人教版备考2020年中考数学二轮复习拔高训练卷 专题2 方程与不等式D卷
福州市中考数学二轮复习拔高训练卷 专题2 方程与不等式

福州市中考数学二轮复习拔高训练卷专题2 方程与不等式姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果甲、乙、丙三个村合修一段水渠,计划出工65人,按各村受益土地面积3:4:6出工,求各村应出工的人数. ①设甲、乙、丙三村分别派3x,4x,6x人,依题意可得3x+4x+6x=65; ②设甲村派x人,依题意得x+4x+6x=65; ③设甲村派x人,依题意得x+ x+2x=65;④设丙村派x人,依题意得3x+4x+x=65.上面所列方程中正确的是()A . ①②B . ②③C . ③④D . ①③2. (2分)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A . a<2B . a>2C . a<2且a≠1D . a<-23. (2分) (2017七上·拱墅期中) 如果,长方形中有个形状、大小相同的小长方形,且,,则图中阴影部分的面积为().A .B .C .D .4. (2分)若,,则的值为()A . 5B . 4C . 3D . 25. (2分)已知a,b是方程x2+2013x+1=0的两个根,则(1+2015a+a2)(1+2015b+b2)的值为()A . 1B . 2C . 3D . 46. (2分) .如图所示,是本月份的日历表,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是()日一二三四五六1 2 34 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 23 2425 26 27 28 29 30A . 24B . 43C . 57D . 697. (2分) (2019八上·萧山月考) 若方程组的解是,则方程组的解是()A .B .C .D .8. (2分)医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是()住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分60超过1000~3000元的部分80……A . 1000元B . 1250元C . 1500元D . 2000元9. (2分)(2019·河北模拟) 欧几里得的《原本)记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= ,则该方程的一个正根是()A . AC的长B . AD的长C . BC的长D . CD的长10. (2分) (2017七上·拱墅期中) 某商品降价后欲恢复原价,则提价的百分数为().A .B .C .D .二、填空题 (共5题;共5分)11. (1分)方程x2-3x+1=0的解是________。
2020年中考数学考点过关培优训练卷:《方程与不等式应用》(附答案)

2020年中考数学考点过关培优训练卷:《方程与不等式应用》1.工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个.(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?解:(1)设该车间有男生x人,则女生人数是(2x﹣10)人,则x+(2x﹣10)=44.解得x=18则2x﹣10=26.答:该车间有男生18人,则女生人数是26人.(2)设应分配y名工人生产螺丝,(44﹣y)名工人生产螺母,由题意得:50(44﹣y)×2=120y,解得:y=20,44﹣y=24答:分配20名工人生产螺丝,24名工人生产螺母.2.用方程解答下列问题(1)一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,余下的由甲乙一起完成余下的部分需要几小时完成?(2)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米秒的速度跑了多少米?解:设余下的部分需要x小时完成,×4+(+)x=1,解得x=6.答:余下的部分需要6小时完成;(2)解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60﹣x)秒.根据题意列方程6x+4(10×60﹣x)=3000,去括号得:6x+2400﹣4x=3000.移项得:6x﹣4x=3000﹣2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.3.甲骑车从A到B,乙骑车从B到A,甲每小时比乙多走2千米,两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米.求A、B两地的距离.解:设乙的速度为x千米/时,则甲的速度为(x+2)千米/时,由题意,得(10﹣8)(x+x+2)+36=(12﹣8)(x+x+2)﹣36,解得:x=17,∴甲的速度为:17+2=19千米/时.∴A、B两地的距离为:2×(17+19)+36=108千米.答:A、B两地的距离为108千米.4.佳乐家超市元旦期间搞促销活动,活动方案如下表:一次性购物优惠方案不超过200元不给予优惠超过200元,而不超过1000元优惠10%超过1000元其中1000元按8.5折优惠,超过部分按7折优惠小颖在促销活动期间两次购物分别支付了134元和913元.(1)小颖两次购买的物品如果不打折,应支付多少钱?(2)在此活动中,他节省了多少钱?解:(1)①∵134元<200×90%=180元∴小颖不享受优惠;②∵第二次付了913元>1000×85%=850元∴小颖享受优惠,其中1000元按8.5折优惠,超过1000元部分按7折优惠.设小颖第二次所购价值x元的货物,根据题意得85%×1000+(x﹣1000)×70%=913解得x=10901090+134=1224(元)答:小颖两次购买的物品如果不打折,应支付1224元钱;(2)1090﹣913=177(元)答:在此次活动中,他节省了177元钱.5.某中学购买A、B品牌篮球分别花费了2400元、1950元,且购买A品牌篮球数量是购买B品牌篮球数量的2倍,购买一个B品牌篮球比购买一个A品牌篮球多花50元.(1)求购买一个A品牌、一个B品牌的篮球各需多少元?