: 解法一:由①-②,得3x =3.解法二:由②得,3x +(x -3y)=2,③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x -2y =4,ax +by =7与⎩⎨⎧2ax -3by =19,5y -x =3有相同的解,求a ,b 的值.20.(9分)当m 为何值时,方程组⎩⎨⎧3x +2y =m ,2x -y =2m +1的解x ,y 满足x -y =2?并求出此方程组的解.21.(10分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?22.(10分)随着中国传统节日“端午节”的临近,商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?23.(11分)为庆祝六一儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛,请你为两所学校设计一种最省钱的购买服装方案.答案选择1-5:CDDAC6-10:AAADC填空:11.412. 7413.1514. ⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =17415.⎩⎪⎨⎪⎧a =32,b =-12解答题16. (1)解:⎩⎨⎧x =3,y =-2 (2)解:⎩⎨⎧x =3,y =417. 解:-218. 解:(1)解法一中的解题过程有错误,由①-②,得3x =3“×”,应为由①-②,得-3x =3 (2)由①-②,得-3x =3,解得x =-1,把x =-1代入①,得-1-3y =5,解得y =-2.故原方程组的解是⎩⎨⎧x =-1,y =-219. 解:a =4,b =-120. 解:m =1,x =1,y =-121. 解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得⎩⎨⎧x =45y +15,x =60(y -1),解得⎩⎨⎧x =240,y =5.答:这批学生有240人,原计划租用45座客车5辆 (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6(辆),所需费用为220×6=1320(元),租60座客车需要5-1=4(辆),所需费用为300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算22. 解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得⎩⎨⎧6x +3y =600,50×0.8x +40×0.75y =5200,解得⎩⎨⎧x =40,y =120.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元 (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元23. 解:(1)5 000-92×40=1 320(元) (2)设甲、乙两所学校各有x 名,y 名学生准备参加演出,则⎩⎨⎧x +y =92,50x +60y =5 000,解得⎩⎨⎧x =52,y =40 (3)∵甲校有10人不能参加演出,∴甲校有52-10=42(人)参加演出,若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买可以节约(42+40)×60-4 100=820(元),但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元可节约4 100-3 640=460(元),因此,最省钱的购买方案是两校联合购买91套服装(即比实际人数多购买9套)第八章 一元一次不等式一、选择题(每小题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m -2<n -2 B.m 4>n4C .6m <6nD .-8m >-8n 2.不等式3x -6≥0的解集在数轴上表示正确的是( )3.不等式组⎩⎨⎧x +1>0,2x -6≤0的解集在数轴上表示正确的是( )4.不等式组⎩⎨⎧1-2x <3,x +12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .25.已知(x -2)2+|2x -3y -m |=0中,y 为正数,则m 的取值范围是( )A .m <2B .m <3C .m <4D .m <56.在解不等式1-x 3<3x -22时,其中错误的一步是( ) ①去分母,得2(1-x )<3(3x -2);②去括号,得2-2x <9x -6;③移项,得-2x -9x <-6-2;④合并同类项,得-11x <-8;⑤系数化为1,得x <811. A .① B .② C .③ D .⑤7.不等式14(2x +m )>1的解集是x >3,则m 的值为( ) A .-2 B .-12 C .2 D.128.若关于x 的一元一次不等式组⎩⎨⎧6-3(x +1)<x -9,x -m >-1的解集是x >3,则m 的取值范围是( )A .m >4B .m ≥4C .m <4D .m ≤49.某商店老板销售一种商品,他要以不低于进价120%的价格出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店老板才肯出售( )A .80元B .100元C .120元D .160元10.某种饮料原零售价为每瓶6元,凡购买2瓶以上(含2瓶),超市推出两种优惠销售方法:第一种:第一瓶按原价,其余按原价的七折出售;第二种:全部按原价的八折出售.购买相同数量饮料的情况下,要使第一种销售方法比第二种销售方法的优惠多,至少要购买这种饮料( )A .3瓶B .4瓶C .5瓶D .6瓶二、填空题(每小题3分,共15分)11.用不等号填空:若a <b <0,则-a 5___-b 5;2a -1___2b -1. 12.不等式组⎩⎨⎧2(x +1)>5x -7,43x +3>1-23x的解集为____. 13.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打__8__折.14.若关于x 的一元一次不等式组⎩⎨⎧3-2x >2,x -a >0有3个整数解,则a 的取值范围是____.15.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x -1的所有解,其所有解为___.三、解答题(75分)16.(8分)解下列不等式(组),并把不等式(组)的解集在数轴上表示出来.(1)3x -22≤2; (2)⎩⎨⎧3x -5≤1①,13-x 3<4x ②.17.