人教版七年级下期中考试数学试卷及答案

合集下载

人教版数学七年级下学期《期中考试题》有答案解析

人教版数学七年级下学期《期中考试题》有答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题 3 分,共计 36 分)1. 一本笔记本5元,买x 本共付y 元,则5和y 分别是( )A. 常量,常量B. 变量,变量C. 常量,变量D. 变量,常量 2. 某种植物细胞的直径约为0.00012mm ,用科学计数法表示这个数为( )mmA. 41.210⨯B. 31210-⨯C. 31.210-⨯D. 41.210-⨯ 3. 下列各运算中,正确的是( )A. 3a+2a=5a 2B. (﹣3a 3)2=9a 6C. a 4÷a 2=a 3D. (a+2)2=a 2+4 4. 在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度 y (cm )与所挂物体的质量 x (kg )之间有如下表关系:下列说法不正确的是( )A. y 随 x 的增大而增大B. 所挂物体质量每增加 1kg 弹簧长度增加 0.5cmC. 所挂物体为 7kg 时,弹簧长度为 13.5cmD. 不挂重物时弹簧的长度为 0cm5. 下列各式中不能用平方差公式计算的是( )A. ()()x y x y --+B. ()()x y x y -+--C. ()()x y x y ---D. ()()x y x y +-+ 6. 如图,直线a∥b ,点B 在直线b 上,且AB⊥BC ,∠1=55°,那么∠2度数是( )A. 20°B. 30°C. 35°D. 50°7. 若多项式29+x kx +是一个完全平方式,则常数的值是( )A. 6B. 3C. 6±D. 3±8. 如图,边长为a 的大正方形剪去一个边长为b 的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为( )A. ()222a b a b -=-B. ()()22a b a b a b -=+-C. ()2222a b a ab b -=-+D. ()2222a b a ab b +=++ 9. 如图,已知点E 在BC 的延长线上,则下列条件中不能判断AB ∥CD 的是( )A. ∠B =∠DCEB. ∠BAD +∠D =180°C. ∠1=∠4D. ∠2=∠310. 一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为,剩下的水量为.下面能反映与之间的关系的大致图象是( ) A B. C. D. 11. 下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有( )个.A. 0B. 1C. 2D. 312. 观察下列各式及其展开式()2a b +=2a +2ab+2b()3a b +=3a +32a b+3a 2b +3b ()4a b +=+43a b+62a 2b +4a 3b +4b()5a b +=5a +5b+103a 2b +102a 3b +5a 4b +5b …… 请你猜想()821x -的展开式中含2x 项的系数是( )A. 224B. 180C. 112D. 48二.填空题(每小题 3 分,共计 12 分)13. 如果一个角是120°,那么这个角的补角度数是___.14. 若()23a =m a •a ,则 m =____15. 已知长方形的周长为 16cm ,其中一边长为 xcm ,面积为 y 2cm ,则这个长方形的面积 y 与 x 之间的关系可表示为 ______16. 把一张长方形纸片 ABCD 沿 EF 折叠后 ED 与 BC 的交点为 G ,D 、C 分别在M 、N 的位置上,若∠EFG =40°,则∠2=____.三、解答题(本题共 9 小题,其中第 17 题 16 分,第 18 题 5 分,第 19 题 6 分,第 20 题 5 分,第 21 题 6 分,第 22 题 6 分,第 23 题 8 分)17. 计算:(1) 2a (3a + 2)(2) ()()32422m m m -÷-(3) 22018011(3.14)2π-⎛⎫---- ⎪⎝⎭(4)用乘法公式计算:219818. 先化简,再求值:()()()2282x y y x y xy x ⎡⎤+-+-÷⎣⎦,其中12,2x y ==- 19. 列推理过程:如图,EF ∥AD ,∠1=∠2,∠BAC =80°.求∠AGD 的度数.∵ EF ∥AD (已知)∴∠2=()又∵∠1=∠2 (已知)∴∠1=∠3(等量代换)∴ AB∥()∴∠BAC+ =180°(两直线平行,同旁内角互补)∵∠BAC=80°(已知)∴∠AGD=20. (1)ma 的值a=2, =5,求2m n(2)(x+1)(x-p)=2x+qx-3,求q p的值.21. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)我们认为骑单车的速度超过300 米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的骑车速度最快,最快速度为多少,在安全限度内吗?22. 已知:如图,点E 直线DF 上,点B 在直线AC 上,∠1=∠2,∠3=∠4.①求证:BD∥CE②若∠A=40°,求∠F 值.23. AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E.∠ADC=70°.(1)求∠EDC 的度数;(2)若∠ABC=30°,求∠BED 的度数;(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,请直接写出∠BED 的度数(用含n的代数式表示).答案与解析一.选择题(每小题3 分,共计36 分)1. 一本笔记本5元,买x本共付y元,则5和y分别是()A. 常量,常量B. 变量,变量C. 常量,变量D. 变量,常量[答案]C[解析][分析]根据变量,常量的定义即可判断.[详解]5为已知数,为常量,y为未知数,y随x的变化而变化,故为变量,故选C.[点睛]此题主要考查变量,常量的定义,解题的关键是熟知其定义方可判断.2. 某种植物细胞的直径约为0.00012mm,用科学计数法表示这个数为()mmA. 41.210⨯ B. 31.210-⨯ D. 4⨯1.210-1210-⨯ C. 3[答案]D[解析][分析]根据科学计数法的定义即可表示求解.[详解]0.00012=4⨯1.210-故选D.[点睛]此题主要考查科学计数法,解题的关键是熟知科学计数法的表示方法.3. 下列各运算中,正确的是( )A. 3a+2a=5a2B. (﹣3a3)2=9a6C. a4÷a2=a3D. (a+2)2=a2+4[答案]B[解析]根据合并同类项,幂的乘方与积的乘方,同底数幂的除法运算法则和完全平方公式,分别进行各选项的判断即可:A、3a+2a=5a,原式计算错误,故本选项错误;B、(﹣3a3)2=9a6,原式计算正确,故本选项正确;C、a4÷a2=a2,原式计算错误,故本选项错误;D、(a+2)2=a2+2a+4,原式计算错误,故本选项错误.故选B.4. 在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度 y (cm )与所挂物体的质量 x (kg )之间有如下表关系:下列说法不正确的是( )A. y 随 x 的增大而增大B. 所挂物体质量每增加 1kg 弹簧长度增加 0.5cmC. 所挂物体为 7kg 时,弹簧长度为 13.5cmD. 不挂重物时弹簧的长度为 0cm[答案]D[解析][分析]根据表格中的数据先得到函数关系式,然后再根据一次函数图像的性质进行判断即可得解.[详解]解:由表格可得,弹簧的长度 y (cm )与所挂物体的质量 x (kg )之间的函数关系式为:0.510y x =+A. 0.50k =>,故 随 的增大而增大,故本选项不符合题意;B.当1x x =时,110.510y x =+;当211x x x ==+时,()2110.51100.511.5y x x =++=+,此时()()21110.511.50.5100.5y y x x -=+-+=,故本选项不符合题意;C.当7x =时,0.571013.5y =⨯+=,故本选项不符合题意;D.当0x =时,0.501010y =⨯+=,故本选项符合题意.故选:D[点睛]本题考查了函数关系式、一次函数图象的性质、,用挂重物与弹簧伸长的长度得出函数关系式是解题关键.5. 下列各式中不能用平方差公式计算的是( )A. ()()x y x y --+B. ()()x y x y -+--C. ()()x y x y ---D. ()()x y x y +-+[答案]A[解析][分析]根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.[详解]A .()()x y x y --+,含y 项符号相反,含x 的项符号相反,不能用平方差公式计算,故本选项符合题意; B .()()x y x y -+--,含x 的项符号相同,含y 的项符号相反,能用平方差公式计算,故本选项不符合题意; C .()()x y x y ---,含y 的项符号相同,含x 的项符号相反,能用平方差公式计算,故本选项不符合题意; D .()()x y x y +-+,含y 的项符号相同,含x 的项符号相反,能用平方差公式计算.故本选项不符合题意.[点睛]本题考查了平方差公式,两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为:22()()a b a b a b +-=-6. 