(2)该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球?解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.6.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为(x+10)元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?解:(1)每件B商品的售价为(x+10)元;故答案为:(x+10);(2)根据题意得,5x=3(x+10)+10,解得x=20,∴x+10=30;答:A,B商品每件的售价分别为20元,30元;(3)当m≤15时,方案一:20m+30×20×90%=20m+540;当m>15时,方案一:15×20+(m﹣15)×20×50%+30×20×90%=10m+690;方案二:(20m+30×20)×80%=16m+480,当m≤15时,20m+540>16m+480∴应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,∴当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.7.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种进价分别为25元和45元的节能灯120只.(1)求甲、乙两种节能灯各进多少只?(2)若商场现只能购进甲种节能灯60只,则按计划剩下的钱最多能购进乙种节能灯多少只?解:(1)设购进甲种节能灯x只,乙种节能灯y只,依题意,得:,解得:.答:购进甲种节能灯80只,乙种节能灯40只.(2)设按计划剩下的钱能购进乙种节能灯y只,由题意,得3800﹣60×25≥45y解得y≤.由于y是正整数,所以y最大值是51.答:按计划剩下的钱最多能购进乙种节能灯51只.8.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.9.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得2(+)+=1,解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.10.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为11.2元;(2)若行驶路程为xkm(x>6),则打车费用为(2.4x﹣1.6)元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米?解:(1)支付车费:7+1+(5﹣3)×1.6=11.2(元),故答案为:11.2;(2)7+1+1.6×3+2.4(x﹣6)=8+4.8+2.4x﹣14.4=2.4x﹣1.6(元),故答案为:(2.4x﹣1.6);(3)设当打车费用为32元时,行驶路程为x千米,由题意得:2.4x﹣1.6=32,解得:x=14,∴当打车费用为32元时,行驶路程为14千米.11.某次知识竞赛共有25道选择题,要求选出正确答案,竞赛规则为:选对一道得10分,选错或不选扣5分,如果小明在本次竞赛中的得分不低于180分,那么他至少要选对多少道题?解:设他要选对x道题,根据题意得:10x﹣5(25﹣x)≥180得x≥20,∵x是整数,∴他至少要选对21道题.答:他至少要选对21道题.12.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.13.某超市元月1日搞促销活动,购物不超过200元不给优惠;超过200元,而不超过500元优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,某人两次购物分别用了134元、466元.(1)此人两次购物时物品不打折分别值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购买的物品合起来一次购买是不是更合算?请说明你的理由.解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品享受到了超过500元,而不超过500元的优惠.设其标价x元,则500×0.9+(x﹣500×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;(2)134+520﹣134﹣466=54,所以省了54元;(3)两次物品合起来一次购买合算.不优惠需要支付134+520=654元,两次合起来一次购买支付500×0.9+(654﹣500)×0.8=573.2元,573.2<134+466<654,所以两次物品合起来一次购买合算.14.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是﹣6;点P到点Q的距离是22个单位长度;(2)动点P从点A运动至C点需要19秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.解:如图所示:(1)设动点P从点A出发,运动2秒后的点对应数为x,∵点P以2单位/秒的速度沿着“折线数轴”的正方向运动,∴AP=2×2=4,又∵x﹣(﹣10)=4,解得:x=﹣6,又∵同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,∴QC=2×1=2,又∵AC=28,AC=AO+OB+BC,∴点P到点Q的距离=28﹣4﹣2=22;故答案为﹣6,22;(2)由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为,OB段时间为=10,BC段时间为=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),故答案为19秒;(3)设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒),此时相遇点M在“折线数轴”上所对应的数是为3+=;故答案为,;(4)当点P在AO,点Q在BC上运动时,依题意得:10﹣2t=8﹣t,解得:t=2,当点P、Q两点都在OB上运动时,t﹣5=2(t﹣8)解得:t=11,当P在OB上,Q在BC上运动时,8﹣t=t﹣5,解得:t=;当P在BC上,Q在OA上运动时,t﹣8﹣5+10=2(t﹣5﹣10)+10,解得:t=17;即PO=QB时,运动的时间为2秒或秒或11秒或17秒.15.