(9分)解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.18.(9分)已知不等式5(x -3)-2(x -1)>2.(1)求该不等式的解集;(2)若不等式的最小整数解与m 的值相等,求代数式m -1m +1的值.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x +2y =m +1,2x +y =m -1,当m 为何值时,x >y?20.(9分)已知方程组⎩⎨⎧x +y =-7-a ,x -y =1+3a的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?21.(10分)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.22.(10分)某市继2019年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?23.(11分)为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?答案选择题1—5:BBCCC 6-10:DADCB 填空题11. > ; < 12. -1<x <3 13. 814. -3≤x <-2 15. _x =0.5或x =116. (1)解:x ≤2(2)解:1<x ≤2 在数轴上表示解集略17. 解:解不等式12(x +1)≤2,得x ≤3,解不等式x +22≥x +33,得x ≥0,则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=618. 解:(1)x >5 (2)5719. 解:用含m 的代数式分别表示x ,y ,得x =m -3,y =-m +5,因为x>y ,所以m -3>-m +5,解此不等式,得m>4,所以当m>4时,x>y20. 解:(1)解方程组,得⎩⎨⎧x =-3+a ,y =-4-2a ,根据题意,得⎩⎨⎧-3+a ≤0,-4-2a<0,解不等式组,得-2<a ≤3 (2)当-2<a ≤3时,|a -3|+|a +2|=3-a +a +2=5 (3)解不等式(2a +1)x>2a +1,根据题意,得2a +1<0,解得a<-12,所以a 的取值范围为-2<a <-12,又∵a 为整数,∴a =-121. 解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得⎩⎨⎧2x +y =55,x +3y =65,解得⎩⎨⎧x =20,y =15,答:A 种商品的单价为20元,B 种商品的单价为15元 (2)设第三次购买商品A 种a 件,则购买B 种商品(12-a)件,根据题意可得a ≥2(12-a),解得8≤a ≤12,第三次购买这两种商品的总费用为20a +15(12-a)=(5a +180)元,当a =8时所花钱数最少,即购买A 商品8件,B 商品4件22. 解:(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意,得2x +3×3x =550,解得x =50,经检验,x =50符合题意,∴3x =150(元),即温馨提示牌和垃圾箱的单价分别是50元和150元 (2)设购买温馨提示牌y 个(y 为正整数),则垃圾箱为(100-y)个,根据题意得⎩⎨⎧100-y ≥48,50y +150(100-y )≤10000,∴50≤y ≤52,∵y 为正整数,∴y 为50,51,52,共3种方案;即温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,购买温馨提示牌和垃圾箱的总费用为50y +150(100-y)=-100y +15000,当y =52时,所需资金最少,最少是9800元23. 解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得⎩⎨⎧15x +9y =57000,10x +16y =68000,解得⎩⎨⎧x =2000,y =3000,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元 (2)设m 人清理养鱼网箱,则(40-m)人清理捕鱼网箱,根据题意,得⎩⎨⎧2000m +3000(40-m )≤102000,m <40-m 解得18≤m <20,∵m 为整数,∴m =18或m =19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱第九章多边形一、选择题(每小题3分,共30分)1.一个五边形的内角和为( )A.540° B.450° C.360° D.180°2.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,53.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为( )A.54° B.62° C.64° D.74°4.一副分别含有30°和45°角的两个直角三角板,拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( ) A.15° B.25° C.30° D.10°5.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )A.15° B.20° C.25° D.30°6.从一个n边形的一个顶点出发,分别连结这个顶点与其余的各顶点,若把这个多边形分割成6个小三角形,则n的值是( )A.6 B.7 C.8 D.97.幼儿园的小朋友们打算选择一种形状、大小都相同的多边形塑料板铺活动室的地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑料板:①正三角形;②正四边形;③正五边形;④正六边形;⑤正八边形.可以选择的是( )A.③④⑤ B.①②④ C.①④ D.①③④⑤8.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90° B.180° C.210° D.270°9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A.γ=2α+β B.γ=α+2βC.γ=α+β D.γ=180°-α-β10.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A.13 B.14 C.15 D.16二、填空题(每小题3分,共15分)11.一个多边形的每一个外角都是36°,则这个多边形的边数是____.12.求图中∠1的度数:(1)∠1=____;(2)∠1=____;(3)∠1=____.