如图,直线a∥b ,点B 在直线b 上,且AB⊥BC ,∠1=55°,那么∠2的度数是( )A. 20°B. 30°C. 35°D. 50°[答案]C[解析][分析] 由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.[详解]解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a ∥b ,所以∠2=∠3=35°.故选C .[点睛]本题主要考查了平行线性质.7. 若多项式29+x kx +是一个完全平方式,则常数的值是( )A. 6B. 3C. 6±D. 3±[答案]C[解析][分析]先根据两平方项确定出这两个数是x 和3,再根据完全平方式的结构特征求解即可.[详解]解:∵多项式29+x kx +是一个完全平方式,∴kx=±2×x×3, ∴k=±6, 故选:C .[点睛]本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.解题的关键是利用平方项来确定这两个数.8. 如图,边长为a 的大正方形剪去一个边长为b 的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为( )A. ()222a b a b -=-B. ()()22a b a b a b -=+-C. ()2222a b a ab b -=-+D. ()2222a b a ab b +=++ [答案]B[解析][分析] 边长为a 的大正方形剪去一个边长为b 的小正方形后的面积=a 2-b 2,新的图形面积等于(a+b )(a-b ),由于两图中阴影部分面积相等,即可得到结论.[详解]图中阴影部分的面积等于两个正方形的面积之差,即为a 2-b 2;通过割补拼成的平行四边形的面积为(a+b )(a-b ),∵前后两个图形中阴影部分的面积相等,∴a 2-b 2=(a+b )(a-b ).故选B .[点睛]考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后的面积不变得到等量关系. 9. 如图,已知点E 在BC 的延长线上,则下列条件中不能判断AB ∥CD 的是( )A. ∠B=∠DCEB. ∠BAD+∠D=180°C. ∠1=∠4D. ∠2=∠3[答案]D[解析][分析]根据平行线的判定定理即可直接作出判断.[详解]A、根据同位角相等,两直线平行即可证得,故选项错误;B、根据同旁内角互补,两直线平行,即可证得,故选项错误;C、根据内错角相等,两直线平行即可证得,故选项错误;D、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确.故选D.[点睛]本题考查了平行线判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10. 一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为,剩下的水量为.下面能反映与之间的关系的大致图象是()A. B. C. D.[答案]D[解析][分析]根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C、D的正误.[详解]解:∵s随t的增大而减小,∴选项A、B错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .[点睛]本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键11. 下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有( )个.A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据对顶角的性质即可判断①;根据同位角的定义和平行线的性质即可判断②;根据平行公理即可判断③;根据点到直线的距离的定义即可判断④.[详解]解:①对顶角相等,但相等的角不一定是对顶角,故①错误;②两直线平行,同位角相等,故②错误;③过直线外一点有且只有一条直线与已知直线平行,故③错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故④正确.故选:B[点睛]本题考查了对顶角的性质、同位角的定义、平行线的性质、平行公理、点到直线的距离的定义,是基础题目,熟练掌握相关知识点是解题的关键.12. 观察下列各式及其展开式 ()2a b +=2a +2ab+2b()3a b +=3a +32a b+3a 2b +3b ()4a b +=+43a b+62a 2b +4a 3b +4b()5a b +=5a +5b+103a 2b +102a 3b +5a 4b +5b …… 请你猜想()821x -的展开式中含2x 项的系数是( )A. 224B. 180C. 112D. 48[答案]C[解析][分析] 归纳总结出()n a b +的展开式中含2x 项的系数是()12n n -,进而得出当8n =时,()8a b +展开式中含2x 项的系数是()1282n n -=,然后得到()8a b +展开式中含2x 项为2628a b ,最后将2a x =、1b =-代入式子2628a b 即可得到答案.[详解]解:∵()2222a b a ab b +=++,故展开式中含2x 项的系数是; ()3322333a b a a b ab b +=+++,故展开式中含2x 项的系数是; ()4432234464a b a a b a b ab b +=++++,故展开式中含2x 项的系数是;()543225345510105a a b a b a a a b b b b =++++++,故展开式中含2x 项的系数是;()11n n n n n a b a na b nab b --+=+++,故展开式中含2x 项的系数是()()112312n n n -++++-=∴当8n =时,()8a b +展开式中含2x 项的系数是()()18812822n n -⨯-== ∴()8a b +展开式中含2x 项2628a b ∴当2a x =、1b =-时,()()26262282821112a b x x =⋅⋅-=∴()821x -的展开式中含2x 项的系数是112.故选:C[点睛]本题考查了多项式乘以多项式中的规律问题,涉及到了完全平方公式、代数求值、多项式的项以及单项式的系数等,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力. 二.填空题(每小题 3 分,共计 12 分)13. 如果一个角是120°,那么这个角的补角度数是___.[答案]60︒[解析][分析]根据互为补角的定义进行计算即可得解.[详解]解:∵一个角是120︒∴这个角的补角度数是18012600︒-︒=︒.故答案是:60︒[点睛]本题考查了互补的概念,和为180︒的两个角互为补角,属于基础题型、难度不大.14. 若()23a =m a •a ,则 m =____ [答案][解析][分析]根据幂的乘方运算、同底数幂的乘法运算先求得关于的方程,解方程即可得解.[详解]解:∵()23m a a a =⋅∴16m a a +=∴16m +=∴5m =.故答案是:[点睛]本题考查了幂的乘方运算法则、同底数幂的乘法运算法则以及简单的一元一次方程,体现了数学运算和逻辑运算的核心素养,熟练掌握相关知识点是解决问题的关键.15. 已知长方形的周长为 16cm ,其中一边长为 xcm ,面积为 y 2cm ,则这个长方形的面积 y 与 x 之间的关系可表示为 ______[答案]28y x x =-+[解析][分析]矩形周长为16cm ,则两邻边之和为8cm ,一边长为xcm ,另一边长为()8x cm -,根据矩形的面积公式即可列出函数关系式.[详解]解:∵矩形周长为16cm∴两邻边之和为8cm∴若一边长为xcm ,则另一边长为()8x cm -;面积为2ycm∴()8y x x =-即28y x x =-+. 故答案是:28y x x =-+[点睛]本题考查了用长方形边长表示长方面积,列函数式的方法,能根据实际问题中的等量关系列二次函数关系式是解题的关键.16. 把一张长方形纸片 ABCD 沿 EF 折叠后 ED 与 BC 的交点为 G ,D 、C 分别在M 、N 的位置上,若∠EFG =40°,则∠2=____.[答案]80︒[解析][分析]由长方形的性质可得40DEF ∠=︒,再由翻折的性质可得40MEF ∠=︒,两角相加可得80DEM ∠=︒,再根据平行线的性质即可得到答案.[详解]解:∵四边形ABCD是长方形∴//AD BC∴40DEF EFG ∠=∠=︒∵长方形纸片ABCD 沿 EF 折叠后ED 与BC 的交点为 ,、分别在M 、的位置上∴40MEF DEF ∠=∠=︒∴80DEM DEF MEF ∠=∠+∠=︒∴280DEM ∠=∠=︒.故答案是:80︒[点睛]本题考查了长方形的性质、翻折的性质、角的和差、平行线的性质等知识点,体现了逻辑推理的核心素养,难度不大,利用翻折的性质求得40MEF ∠=︒是解题的关键. 三、解答题(本题共 9 小题,其中第 17 题 16 分,第 18 题 5 分,第 19 题 6 分,第 20 题 5 分,第 21 题 6 分,第 22 题 6 分,第 23 题 8 分)17. 