某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,问制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?(用一元一次方程解答)解:设用xkg面粉制作大月饼,则利用(4500﹣x)kg制作小月饼,根据题意得出:÷2=÷4,解得:x=2500,则4500﹣2500=2000(kg).答:用2500kg面粉制作大月饼,2000kg制作小月饼,才能生产最多的盒装月饼.16.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960,答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,既省钱,又省时间.17.2017年12月10日,上海洋山深水港四期码头开始运行,这是目前全球最大规模、自动化程度最高的高科技新型码头.目前,码头配置了100台无人驾驶的自动引导车、轨道吊和桥吊三种智能设备投入使用其中桥吊10台,自动引导车数量至少是轨道吊数量的1.25倍.(1)配置了自动引导车最少多少台?(2)在试运行初期,每台自动引导车每小时的耗电量为2.4千瓦时,投入使用的自动引导车数量是(1)中数量的.后期,投入自动引导车的数量在(1)中数量的基础上增加工2a%;每台自动引导车技术改良后的每小时耗电量有小幅(即少于一半)降低,在原耗电量的基础上下降了a%.而轨道吊和桥吊的耗电量及数量未做任何改变,这样,设备总耗电量每小时增加了152.4千瓦时,求a.解:(1)设配置了自动引导车x台,则配置了轨道吊(100﹣10﹣x)台,依题意,得:x≥1.25(100﹣10﹣x),解得:x≥50.答;配置了自动引导车最少50台.(2)依题意,得:50(1+2a%)×2.4(1﹣a%)﹣50××2.4=152.4,整理,得:a2﹣350a+17400=0,解得:a1=60,a2=290.∵a%<50%,∴a<200,∴a=60.答:a的值为60.18.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣45x+200=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.19.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发或.秒时,△BPQ中有一个角与∠A相等.解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.20.某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?解:(1)设第一批购进文化衫x件,根据题意得:+10=,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:第一批购进文化衫50件.(2)第二批购进文化衫(1+40%)×50=70(件).设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120.答:该服装店销售该品牌文化衫每件最低售价为120元.。
备考2024年中考数学二轮复习-方程与不等式_分式方程_分式方程的解及检验-单选题专训及答案

备考2024年中考数学二轮复习-方程与不等式_分式方程_分式方程的解及检验-单选题专训及答案分式方程的解及检验单选题专训1、(2017佳木斯.中考真卷) 已知关于x的分式方程 = 的解是非负数,那么a的取值范围是()A . a>1B . a≥1C . a≥1且a≠9D . a≤12、(2017鹤岗.中考真卷) 若关于x的分式方程的解为非负数,则a的取值范围是()A . a≥1B . a>1C . a≥1且a≠4D . a>1且a≠43、(2017青山.中考模拟) 下列方程中,没有实数根的是()A . 2x+3=0B . x2﹣1=0C . = ﹣3D . x2+x﹣1=04、(2016南岗.中考模拟) 已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A . ﹣1<b≤3B . 2<b≤3C . 8≤b<9D . 3≤b<45、(2019海曙.中考模拟) 从0,1,2,3,4,5,6这七个数中,随机抽取一个数,记为a,若a使关于x的不等式组的解集为x>1,且使关于x的分式方程 =2的解为非负数,那么取到满足条件的a值的概率为()A .B .C .D .6、(2017乐清.中考模拟) 关于x的分式方程的解是负数,则m的取值范围是()A . m>﹣1B . m>﹣1且m≠0C . m≥﹣1D . m≥﹣1且m≠07、(2018滨州.中考模拟) 关于x的分式方程的解为正实数,则实数m的取值范围是()A . m<-6且m≠2B . m>6且m≠2C . m<6且m≠-2D . m<6且m≠28、(2017滨州.中考模拟) 分式方程﹣ =0解的情况是()A . 有解,x=1B . 有解,x=5C . 有解,x=4D . 无解9、(2016宜昌.中考真卷) 分式方程 =1的解为( )A . x=﹣1B . x=C . x=1D . x=210、(2016张家界.中考模拟) 若关于x的方程 =1无解,则a的值为()A . 0B . 1C . 2D . 411、(2019九龙坡.中考模拟) 如果关于x的分式方程的解为非负数,且关于x的不等式组无解,则所有符合条件的整数m的个数为()A . 6B . 5C . 4D . 312、(2020新泰.中考模拟) 关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是()A . ﹣19B . ﹣15C . ﹣13D . ﹣913、(2017江北.中考模拟) 在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程﹣1= 的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是()A . ﹣2B . ﹣1C . 0D . 214、(2019重庆.中考真卷) 若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A . 