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是____.14.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小的内角的度数为____.15.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=___.三、解答题(共75分)16.(8分)如图,已知∠A=20°,∠B=27°,AC⊥DE.求∠1,∠D度数.17.(9分)如图,△ABC中,∠ABC∶∠C=5∶7,∠C比∠A大10°,BD是△ABC的高,求∠A与∠CBD的度数.18.(9分)如图,将△ABC沿EF折叠,使点C落在点C′处,试探究∠1,∠2与∠C的关系.19.(9分)小明在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?20.(9分)如图,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD ⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.(10分)已知△ABC.(1)如图①,∠BAC和∠ACB的平分线交于点I,∠BAC=50°,∠ACB=70°,求∠AIC的度数.(2)如图②,△ABC的外角∠CAE的平分线的反延长线与∠ACB的平分线交于点O,则∠O和∠B有什么数量关系?说明你的理由.23.(11分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图①,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB.∴∠1+∠2=12(∠ABC+∠ACB).又∵∠ABC+∠ACB=180°-∠A,∴∠1+∠2=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A.探究2:如图②中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图③中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:________.答案选择题1-5:ACCAB6-10:CBBAB填空题11. 1012. (1)∠1=62°;(2)∠1=23°;(3)∠1=105°13. 40°14. 30°15. 72°16. 解:∠1=110°,∠D=43°17. 解:设∠ABC=(5x)°,∠C=(7x)°,则∠A=(7x-10)°.由∠A+∠ABC +∠C=180°,得5x+7x+7x-10=180.解得x=10.∴∠ABC=50°,∠C=70°,∠A=60°.∵BD是△ABC的高,∴∠BDC=90°.∴∠CBD=90°-∠C=90°-70°=20°18. 解:根据翻折的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE,则∠1+2∠CEF =180°,∠2+2∠EFC=180°,所以∠1+∠2+2∠CEF+2∠EFC=360°,而∠C+∠CEF+∠CFE=180°,所以∠1+∠2+2(180°-∠C)=360°,所以∠1+∠2=2∠C19. 解:设此多边形的边数为n,则由题意,得0<(n-2)×180-1125<180,解得8.25<n<9.25,所以n=9, 少加的一个内角为1260°-1125°=135°20. 解:∵∠A=40°,∠B=72°,∴∠ACB=180°-40°-72°=68°,∵CE 平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°21. 解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F =∠CEB=25°22. 解:∵AI平分∠BAC,∴∠IAC=12∠BAC,∵CI平分∠BCA,∴∠ICA=12∠BCA,∵∠BAC=50°,∠ACB=70°,∴∠IAC=25°,∠ICA=35°,∴∠AIC=180°-25°-35°=120°(2)∠B=2∠O,理由:∵CO平分∠ACB,∴∠ACO=1 2∠ACB,∵AD平分∠EAC,∴∠DAC=12∠EAC,∵∠O+∠ACO=∠DAC,∴2∠O+∠ACB=∠EAC,又∵∠B+∠ACB=∠EAC,∴∠B=2∠O23. 解:(1)探究2结论:∠BOC=12∠A,理由如下:如图∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=12∠ABC,∠2=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=12(∠A+∠ABC)=12∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2-∠1=12∠A+∠1-∠1=12∠A(2)探究3:∠OBC =12(∠A +∠ACB),∠OCB =12(∠A +∠ABC),∠BOC =180°-∠OBC -∠OCB =180°-12(∠A +∠ACB)-12(∠A +∠ABC)=180°-12∠A-12(∠A +∠ABC +∠ACB)=90°-12∠A ,∴结论:∠BOC =90°-12∠A第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年七年级下学期数学期中考试试卷
一、选择题
1、如果是二元一次方程mx+y =3的一个解,则m的值是( )
A.-2
B.2
C.-1
D.1
2、下面列出的不等关系中,正确的是()
A、“x与6的和大于9”可表示为x+6>9
B、“x不大于6”可表示为x<6
C、“a是正数”可表示为a<0
D、“x的3倍与7的差是非负数”可表示为3x—7>0
3、已知多项式的积中不含x2项,则m的值是 ( )
A.-2
B.-1
C.1
D.2
4、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组( )
A. B. C. D.
5、如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),观察图案及以下关系式:①x-y=n;② ;③x2-y2=mn;④ .其中正确的关系式的个数有( )
A.1个
B.2个
C.3个
D.4个
6、在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“ ”.如记, ;
已知,则m的值是 ( )
A. 40
B.- 70
C.- 40
D.- 20
二、填空题(本大题共有10个空格,每个空格3分,共30分.)