计算:(1) 2a (3a + 2)(2) ()()32422m m m -÷-(3) 22018011(3.14)2π-⎛⎫---- ⎪⎝⎭(4)用乘法公式计算:2198[答案](1)264a a +(2)22m m -+(3)6-(4)39204[解析][分析](1)根据单项式乘以多项式法则进行计算即可得解;(2)根据多项式除以单项式法则进行计算即可得解;(3)根据实数的正整数指数幂法则、负整数指数幂法则、零次幂法则以及实数的加减运算法则进行计算即可得解;(4)先将2198改写成()22002-,然后根据完全平方差公式进行计算即可得解.[详解]解:(1)()232a a + 264a a =+;(2)()()32422m m m -÷-22m m =-+;(3)()20201811 3.142π-⎛⎫---- ⎪⎝⎭141=---6=-;(4)2198()22002=- 22200220022=-⨯⨯+400008004=-+39204=.故答案是:(1)264a a +(2)22m m -+(3)6-(4)39204[点睛]本题考查了单项式乘以多项式法则、多项式除以单项式法则、正整数指数幂法则、负整数指数幂法则、零次幂法则、实数的加减运算法则、完全平方差公式等知识点,体现了数学运算的核心素养,难度不大,认真计算是解题的关键.18. 先化简,再求值:()()()2282x y y x y xy x ⎡⎤+-+-÷⎣⎦,其中12,2x y ==- [答案]3[解析][分析]先根据整式混合运算顺序和运算法则化简原式,再将x 、y 代入计算可得.[详解]解:原式=()()2222282x xy y xy y xy x ++---÷ =()()218242x xy x x y -÷=-, 当12,2x y ==-时, 原式=112412322⎛⎫⨯-⨯-=+= ⎪⎝⎭. [点睛]考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 19. 列推理过程:如图,EF ∥AD ,∠1=∠2,∠BAC =80°.求∠AGD 的度数.∵ EF ∥AD (已知)∴∠2= ( )又∵∠1=∠2 (已知)∴∠1=∠3(等量代换)∴ AB ∥ ( )∴∠BAC+ =180°(两直线平行 ,同旁内角互补)∵∠BAC =80°(已知)∴∠AGD =[答案]3∠;两直线平行,同位角相等;DG ;内错角相等,两直线平行;AGD ∠;100︒[解析][分析]根据平行线性质推出2∠=3∠,根据等量代换推出13∠=∠,根据平行线的判定推出//AB DG ,根据平行线的性质得出BAC ∠+AGD ∠180=︒,将80BAC ∠=︒代入求出即可.[详解]解:∵//EF AD∴2∠=3∠(两直线平行,同位角相等)又∵12∠=∠(已知)∴13∠=∠(等量代换)∴//AB DG (内错角相等,两直线平行)∴BAC ∠+AGD ∠180=︒(两直线平行 ,同旁内角互补)∵80BAC ∠=︒(已知)∴AGD ∠=100︒.故答案是:3∠;两直线平行,同位角相等;DG ;内错角相等,两直线平行;AGD ∠;100︒[点睛]本题考查了平行线的性质和判定的应用,体现了逻辑推理的核心素养.注意:平行线的性质是:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补,反之亦然. 20. (1)m a =2, =5,求2m n a -的值(2)(x+1)(x-p)=2x +qx-3,求q p 的值.[答案](1)45(2)19 [解析][分析](1)先逆用同底数幂的除法法则、幂的乘方法则,将2m n a-转化为()2m n a a ÷,再把2m a =、5n a =代入计算即可得解;(2)根据多项式的乘法法则,可得一个多项式,再根据多项式相等,可得对应项系数相等,即1p q -+=、3p -=-,解方程组求得、的值,然后代入所求式子即可得解.[详解]解:(1)∵2m a =,5n a =∴2m n a -2m n a a =÷()2m n a a =÷225=÷45=; (2)∵()()213x x p x qx +-=+-∴223x px x p x qx -+-=+-∴()2213x p x p x qx +-+-=+- ∴13p q p -+=⎧⎨-=-⎩∴32p q =⎧⎨=-⎩∴2139q p -==. 故答案:(1)45(2)19[点睛]本题考查了同底数幂的除法法则的逆用、幂的乘方法则的逆用、多项式乘以多项式法则、多项式等于多项式即各项对应相等原则、解二元一次方程组、代数求值等知识点,难度不大,体现了数学运算、逻辑推理的核心素养.21. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是 米.(2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)我们认为骑单车的速度超过 300 米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的骑车速度最快,最快速度为多少,在安全限度内吗?[答案](1)1500(2)(3)2700;(4)小明在1214x ≤≤时间段速度最快,最快速度为450米/分;小明在1214x ≤≤时间段,行驶速度没有在安全限度内[解析][分析](1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(3)读图,计算可得答案,注意要计算路程;(4)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度,再与安全限度值进行比较即可得出结论.[详解]解:(1)∵根据图象可知学校的纵坐标为1500,小明家的纵坐标为∴小明家到学校的距离为1500米;(2)∵根据图象可得小明在书店停留的时间为从到分∴小明在书店停留了分钟;(3)根据图像可得:小明共行驶了12006009002700++=米,共用了分钟;(4)∵根据图象可知:当1214x ≤≤时,直线最陡∴小明在1214x ≤≤时间段速度最快,最快速度为15006004501412-=-米/分 ∵450300>∴小明在1214x ≤≤时间段,行驶速度没有在安全限度内.故答案是:(1)1500(2)(3)2700;(4)小明在1214x ≤≤时间段速度最快,最快速度为450米/分;小明在1214x ≤≤时间段,行驶速度没有在安全限度内[点睛]本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一,体现了数学建模的核心素养. 22. 已知:如图,点 E 在直线 DF 上,点 B 在直线 AC 上,∠1=∠2,∠3=∠4.①求证:BD ∥CE②若∠A =40°,求∠F 的值.[答案](1)证明见详解(2)40︒[解析][分析](1)结合已知条件根据对顶角相等可得2AHC ∠=∠,再根据平行线的判定即可得到结论;(2)由(1)结论与以及等量代换可得4180C ∠+∠=︒,进而可推出//AC DF ,再根据平行线的性质即可求解.[详解]解:(1)证明:∵12∠=∠(已知),1AHC ∠=∠(对顶角相等)∴2AHC ∠=∠(等量代换)∴//BD CE (同位角相等,两直线平行)(2)∵//BD CE (已证)∴3180C ∠+∠=︒(两直线平行,同旁内角互补)∵34∠=∠∴4180C ∠+∠=︒∴//AC DF (同旁内角互补,两直线平行)∵40A ∠=︒(已知)∴40F A ∠=∠=︒(两直线平行,内错角相等).故答案是:(1)证明见详解(2)40︒[点睛]本题考查了平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别,体现了逻辑推理的核心素养.23. AB ∥CD ,C 在 D 的右侧,BE 平分∠ABC ,DE 平分∠ADC ,BE 、DE 所在的直线交于点 E .∠ADC =70°.(1)求∠EDC 的度数;(2)若∠ABC =30°,求∠BED 的度数;(3)将线段 BC 沿 DC 方向移动,使得点 B 在点 A 的右侧,其他条件不变,若∠ABC =n°,请直接写出∠BED的度数(用含 n 的代数式表示).[答案](1)35︒(2)50︒(3)12152n ︒-︒ [解析][分析](1)根据角平分线定义即可得到答案;(2)过点作//EF AB ,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解;(3)过点作//EF AB ,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解. [详解]解:(1)∵DE 平分ADC ∠,70ADC ∠=︒∴1352EDC ADC ∠=∠=︒; (2)过点作//EF AB ,如图:∵DE 平分ADC ∠,70ADC ∠=︒;BE 平分ABC ∠,30ABC ∠=︒∴1352EDC ADC ∠=∠=︒,1152ABE ABC ∠=∠=︒ ∵//AB CD ,//EF AB∴////AB EF CD∴35FED CDE ∠=∠=︒,15FEB ABE ∠=∠=︒∴50BED FED FEB ∠=∠+∠=︒;(3)过点作//EF AB ,如图:∵DE 平分ADC ∠,70ADC ∠=︒;BE 平分ABC ∠,ABC n ∠=︒ ∴1352EDC ADC ∠=∠=︒,1122ABE ABC n ∠=∠=︒ ∵//AB CD ,//EF AB∴////AB EF CD∴35FED CDE ∠=∠=︒,11801802FEB ABE n ∠=︒-∠=︒-︒ ∴113518021522BED FED FEB n n ∠=∠+∠=︒+︒-︒=︒-︒. 故答案是:(1)35︒(2)50︒(3)12152n ︒-︒ [点睛]本题考查了角平分线的定义、平行线的判定和性质以及角的和差,解答本题的关键是作出辅助线,要求同学们掌握平行线的性质,难度中等.。

人教版数学七年级下学期《期中考试题》附答案

人教版数学七年级下学期《期中考试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A 68︒ B. 60︒ C. 102︒ D. 112︒5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣B. (2,1)﹣﹣C. ()3,1﹣D. (1,)2﹣ 6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4 7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =19.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3二、填空题11.2-的绝对值是________.12.、是实数230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= 19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四[答案]D[解析]试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2,-3)位于第四象限,故答案选D . 考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D. [答案]B[解析][分析]根据平方根的定义即可求得答案.[详解]解:∵(±2)2=4,∴4的平方根是±2. 故选:B .[点睛]本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001中,无理数有( )个 A. 1B. 2C. 3D. 4 [答案]B[解析][分析]利用无理数的定义判断即可.[详解]解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B . [点睛]此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒[答案]D[解析][分析] 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.[详解]∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .[点睛]本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ [答案]C[解析][分析] 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.[详解]解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .[点睛]此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4[答案]C[解析][分析]根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.[详解]解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.[点睛]此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 度数为( )A. 90°B. 108°C. 100°D. 80°[答案]C[解析][分析] 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.[详解]过E 作出BA 平行线EF,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD,BC ∥DE,∠ABC=180°-∠BCD =180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100° [点睛]本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±±B. 64的算术平方根是4C. 330a a -=D. 110x x --≥,则x =1 [答案]B[解析][分析]根据平方根、算术平方根、立方根的概念对选项逐一判定即可.[详解]A .4=2±±,正确;B .64的算术平方根是8,错误;C 330a a -,正确;D 110x x --≥,则x =1,正确; 故选:B .[点睛]本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键. 9.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)[答案]D[解析][分析] 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.[详解]解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .[点睛]此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.[详解]解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.[点睛]本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.[答案[解析][分析]根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.[详解]解:根据负数的绝对值是它的相反数,得=.[点睛]此题主要考查绝对值的意义,熟练掌握,即可解题.=,则xy=________.12.、是实数0[答案]-6[解析][分析]根据算术平方根的非负性即可求出与的值.y-=,[详解]解:由题意可知:20x+=,30y=x2∴=-,3xy6-故答案为:6[点睛]本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.[答案]11[解析][分析] 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.[详解]解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11[点睛]此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.[答案]1[解析][分析]分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . [详解]解:因为23n ﹣与1n ﹣是整数的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ; 当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.[点睛]本题考查了平方根的应用,若一个数的平方等于,那么这个数叫的平方根,记作(0)a a ±.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________. [答案](32, [解析][分析]连接AB 交轴于M ,点M 即为所求; [详解]解:如图示,连接AB 交轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, 直线AB 的解析式为23yx ,令0y =,得到32x, 32(M ,故本题答案为:(32,.[点睛]本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题. 16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.[答案]4[解析][分析]到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.[详解]解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.[点睛]本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- [答案](1)12;(2)2.[解析][分析](1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.[详解]解:3316648-44248=+12=;(2)333521|12|28 33221222=.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= [答案](1)12311,44x x ==-;(2)32x =-. [解析][分析](1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.[详解]解:(1)216(1)49x 249(1)16x 714x , 12311,44x x ==-. (2)38(1)125x 3125(1)8x 512x 32x =-. [点睛]本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 [答案]7[解析][分析]本题应先解不等式组确定a 整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.[详解]解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .[点睛]本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键.20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.[答案](1)见解析;(2)5;(3)存在;点的坐标为(0,5)或(0,3)-.[解析][分析](1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.详解]解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).[点睛]本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.[答案](1)见解析(2)见解析[解析][分析](1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.[详解]证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?[答案](1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张.[解析][详解](1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板, 按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B 型板材块长为160cm >150cm ,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张.考点:一次函数的应用.23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=[答案](1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.[解析][分析](1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;[详解]解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540[点睛]本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.[答案](1)A (0,3),B (4,0);(2)E 的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF . [解析][分析](1)根据非负数的性质分别求出a 、b,得到答案; (2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC 的解析式,则可求出点E 的坐标;(3)作HP ∥AB 交AD 于H,OG ∥AB 交FP 于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.[详解]解:(1)由题意得,a-3=0,b-4=0, 解得,a=3,b=4, 则A (0,3),B (4,0); (2)如图1所示,∵∆ABC 的面积等于13,根据A,B,C 三点的坐标, 可得:111324232422413222m m ,(m<0) 解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472c d , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72- ); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x,∠PCD=y,则∠BFP=x,∠PCB=2y,∵HP∥AB,OG∥AB,∴∠HPC=∠PCD=y,∠OPF=∠OFP=x,∴∠CPF=x+y,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y)+ x =2x+3y,∴∠COF+∠OFP=3x+3y=3∠CPF.[点睛]本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。