9、给出下列表达式:①a(b+c)=ab+ ac;②-2<0;③x≠5;④2a>b+1;⑤x2-2xy+y2;⑥2x-3>6,其中不等式的个数是_____.
10、已知方程是二元一次方程,则mn=_____
11、若是一个完全平方式,则m的值是_____.
12、已知,则的值为_____
13、若x2-5x+m=(x-2)(x-n),则m+n=_____.
14. a、b、c是△ABC的三边长,其中a、b满足a2+b2-4a-6b+13=0,则△ABC中最大边c的取值范围是_____.
15、若x<-3,则2+|3+x|的值是_____.
16、如图,两个正方形边长分别为a、b,如果a+b=10,ab=20,则阴影部分的面积为_____.
17、已知,如果x与y互为相反数,则k=_____.
18、数学家发明了一个魔术盒,当任意数对进入其中时,会得到一个新的数: .现将数对放入其中得到数,再将数对放入其中后,如果最后得到的数是__ ___.(结果要化简)
三、解答题
19.计算(每小题4分,共8分)
(1) (2)(x-y)2-(2x+y)2
20、因式分解:(每小题4分,共16分)
(1)4a2-2a (2)
(3)49(m—n)2—9(m+n)2 (4)
21、解方程组(每小题4分,共8分)
(1) (2)
22、(6分)已知x2-2x-3=0,求代数式4x (x+3)- 2(x+1)(3x+1)+5的值。
23、(6分)已知关于x、y的方程组的解是,求(a+10b)2-(a-10b)2的值;
24、(8分)如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方形.
(1)用,,表示纸片剩余部分的面积;
(2)当 =38.4, =30,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
25、(10分)如图,在的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.
(1)求,的值;
(2)重新完成此方阵图.
26、(10分)一天,小明在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式,比如图②可以解释为等式:
(a+2b)(a+b)=a2+3ab+2b2.
(1)则图③可以解释为等式: .(3分)
(2)如图④,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形的面积之和S1与两个矩形面积之和S2的大小.(3分)
(3)小明取其中的若干张拼成一个面积为长方形,则可取的正整数值为,并请在图
⑤位置画出拼成的图形.(1分+3分)
27、(12分)为了鼓励市民节约用水,盐城市居民生活用水按阶梯式水价计费。
下表是盐城市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:
用户每月用水量自来水单价( 元/吨) 污水处理费用(元/吨)
17吨及以下
0.80
超过17吨不超过30吨的部分
0.80
超过30吨的部分 6.00 0.80
(说明:①每户产生的污水量等于该户的用水量,②水费=自来水费+污水处理费)
已知小明家2015年2月份用水吨,交水费元;3月份用水吨,交水费元。
(1)求、的值。
( 2)实行“阶梯水价”收费之后,该市一户居民用水多少吨时,其当月的平均水费为每吨元?
28、(12分)阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法. 配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b )2
例如:(x-1)2+3、(x-2)2+2x、 + 是的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出三种不同形式的配方;
(2)将配方(至少两种不同形式);
(3)已知,求的值.
参考答案
一、选择题(本大题共有8小题,每小题3分,共24分.)
题号 1 2 3 4 5 6 7 8
答案 C D B A A D C B
二、填空题(本大题共有10个空格,每个空格3 分,共30分.)
9、4 10、-2 11、±6 12、7 13、9
14、3
三、解答题
19、(8分)
(1)12x3y3z-28x3yz (2)-3x2-6xy
20、(16分)
(1)2a( 2a-1) (2)-(x+y)2(3)4(5m-2n)(2m-5n)(4)(x-1)2
21、(8分)
(1) (2)
22、(6分) -3
23、(6分) (3分) (3分)
24、(8分)(1)ab-4x2(2)12
25、(10分)(1)
(2)
26、(10分)
(1)(a+2b)(2a+b)=2a2+2b2+4ab
(2)S1>S2
(3)3
27、(12分)
(1)a=2.2b=4.2
(2)20
28、(12分)
(1)(x-2)2+5(x+3)2-10x(x-3)2+2x
(2)(a-b)2+3ab或(a+b)2-ab
(3)a+b+c=4。