【人教版】七年级下册数学《期中考试题》(附答案)

【人教版】七年级下册数学《期中考试题》(附答案)
A. B. C. D.
【答案】B
【解析】
【分析】
如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.
【详解】解:A、 ,故本选项错误;
B、 ,故本选项正确;
C、 ,故本选项错误;
D、 ,故本选项错误;
故选B.
【点睛】本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.
答案与解析
一、选择题(共10题,每小题3分,共30分)
1.下列各数中, ,无理数的个数有
A. 1个B. 2个C. 3个D. 4个
【答案】B
【解析】
试题分析:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B.
2.下列各式中,正确的是( )
3.立方根等于它本身的有( )
A.0,1B.-1,0,1C.0,D.1
【答案】B
【解析】
【分析】
根据立方根性质可知,立方根等于它本身的实数0、1或-1.
【详解】解:∵立方根等于它本身的实数0、1或-1.
故选B.
【点睛】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.
【答案】D
【解析】
【分析】
根据非负数的性质得到x﹣2=0,y+1=0,则可确定点P(x,y)的坐标为(2,﹣1),然后根据象限内点的坐标特点即可得到答案.
【详解】∵(x﹣2)2 0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴点P(x,y)的坐标为(2,﹣1),在第四象限.

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.4的算术平方根是()A.16 B.±2 C.2 D2.在平面直角坐标系中,点P(-3.2)在( )A.第一象限B.第二象限C.第三象限D.第三象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4 B.5 C.6 D.77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.8,﹣1.9)D.(3.8,﹣2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.根据表中的信息判断,下列语句中正确的是()A. 1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6<<D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、解答题10.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x 值可能为()A.1 B.6 C.9 D.1011.计算:(12;(2-12.求出下列等式中x的值:(1)12x2=36;(2)33388x-=.13.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.14.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.15.如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF =∠CEF.求证:DF∥AC.16.已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.17.在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C 纵坐标满足1y <<a 的所有可能取值: .18.如图,已知AB ∥CD ,点E 是直线AB 上一个定点,点F 在直线CD 上运动,设∠CFE =α,在线段EF 上取一点M ,射线EA 上取一点N ,使得∠ANM =160°.(1)当∠AEF =2a 时,α= ; (2)当MN ⊥EF 时,求α;(3)作∠CFE 的角平分线FQ ,若FQ ∥MN ,直接写出α的值: .19.对于平面直角坐标系xOy 中的不同两点A (x 1,y 1),B (x 2,y 2),给出如下定义:若x 1x 2=1,y 1y 2=1,则称点A ,B 互为“倒数点”.例如,点A (12,1),B (2,1)互为“倒数点”.(1)已知点A (1,3),则点A 的倒数点B 的坐标为 ;将线段AB 水平向左平移2个单位得到线段A ′B ′,请判断线段A ′B ′上是否存在“倒数点”. (填“是”或“否”); (2)如图所示,正方形CDEF 中,点C 坐标为(12,12),点D 坐标为(32,12),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.三、填空题20.将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为_____.21.如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C 可能对应的一个无理数_____.22.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.23.依据图中呈现的运算关系,可知a=_____,b=_____.24.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是_____.25.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是_____.26.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中_____号点的位置时,接收到的信号最强(填序号①,②,③或④).27.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域_____时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有_____种连线方案.参考答案1.C【解析】【分析】根据算术平方根的定义解答即可.【详解】∵2的平方为4,∴4的算术平方根为2.故选C.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根,正数a的平方根记作正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵-3<0,2>0,,∴点P(-3,2)在第二象限,故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D【解析】【分析】根据垂线段的定义判断即可.【详解】根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选D.【点睛】本题考查了垂线段的定义,过直线外一点做直线的垂线,这点与垂足间的线段叫做这点到直线的垂线段.4.D【解析】【分析】先根据两直线平行,内错角相等求出∠CAB=144°,然后根据邻补角的定义求出∠2的度数. 【详解】∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选D.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 5.B【解析】【分析】根据平行线的判定定理即可得到结论.【详解】由平行线的画法知道,画出的同位角相等,即同位角相等,两直线平行.∴同位角相等,两直线平行.故选B.【点睛】本题考查了作图-复杂作图,平行线的判定定理,熟练掌握平行线的定理是解题的关键.行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.6.C【解析】【分析】据平移的性质确定平移过程中扫过的图形的形状,从而确定面积.【详解】根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选C.【点睛】本题考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.B【解析】【分析】根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可.【详解】解:由图可知,(﹣1.9,0.7)距离原点最近,故选B.【点睛】本题考查了坐标确定位置,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的位置的方法.8.A【解析】【分析】根据平行公理,平行线的判定方法及余角的性质解答即可.【详解】①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选A.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C【解析】【分析】据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.【详解】A15.9=,1.59,故选项不正确;B15.3=<∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.515.6<<,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选C.【点睛】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.D【解析】【分析】把各选项中x 的值代入计算即可.【详解】A .将x =1代入程序框图得:输出的y 值为1,不符合题意;B .将x =6代入程序框图得:输出的y 值为3,不符合题意;C .将x =9代入程序框图得:输出的y 值为3,不符合题意;D .将x =10代入程序框图得:输出的y 值为4,符合题意;故选D .【点睛】此题考查了算术平方根的意义,解答本题的关键就是弄清楚题图给出的计算程序,按程序一步一步计算.11.(1)73;(2)【解析】【分析】(1)先根据算术平方根及立方根的意义逐项化简,再根据有理数的加减法法则计算; (2)先根据二次根式的乘法计算,再合并同类二次根式即可.【详解】(1)原式=1423+- =73(2)原式=2-=2--【点睛】本题考查了实数的混合运算,熟练掌握算术平方根及立方根的意义、二次根式的运算法则是解答本题的关键.12.(1)x =(2)x=3.【解析】【分析】(1)两边都除以12,再根据平方根的意义求解即可;(2)先去分母、移项、合并同类项化为x 3=27,再根据立方根的意义求解.【详解】(1)x2=3∴x=(2)x3﹣24=3x3=27∴x=3【点睛】本题考查了利用平方根及立方根的意义解方程,熟练掌握平方根及立方根的意义是解答本题的关键.13.(1)(3,1);(2)详见解析.【解析】【分析】(1)利用清华大学的坐标为(0,3),北京大学的坐标为(-3,2)画出直角坐标系,进而即可得结果;(2)根据点的坐标的意义即可描出表示中国人民大学的坐标即可得.【详解】(1)如图,北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.14.不能将这张贺卡不折叠的放入此信封中.【解析】【分析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x 的值,再由其宽和长与10的大小可得答案.【详解】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x(负值舍去)所以长方形信封的宽为:3x=,10,∴正方形贺卡的边长为10cm.∵()2=90,而90<100,∴<10,答:不能将这张贺卡不折叠的放入此信封中.【点睛】本题主要考查了平方根的应用,解题的关键是根据长方形的面积得出关于x的方程.15.详见解析.【解析】【分析】由EF∥AB,可证∠CEF=∠A,由等量代换可得∠BDF=∠A,从而可证DF∥AC.【详解】∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.【点睛】本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.16.(1)m=﹣4;(2)x【解析】【分析】(1)根据正数有两个互为相反数的平方根列式求解即可;(2)根据正实数x的平方根是m和m+b,可得(m+b)2=x,m2=x,从而原方程可变为x2+x2=4,然后根据平方根的意义求解即可.【详解】(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等=±,0的于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.17.(1)详见解析;(2)点C的坐标是(0,0),(1,0),(2,0),(3,0);(3)2,3,4,5.【解析】【分析】(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.【详解】解:(1)如图,(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C 在x 轴上,∴点C 的纵坐标为0.由此可得a 的取值为0,1,2或3,因此点C 的坐标是(0,0),(1,0),(2,0),(3,0)(3)a 的所有可能取值是2,3,4,5.故答案为2,3,4,5.【点睛】本题考查了坐标与图形,关键是根据坐标与图形的特点和代数式求值解答.18.(1)α=120°;(2)α=110°;(3)α=40°.【解析】【分析】(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M 作直线PM ∥AB ,由平行公理推论可知:AB ∥PM ∥CD .根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论.【详解】解:(1)∵AB ∥CD ,∴∠AEF +∠CFE =180°,∵∠CFE =α,∠AEF =2α, ∴α+2α=180°, ∴α=120°;(2)如图所示,过点M 作直线PM ∥AB ,由平行公理推论可知:AB ∥PM ∥CD . ∵∠ANM =160°,∴∠NMP =180°﹣160°=20°,又∵NM ⊥EF ,∴∠NMF =90°,∠PMF =∠NMF ﹣∠NMP =90°﹣20°=70°.∴α=180°﹣∠PMF =180°﹣70°=110°;(3)如图2,∵FQ 平分∠CFE ,∴∠QFM =2α, ∵AB ∥CD ,∴∠NEM =180°﹣α,∵MN ∥FQ ,∴∠NME =2α, ∵∠ENM =180°﹣∠ANM =20°,∴20°+2α+180°﹣α=180°, ∴α=40°.故答案为120°,40°.【点睛】本题考查了平行线的性质,角平分线定义,熟练掌握平行线的性质定理是解题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.19.(1)(1,13);是;(2)该正方形各边上存在“倒数点”,理由详见解析;(3)1. 【解析】【分析】(1)设A (x 1,y 1),B (x 2,y 2),由题意得出x 2=1,y 2=13,点B 的坐标为(1,13),由平移的性质得出A′(-1,3),B′(-1,13),即可得出结论; (2)①若点M (x 1,y 1)在线段CF 上,则x 1=12,点N (x 2,y 2)应当满足x 2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=12,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=32,点N(x2,y2)应当满足y2=23,得出N(32,2 3),此时点M(23,32)在线段EF上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都≤1,得出正方形面积的最大值为1即可.【详解】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=13,点B的坐标为(1,13),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,13),∵﹣1×(﹣1)=1,3×13=1,∴线段A′B′上存在“倒数点”,故答案为(1,13);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=12,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=12,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=32,点N(x2,y2)应当满足y2=23,∴点N只可能在线段DE上,N(32,23),此时点M(23,32)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(23,32),N(32,23);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为1.【点睛】本题考查了正方形的性质、新定义“倒数点”、平面直角坐标系、平移的性质等知识;熟练掌握正方形的性质,正确理解新定义“倒数点”是解题的关键.20.(﹣1,7)【解析】【分析】根据“上加下减”的规律求解即可.【详解】将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为(﹣1,7),【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.211与2之间即可)【解析】【分析】根据点C表示的数大于-1且小于2解答即可.【详解】解:由C点可得此无理数应该在﹣1与2之间,又∵,1与2之间即可),【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.22.135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.23.-2019 ﹣2019.【解析】【分析】根据立方根与平方根的意义求解即可.【详解】依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为﹣2019,-2019.【点睛】本题考查了平方根及立方根的意义,正数a有两个平方根,它们互为相反数;正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.24.(﹣2,2)或(8,2).【解析】【分析】根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.【详解】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为(﹣2,2)或(8,2).【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等、平行于y轴的直线上的点的横坐标相等是解题的关键,难点在于要分情况讨论.25.15°【解析】【分析】利用平行线的性质即可解决问题.【详解】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.【点睛】本题考查平行线的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.26.①【解析】【分析】根据垂线段最短得出即可.【详解】根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为①.【点睛】本题考查了垂线的性质,能知道垂线段最短是解此题的关键.27.②6.【解析】【分析】(1)由相交线的定义可以找到点Q所在的区域;(2)因为要求所有连线不能相交,所以可按图示6种方法连接.【详解】(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为②,6.【点睛】本题考查了信息迁移及直线、射线、线段的画法,掌握它们的定义是解题的关键.。

人教版七年级下册数学《期中考试题》(含答案)

人教版七年级下册数学《期中考试题》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各图中,∠1和∠2是对顶角的是( ) A. B. C. D.2.4的算术平方根是( )A. -2B. 2C. 2±D. 23.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是() A. B.C. D.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数个数有( )A. 2个B. 3个C. 4个D. 5个7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠58.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠E FC =180°二、填空题11.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD=38°,则∠COB=_______.12.一个小区大门的栏杆如图所示,BA 垂直地面AE 于,CD 平行于地面AE ,那么ABC BCD ∠+∠=_________.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.15.49的平方根是_______;-125的立方根是_______;81的值是_______. 16.已知 a , b 为两个连续整数,且a<15 <b ,则 a+b 的值为______.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.三、解答题19.计算:(1)(6+3)-3(2)37+2720.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、值;(2)求+a b 的算术平方根.23.如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,EF ⊥BC ,∠CAD =∠DEF ,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.25.把一张长方形纸片ABCD沿EF折叠后ED与BC交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠() ∴∠3=∠∴AD∥BE()答案与解析一、选择题1.下列各图中,∠1和∠2是对顶角的是()A. B. C. D.[答案]D[解析][分析]根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.[详解]解:根据对顶角的定义可得,D是对顶角,故选D.[点睛]本题主要考查了对顶角的定义,熟记对顶角的定义是解决本题的关键.2.4的算术平方根是( )± D. 2A. -2B. 2C. 2[答案]B[解析]试题分析:因224=,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是( )A. B.C. D.[答案]D[解析][分析]根据图形平移与翻折变换的性质解答即可.[详解]解:由图可知,A 、B 、C 利用图形的翻折变换得到,D 利用图形的平移得到.故选:D .[点睛]此题考查的是翻折和平移的判断,掌握图形平移与翻折变换的性质是解决此题的关键.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP[答案]C[解析]分析]根据垂线段最短解答. [详解]解:依据垂线段最短,他的跳远成绩是线段起跳线AP 的长,故选:C .[点睛]本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义. 5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒ [答案]A[解析][分析]根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.[详解]∵∠1与∠2互为邻补角,∠1=120°,∴∠2=180°-∠1=180°-120°=60°,∴∠2的余角的度数为90°-60°=30°.故选:A .[点睛]此题考查邻补角和余角的定义,是基础题,熟记概念是解题的关键.6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]根据无理数的定义求解即可.[详解]解:2π,0.04445555⋯,0.9-共3个无理数 故选B.[点睛]此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠5[答案]C[解析]A. ∵∠3=∠4 ,∴ AB ∥CD (内错角相等,两直线平行),故不正确;B. ∵∠A+∠ADC=180°,∴ AB ∥CD (同旁内角互补,两直线平行),故不正确;C. ∵∠1=∠2,∴ AB ∥CD (内错角相等,两直线平行),故正确;D. ∵∠A=∠5,∴ AB ∥CD (同位角相等,两直线平行),故不正确;故选C.8.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]C[解析][分析]根据平面直角坐标系内各象限内点的坐标符号特征判定即可.[详解]点P(-2020,-2020)在第三象限内,故选:C .[点睛]本题考查平面直角坐标系内象限及点的坐标符号,熟练掌握各象限内点的坐标符号特征是解答的关键.9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒[答案]C[解析][分析] 根据平行线的性质,可得:∠3=∠1=28°,结合∠4=90°,即可求解.[详解]∵三角板的直角顶点放在直线上,a b ∥,∴∠3=∠1=28°,∵∠4=90°,∴∠5=180°-90°-28°=62°,∴∠2=∠5=62°.故选C .[点睛]本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠EFC=180° [答案]C[解析][分析]先根据平行线的判定得到AD∥BG,AB∥DC,再利用平行线的性质对各个选项进行判断即可. [详解]解:∵∠B=∠DCG=∠D,∴AB∥DC(同位角相等,两直线平行),AD∥BG(内错角相等,两直线平行),∴∠AEF=∠EFC(两直线平行,内错角相等),∠BEF+∠EFC=180°(两直线平行,同旁内角互补),∠A+∠B=180°,∠B+∠BCF=180°(两直线平行,同旁内角互补),∴∠A=∠BCF(等量代换),∵EF与BC不一定平行,∴无法证明∠AEF=∠EBC.故选C.[点睛]本题主要考查平行线的判定与性质,解此题的关键在于熟练掌握其知识点.二、填空题11.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=_______.[答案]128°[解析][分析]根据垂直的定义得出∠AOE=90°,最后根据∠COB=∠AOD=∠AOE +∠EOD进行求解.[详解]∵OE⊥AB,∠EOD=38°,∴∠AOE=90°,∴∠COB=∠AOD=∠AOE +∠EOD=90°+38°=128°,故答案为:128°.[点睛]本题考查垂直的定义,对顶角的性质,熟练掌握对顶角相等是解题的关键.12.一个小区大门的栏杆如图所示,BA垂直地面AE于,CD平行于地面AE,那么∠+∠=_________.ABC BCD[答案]270[解析][分析]作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.[详解]解:作CH⊥AE于H,如图,∵AB⊥AE,CH⊥AE,∴AB∥CH,∴∠ABC+∠BCH=180°,∵CD∥AE,∴∠DCH+∠CHE=180°,而∠CHE=90°,∴∠DCH=90°,∴∠ABC+∠BCD=180°+90°=270°.故答案为270°.点睛]本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.[答案]8.4[解析][分析]根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个长方形,据此计算即可.[详解]解:如图,利用平移把楼梯的横竖向上向右平移,构成一个长、宽分别为5.8米、2.6米的长方形,∴地毯的长度为2.6+5.8=8.4(米).故答案为:8.4.[点睛]本题主要考查了平移的性质,掌握基本性质是解题的关键.15.49的平方根是_______;-125的立方根是_______81_______.[答案](1). 23(2). -5 (3). 9[解析][分析]根据平方根、立方根、算术平方根的定义,即可解答.[详解]49的平方根是23,-125的立方根是-5819,故答案为:23;-5;9.[点睛]本题考查了平方根、立方根、算术平方根,熟练掌握它们的定义及运算方法是解答的关键.16.已知 a , b 为两个连续整数,且<b ,则 a+b 的值为______.[答案]7[解析]<<,由此可确定a 和b 的值,进而可得出a+b 的值.本题解析: 根据a b, a 、b 为两个连续整数,又因为34,得a=3,b=4将a=3,b=4代入a+b,得a+b=7.故答案为7.点睛:此题考查的是如何根据无理数的范围确定两个有理数的值,,可以很容易得到其相邻两个整数,再结合已知条件即可确定a 、b 的值.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.[答案]3[解析]根据平面直角坐标系的特点,可知到y 轴的距离为横坐标的绝对值,因此可知P 点到y 轴的距离为3. 故答案为3.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.[答案]±4[解析]试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4. 考点:1.三角形的面积;2.坐标与图形性质. 三、解答题19.计算:(1(2)[答案](1;(2)[解析][分析](1)先去括号,再根据二次根式的加减运算法则即可解答;(2)直接利用二次根式的加法法则合并即可解答.[详解](1)(6+3)-3=6+3-3=6;(2)37+27=(3+2)7=57.[点睛]本题考查了二次根式的加减法运算,熟练掌握二次根式的加减法运算法则是解答的关键.20.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.[答案](1)x=173或x=13;(2)x=-12. [解析][分析](1)先化简,再根据平方根的概念进行计算(2)根据立方根的概念直接开立方,再计算求值. [详解]解:(1)(x-3)2=649,则x-3=±83. ∴x=±83+3,即x=173,或x=13. (2)2x-1=-2,∴x=-12. [点睛]此题重点考察学生对平方根,立方根的理解,掌握平方根,立方根的计算方法是解题的关键.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由[答案](1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析[解析]详解]解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、的值;(2)求+a b 算术平方根.[答案](1)a=1,b=8;(2)a+b 的算数平方根为3[解析][分析](1)根据平方根的性质一个正数有两个平方根,它们互为相反数列出算式,求出a 的值,再根据立方根的定义求出b 的值即可;(2)求出a+b 的值,根据算数平方根的概念求出答案即可.[详解]解:(1)∵7a -和24a +是某正数的两个平方根,∴7a -+24a + =0,∴a=1,∵7b -的立方根是1,∴71b -=∴b=8;(2)∵a=1,b=8;∴a+b=9,∴a+b 的算数平方根为3[点睛]本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.23.如图,AD⊥BC,垂足为D,点E、F分别在线段AB、BC上,EF⊥BC,∠CAD=∠DEF,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.[答案](1)见解析;(2)ED与AC平行,见解析[解析]分析](1)先由AD⊥BC,EF⊥BC证得∠ADB=∠EFB=90°,再根据平行线的判定即可证得结论;(2)由EF∥AD得∠DEF=∠EDA,进而证得∠EDA=∠CAD,即可得出结论.[详解](1)∵ AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴ EF∥AD(2)ED与AC平行,理由为:∵EF∥AD,∴∠DEF=∠EDA,∵∠CAD=∠DEF,∴∠EDA=∠CAD,∴ED∥AC.即ED与AC平行.[点睛]本题考查了平行线的判定与性质、垂直定义,掌握平行线的判定与性质并能熟练运用是解答的关键.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.[答案](1)见解析;(2)实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)见解析[解析][分析](1)根据图书馆、行政楼的坐标信息,建立合适的平面直角坐标系;(2)根据上题中建立的平面直角坐标系可以写出其他四个地点的坐标;(3)根据P点坐标可以直接在平面直角坐标系中表示出来.[详解](1)由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)根据平面直角坐标系,P(-1,-3)的位置如下图,[点睛]本题主要考查平面直角坐标系,根据题中所给的坐标信息确认O(0,0)的位置,从而建立平面直角坐标系是解答本题的关键.25.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.[答案]∠1=70°,∠2=110°[解析][分析]由平行线的性质知∠DEF=∠EFG=55°,由折叠的性质知∠DEF=∠GEF=55°,则可求得∠2=∠GED=110°,进而可求得∠1的值.[详解]∵AD∥BC,∴∠DEF=∠EFG=55°.由对称性知∠GEF=∠DEF∠GEF=55°,∴∠GED=110°.∵AD∥BC,∴∠2=∠GED=110°.∴∠1=180°-110°=70°,[点睛]本题考查了翻折的性质及平行线的性质,平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠()∴∠3=∠∴AD∥BE()[答案]BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.[解析][详解]解:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAE=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

4 27.如图,表示的点在数轴上表示时,所在哪两个字母之间()人教版七年级下册数学期中考试试卷2020 年 4 月一、单选题1. 下列各图中,∠1 与∠2 是对顶角的是()2.的平方根是( )A .2B .C .±2D .±3. 在下列所给出坐标的点中,在第二象限的是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)4. 在实数7 π,, 3 -8 , 0,-1.414, ,,0.1010010001 中,无理数有()A .2 个222B .3 个C .4 个D .5 个5. 如图所示,点E 在 AC 的延长线上,下列条件中能判断 AB / /CD ( )A .∠3 = ∠4 C . ∠D = ∠DCE 6.下列命题是假命题的是( )A .对顶角相等C .平行于同一条直线的两直线平行B .∠1 = ∠2 D . ∠D + ∠ACD = 180︒B .两直线平行,同旁内角相等D .同位角相等,两直线平行A .C 与 DB .A 与 BC .A 与 CD .B 与 C8. 点P 位于x 轴下方,y 轴左侧,距离x 轴 4 个单位长度,距离y 轴 2 个单位长度,那么点 P 的坐标是( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)2536 A . B .C .D .9.在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点A(-1,4)的对应点为C (4,1);则点B(a,b)的对应点F的坐标为()A.(a+3,b+5)B.(a+5,b+3)C.(a-5,b+3)D.(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2 的度数()A.10°B.25°C.30°D.35°二、填空题7 x11.若整数x 满足|x|≤3,则使为整数的x的值是(只需填一个).12.如图,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=.13.把9 的平方根和立方根按从小到大的顺序排列为.14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A(0,1),A(1,1),A(1,0),A(2,0),…1 2 3 4(n 为自然数)的坐标为(用n 表示)那么点A4n+1三、解答题15.计算:100 (1) +(2) - 2 -16. 求下列各式中x 的值:(1)2x 2=4;(2)64x 3 + 27=017. 如图,直线a ∥b ,点B 在直线上b 上,且 AB ⊥BC ,∠1=55°,求∠2 的度数.18. 完成下面的证明:如图,点E 在直线 DF 上,点B 在直线 AC 上,若∠AGB=∠EHF ,∠C=∠D . 求证:∠A=∠F.证明:∵∠AGB=∠EHF ∠AGB=(对顶角相等)∴∠EHF=∠DGF ∴DB ∥EC∴∠=∠DBA又∵∠C=∠D3 -83 (-2)27 2∴∠DBA=∠D ∴DF ∥ ∴∠A=∠F.19. 已知 5a+2 的立方根是 3,3a+b-l 的算术平方根是 4,c 是 整数部分.(1) 求 a ,b ,c 的值; (2) 求 a+b+c 的平方根.20. 如图,直线AB 是某天然气公司的主输气管道,点C 、D 是在 AB 异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道道. 有以下两个方案:方案一:只取一个连接点 P ,使得像两个小区铺设的支管道总长度最短,在图中标出点 P 的 位置,保留画图痕迹;方案二:取两个连接点M 和 N ,使得点M 到 C 小区铺设的支管道最短,使得点N 到 D 小区铺设的管道最短. 短在途中标出M 、N 的位置,保留画图痕迹;设方案一中铺设的支管道总长度为L 1 为L ,方案二中铺设的支管道总长度为为L 2,则L 1与L 2 的大小关系为: L 1 L (填“> ”、“< ”或)理由是 .21. 如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系. (2)写出市场的坐标为;超市的坐标为 .1(3 )请将体育场为A、宾馆为C 和火车站为B 看作三点用线段连起来,得ABC ,然后将此三角形向下平移4 个单位长度,画出平移后的 A B C,并求出其面积.1 1 122.如图,长方形OABC 中,O 为直角坐标系的原点,A、C 两点的坐标分别为(6,0),(0,10),点B在第一象限内.(1)写出点B 的坐标,并求长方形OABC 的周长;(2)若有过点C 的直线CD 把长方形OABC 的周长分成3:5 两部分,D 为直线CD 与长方形的边的交点,求点D 的坐标.23.如图1,已知射线CB∥OA,∠C=∠OAB,(1)求证:AB∥OC ;(2)如图2,E、F 在CB 上,且满足∠FOB=∠AOB,OE 平分∠COF.①当∠C=100°时,求∠EOB 的度数.②若平行移动AB,那么∠OBC:∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.4 4 2 4 2 4参考答案1.C 【解析】依据对角的定义进行判断即可.【详解】解:∵互为对顶角的两个角的两边互为反向延长线,∴A 中∠1 和∠2 是邻补角,C 中的∠1 和∠2 是对顶角. 故选:C . 【点睛】本题主要考查的是邻补角、对顶角的定义,熟练掌握相关概念是解题的关键. 2.D 【解析】先化简 ,然后再根据平方根的定义求解即可.【详解】∵ =2,2 的平方根是± ,∴ 的平方根是± .故选 D . 【点睛】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错. 3.B 【解析】根据第二象限内点的坐标符号(-,+)进行判断即可. 4.A 【解析】6 共 解:无理数有: 5,π 22 个.故选A .点睛:本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π, ,0.8080080008…(每两个8 之间依次多 1 个 0)等形式.5.B 【解析】判断两直线平行,主要利用同位角相等,同旁内角互补,内错角相等【详解】A 项,∠3 与∠4 是直线 BD 与 AC 的内错角,所以不满足.B 项,∠1 与∠2 是直线 AB 与CD 的内错角,所以∠1=∠2,可以得到 AB//CD ,选 B 项.C 项∠D 与∠DCE 是直线 BD 与 AE 的内错角,所以不满足.D 项,∠D 与∠ACD 是直线 BD 与 AE 的同旁内角,所以不满足. 【点睛】本题主要考查平行线的判定法则,同时也考查学生对于同位角,内错角,同旁内角的掌握情况. 6.B 【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意; B .两直线平行,同旁内角互补,故本选项错误,符合题意; C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意; D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意. 故选B . 7.A 【解析】考点:估算无理数的大小;实数与数轴. 8.B 【解析】解:∵点 P 位于 x 轴下方,y 轴左侧,∴点 P 在第三象限;试题分析:由 6.25<7<9 可得 2.5< 和 D 两个字母之间.故答案选A . <3,所以表示 的点在数轴上表示时,所在C∵距离y 轴2 个单位长度,∴点P 的横坐标为﹣2;∵距离x 轴4 个单位长度,∴点P 的纵坐标为﹣4;∴点P的坐标为(﹣2,﹣4).故选B.9.D【解析】解:平移中,对应点的对应坐标的差相等,设F(x,y).根据题意得:4﹣(﹣1)=x﹣a;1﹣4=y﹣b,解得:x=a+5,y=b-3;故F的坐标为(a+5,b-3).故选D.点睛:本题考查了点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.10.B【解析】【分析】延长AB 交CF 于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】如图,延长AB 交CF 于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选B.【点睛】考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.7 - x 3 9 11.﹣2(答案不唯一) 【解析】试题分析:∵|x|≤3,∴﹣3≤x≤3.∵x 为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3.分别代入 可知,只有 x=﹣2,3 时 为整数.∴使 为整数的x 的值是﹣2 或 3(填写一个即可).12.55°. 【解析】【分析】首先根据对顶角相等可得∠BOF=70°,再根据角平分线的性质可得∠GOF=35°,然后再算出 ∠DOF=90°,进而可以根据角的和差关系算出∠DOG 的度数. 【详解】∵∠AOE=70°,∴∠BOF=70°, ∵OG 平分∠BOF , ∴∠GOF=35°, ∵CD ⊥EF , ∴∠DOF=90°,∴∠DOG=90°﹣35°=55°, 故答案是:55°. 【点睛】考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.﹣3< <3.【解析】【分析】先分别得到 3 的平方根和立方根,然后比较大小. 【详解】∵9 的平方根为﹣3,3,7 - x 7 - x3 93 93 933325 9139 的立方根为,∴把9 的平方根和立方根按从小到大的顺序排列为﹣3<<3.故答案是:﹣3<<3.【点睛】考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14.(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3 时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A(2,1),n=2时,4×2+1=9,点A(4,1),n=3时,4×3+1=13,点A(6,1),∴点A4n+1(2n,1).15.(1)8;(2)-.【解析】【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值以及二次根式的性质化简得出答案.【详解】解:(1)原式=10+(﹣2)=8;(2)原式=2﹣﹣2=﹣.【点睛】考查了实数运算,解题关键是正确化简各数.316.(1)x=±;(2)x=-42 【解析】试题分析:(1)先求出x 2 的值,再根据平方根的定义解答; (2) 先求出 x 3 的值,再根据立方根的定义解答.试题解析:(1)解:方程两边都除以2 得:x 2=2,∴x =± ; 27 3(2)移项、方程两边都除以 64 得:x 3= - 64 17.35°【解析】解:,∴x = - 4.∵AB ⊥BC ,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a ∥b ,∴∠2=∠3=35°.18.∠DGF 同位角相等,两直线平行 C 两直线平行,同位角相等 AC 内错角相等,两直线平行两直线平行,内错角相等【解析】【分析】根据对顶角相等推知∠EHF=∠DGF ,从而证得两直线 DB//EC ;然后由平行线的性质得到 ∠DBA=∠D ,即可根据平行线的判定定理,推知两直线 DF//AC ;最后由平行线的性质, 证得∠A=∠F .【详解】∠AGB = ∠EHF ,13 ∠ AGB = ∠ DGF( 对顶角相等) ,∴∠EHF = ∠DGF ,∴DB / /EC( 同位角相等,两直线平行) ,∴∠ C = ∠ DBA( 两直线平行,同位角相等) ,又 ∠C = ∠D ,∴∠ DBA = ∠ D ,∴DF / /AC( 内错角相等,两直线平行) ,∴∠ A = ∠ F( 两直线平行,内错角相等) .故答案为∠ DGF ;同位角相等,两直线平行;C ;两直线平行,同位角相等;AC ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.19.(1)a=5,b=2,c=3.(2)3a-b+c 的平方根是±4.【解析】试题分析:利用立方根的意义、算术平方根的意义、无理数的估算方法,求出 a 、b 、c 的值,代入代数式求出值后,进一步求得平方根即可.试题解析:解:(1)∵5a +2 的立方根是3,3a +b ﹣1 的算术平方根是 4,∴5a +2=27,3a +b﹣1=16,∴a =5,b =2.∵c 是 的整数部分,∴c =3;(2)当 a =5,b =2,c =3 时,3a ﹣b +c =16,3a ﹣b +c 的平方根是±4.点睛:本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可. 20.(1)答案见解析;(2)>;垂线段最短.【解析】【分析】根据题目要求直接连接 CD ,以及分别过 C ,D 向 AB 最垂线即可,利用直角三角形中斜边大于直角边进而得出答案即可.【详解】1 2解:如图所示:∵在 Rt △ CMP 和 Rt △ PND 中,CP >CM ,PD >DN ,∴CP +PD >CM +DN ,∴L >L .理由是垂线段最短故答案为:>;垂线段最短.21.(1)图形见解析;(2)超市(2,﹣3);(3)三角形A′B′C′的面积是 7. 【解析】分析:(1)以火车站为原点建立直角坐标系即可;(2) 根据平面直角坐标系写出点的坐标即可;(3) 根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可. 详解:(1)如图所示:(2)市场坐标(4,3),超市坐标(2,-3);(3)如图所示:1 1 1 △ A 1B 1C 1 的面积=3×6-2 ×2×2- 2 ×4×3- 2×6×1=7. 点睛:此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图形.22.(1)点 B 的坐标为(6,10),长方形 OABC 的周长为 32;(2)点D 的坐标为(2,0) 【解析】试题分析:(1)由A 、C 的坐标得到 OA ,OC 的长.由长方形的性质得到 BC ,AB 的长,从而得到点 B 的坐标和长方形OABC 的周长;(2)由CD 把长方形OABC 的周长分为3:5 两部分,得到被分成的两部分的长分别为12 和20.然后分两种情况讨论:①当点 D 在AB 上时,②当点 D 在OA 上时.试题解析:解:(1)∵A(6,0),C(0,10),∴OA=6,OC=10.∵四边形OABC是长方形,∴BC=OA=6,AB=OC=10,∴点B的坐标为(6,10).∵OC=10,OA=6,∴长方形OABC 的周长为:2×(6+10)=32.(2)∵CD 把长方形OABC 的周长分为3:5 两部分,∴被分成的两部分的长分别为12 和20.①当点D在AB上时,如图,AD=20-10-6=4,所以点D的坐标为(6,4).②当点D在OA上时,如图,OD=12-10=2,所以点D的坐标为(2,0).23.(1)见解析;(2)①35°,②∠OBC:∠OFC的值不发生变化,∠OBC:∠OFC=1:2【解析】【分析】(1)由平行线的性质得到∠C+∠COA=180°,再由∠C=∠OAB,得到∠OAB+∠COA=180°,根据同旁内角互补,两直线平行即可得到结论;(2)①先求出∠COA 的度数,由∠FOB=∠AOB,OE 平分∠COF,即可得到结论;②∠OBC:∠OFC 的值不发生变化.由平行线的性质可得∠OBC=∠BOA,∠OFC=∠FOA.由FOB=∠AOB,得到∠OFC=2∠OBC,从而得出结论.【详解】解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=∠OAB,∴∠OAB+∠COA=180°,∴AB∥OC;(2)①∠COA=180°-∠C=70°.∵∠FOB=∠AOB,OE 平分∠COF,∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=35°;②∠OBC:∠OFC 的值不发生变化.∵CB∥OA,∴∠OBC=∠BOA,∠OFC=∠FOA.∵∠FOB=∠AOB,∴∠FOA=2∠BOA,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=1:2.【点睛】本题考查了平行线的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

人教版数学七年级下册《期中考试试卷》(含答案)

人教版数学七年级下册《期中考试试卷》(含答案)
A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)
【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省巴中市恩阳区2013-2014学年下学期期中考试
七年级数学试卷
(全卷满分150分,120分钟完卷)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的番号填在下表中。

(本题共10个小题,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10 答案
1.下列等式是一元一次方程的是( )。

A .s =ab
B .2+5=7
C .x
2+1=x -2 D .3x +2y =6
2.方程2x +1=3与2-a -x
3=0的解相同,则a 的值是( )。

A .7 B .0 C .3 D .5
3.把方程0.5x -0.010.2-0.5=
0.4x -0.6
1.2的分母化为整数,正确的是( )。

A .5x -12-0.5=4x -612
B .5x -12-0.5=4x -0.612
C .5x -12-0.5=0.4x -612
D .5x -0.12-0.5=4x -612
4.某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程是( ).
A.x +14+x 6=1
B.x 4+x +16=1
C.x 4+x -16=1
D.x 4+14+x 6=1
5.下列方程组是二元一次方程组的是( )。

A .⎩⎨⎧ x +y =9,x +y 2
=3B .⎩⎨⎧ x +y =9,y +z =10C .⎩⎨⎧ x -3y =3,3x -y =10 D .⎩
⎨⎧
x +y =4,xy =5 6.若4x -3y =0,则4x -5y
4x +5y 的值为( )。

A .31
B .-14
C .1
2D .不能确定
7.如果方程组⎩⎨⎧
2x +3y =7,
5x -y =9
的解是3x +my =8的一个解,则m 等于( )。

A .1
B .2
C .3
D .4
8.不等式x -1>2的解集是( )。

A .x >1
B .x >2
C .x >3
D .x <3
9.a 为任意有理数,则不等式恒成立的是( )。

A .1-a <1
B .1-a 2<1
C .|a |≥1
2
|a | D .2a >a
10.不等式组314,13
(3)024
x x +<⎧⎪
⎨+-<⎪⎩的最大整数解是( )。

A .0 B .-1 C .1 D .-2
二、填空题:(每小题3分,共30分,把正确答案直接写在题中横线上) 11.(k -3)x |k |-2=2是关于x 的一元一次方程,则k =______。

12.当x =______时,式子3x +12的值比2x -1
3的值小2。

13.若出租车起步价是3元(3千米以内为起步价),以后每千米0.50元,某人乘出租车付了8元钱,则该出租车行驶的路程为______千米。

14.有一个密码系统,其原理如图所示:
输入x →x +6→输出,当输出为10时,则输入的x =__________。

15.方程组⎩⎨⎧
x -y =1,
x +y =3
的解是__________。

16.若|x -2y +1|+|x +y -5|=0,则x =__________,y =__________。

17.已知方程组⎩⎨⎧
2x +3y =14,
3x +2y =15,不解方程组,则x +y =__________。

18.已知⎩⎨⎧
x =m ,y =n 和⎩⎨⎧
x =n ,y =m 是方程2x -3y =1的解,则代数式2m -6
3n -5的
值为__________。

19.当a 满足条件________时,由ax >8可得x <
8
a。

20.当0<a <b <1时,用“>”或“<”填空:①1a ________1b
,②a 2________b 2。

三、解答题:
21.解下方程(组)。

(每小题5分,共25分。

) ⑴.2(2)3(41)9(1)x x x ---=-⑵.121
146
x x -+-=
⑶.
20
328
x y
x y
-=


+=

⑷.
8
4
23
x y
x y
+=



+=
⎪⎩
⑸.
12
2522
4
x y z
x y z
x y
++=


++=

⎪=

22. 解不等式组 ,并将解集在数轴上表示出来。

(每小题5分,共10分)
⑴2132
x x
-<+⑵
21 381 x x
x x
<+


+≥-⎩
23. 求不等式组
2133
211
(1)()
323
x x
x x
+<+



-≤+
⎪⎩
的非负整数解。

(5分)
24.m 为何值时,方程组3523518x y m
x y m -=⎧⎨+=-⎩ 的解互为相反数?求这个方程组
的解。

(6分)
25. 已知关于y x ,的方程组a
y
x a
y
x -=++=+13313的解满足0>+y x ,则a 的取
值。

(6分)
⎩⎨

26.某同学用8块相同的长方形地砖拼成一个矩形,如图所示,求每块地砖的面
积是多少?(6分)
40CM
27.甲队有33人,乙队有24人,因工作需要现要使甲队人数是乙队人数的
2倍,则应从乙队调多少人到甲队?(6分)
28. 用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(7分)
29.先阅读第(1)小题的解答,然后解答第(2)小题。

(7分)
(1)、解方程组⎩⎨⎧=--=--5)(401y y x y x (2)、解方程组
⎪⎩

⎨⎧=++-=-9275
32232y y x y x 解:由①得1=-y x ③
将③代入②得4×51=-y ,即1-=y , 将1-=y 代入③得,0=x
所以⎩⎨⎧-==10y x
30.某工厂计划生产A ,B 两种产品共10件,其生产成本和利润如下表:
A 种产品
B 种产品 成本(万元/件) 3 5 利润(万元/件) 1 2
(1)若工厂计划获利14万元,问A ,B 两种产品应分别生产多少件?(4分) (2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(4分)
(3)在(2)条件下,哪种方案获利最大?并求最大利润。

(4分)


参考答案
一、选择题:
二、填空题: 11. - 3 12. - 17
5
13. 13 14. 4 15. ⎩⎨⎧
x =2,
y =1
16. 3;2 17. 29
5 18. 1 19. a <0 20. ①> ; ②< 三、解答题:
21.⑴10x =-⑵17x =-⑶⎩

⎧==12
y x ⑷80x y =⎧⎨=⎩⑸8
22
x y z =⎧⎪=⎨⎪=⎩
22. ⑴3x >-⑵9
12
x -≤< (数轴略)
23. 25x -<≤,非负整数解为0,1,2,3,4,5。

24.12,3,3m x y ===-
25. a ﹥- 1
26. 每个小矩形长为30㎝,宽为10㎝。

面积为300㎝2。

27. 解:设应从乙队调x 人到甲队,根据题意得:
332(24)x x +=-
解之得5x =。

经检验,符合题意。

答:应从乙队调5人到甲队.
28. 解:设用x 张制盒身,y 张制盒底,根据题意得:
150
21643x y x y +=⎧⎨
⨯=⎩
, 解之得8664x y =⎧⎨=⎩。

经检验,符合题意。

答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒。

29.⎩⎨⎧==4
7y x
30. 解:(1)设生产A 种产品x 件,B 种产品为(10-x )件,由题意得:
x +2(10-x )=14,
解得x =6,所以10-x =4(件)。

答:A 产品生产6件,B 产品生产4件。

(2)设生产A 种产品y 件,B 种产品为(10-y )件,由题意得:
35(10)44,
2(10)14,y y y y +-≤⎧⎨
+->⎩ 解得3≤y <6。

所以方案一:A 生产3件,B 生产7件;
方案二:A 生产4件,B 生产6件; 方案三:A 生产5件,B 生产5件。

(3)第一种方案获利最大,3×1+7×2=17。

所以最大利润是17万元。

相关文档
最新文档