0B . 1C . 4D . 615、(2019重庆.中考真卷) 若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程的解为正数,则所有满足条件的整数a的值之和是()A . -3B . -2C . -1D . 1.16、(2017德阳.中考模拟) 关于x的分式方程 = 有解,则字母a的取值范围是()A . a=5或a=0B . a≠0C . a≠5D . a≠5且a≠017、(2019重庆.中考模拟) 若关于x的不等式组无解,且关于y的方程=1的解为正数,则符合题意的整数a有()个.A . 1个B . 2个C . 3个D . 4个18、(2021河南.中考模拟) 若数使关于的分式方程有正数解,且使关于的不等式组有解,则所有符合条件的整数的个数为()A . 1B . 2C . 3D . 419、(2020重庆.中考真卷) 若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程 + =﹣1有非负整数解,则符合条件的所有整数a的和为()A . ﹣1B . ﹣2C . ﹣3D . 020、(2020重庆.中考真卷) 若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程 + =1有正整数解,则所有满足条件的整数a的值之积是()A . 7B . ﹣14C . 28D . ﹣5621、(2020云梦.中考模拟) 若关于x的不等式组的所有整数解的和为5,且使关于y的分式方程的解大于1,则满足条件的所有整数a的和是()A . 6B . 11C . 12D . 1522、(2020涪城.中考模拟) 关于x的方程的解为正数,则m的取值范围是()A .B .C . 且D . 且23、(2020新都.中考模拟) 下列结论正确的是()A .是分式方程 B . 方程=1无解 C . 方程的根为x=0 D . 解分式方程时,一定会出现增根24、(2020宿州.中考模拟) 如果分式方程无解,则的值为()A . -4B .C . 2D . -225、(2020重庆.中考模拟) 已知关于x的分式方程 1=0有整数解,且关于x的不等式组有且只有3个负整数解,则符合条件的所有整数a的个数为( )A . 1B . 2C . 3D . 426、(2020重庆.中考模拟) 使得关于 x 的不等式组无解,且使分式方程的解小于 4 的所有整数a 的个数是().A . 2B . 3C . 4D . 527、(2021广州.中考真卷) 方程的解为()A .B .C .D .28、若关于x的分式方程的解为正数,则m的取值范围是().A . m<-2且 B . m<2且 C . m>-3且 D . m>-3且29、若关于x的一元一次不等式组的解为x<-1,且关于y的分式方程1的解是正整数,则所有满足条件的整数a的值之和是()A . ﹣15B . ﹣10C . ﹣7D . ﹣430、(2022九下·重庆开学考) 若实数既使得关于的不等式组有解,又使得关于的分式方程有整数解,则满足条件的所有整数的和为()A . 4B . 2C . 0D . -2分式方程的解及检验单选题答案1.答案:C2.答案:C3.答案:C4.答案:D5.答案:B6.答案:B7.答案:D8.答案:C9.答案:A10.答案:C11.答案:B12.答案:C13.答案:B14.答案:B15.答案:A16.答案:D17.答案:D18.答案:B19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
挑战2024年中考数学压轴题之学霸秘笈大揭秘(全国通用)专题02解方程与解不等式篇(原卷版+解析)

专题02 解方程与解不等式1. 解一元一次方程的步骤:①去分母——等式左右两边同时乘分母的最小公倍数。
②去括号。
注意括号前的符号,是否需要变号。
③移项——含有未知数的项移到等号左边,常数移到等号右边。
移动的项一定要变符号。
④合并——利用合并同类项的方法合并。
⑤系数化为1——等式左右两边同时除以系数(或乘上系数的倒数)。
2. 解二元一次方程组的方法:①代入消元法:将其中一个方程的其中一个未知数用另一个未知数表示出来代入另一个方程中,实现消元,进而求出方程组的解的方法叫做代入消元法。
(通常适用于有未知数的系数是±1的方程组) ②加减消元法:当方程组中的两个方程的同一个未知数的系数相同或相反时,则可以利用将两个方程相减或相加的方法消掉这个未知数的方法叫做加减消元法。
3. 解分式方程的步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。
把分式方程化成整式方程。
②解整式方程。
③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。
若公分母不为0,则未知数的值即是原分式方程的解。
若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。
4. 解一元二次方程的方法:(1)直接开方法:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0) ①p x =2时,方程的解为:p x p x -==21,。
②()p a x =+2时,方程的解为:a p x a p x --=-=21,。
③()p b ax =+2时,方程的解为:a b p x a b p x --=-=21,。
(2)配方法的具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。
②移项——把常数项移到等号右边。
③配方——两边均加上一次项系数一半的平方得到完全平方式。
④开方——整理式子,利用完全平方式开方降次得到两个一元一次方程。
⑤解一元一次方程即得到一元二次方程的根。
(3)公式法:根的判别式:ac b 42-=∆;求根公式:a ac b b x 242-±-=。
2020年中考数学二轮复习精准训练二 方程和不等式含详细答案

2020年中考数学二轮复习精准训练二 方程与不等式含答案 1.解方程组: {3x −4(x −2y)=5x −2y =12.解方程: x 2+2x−2 +1= 6x−2 .3.解不等式组: {5x −6>4①4-8<4x +1②4.解关于 x 的分式方程:93+x =63−x . 5.解方程: x x−1 ﹣ 3(x−1)(x+2) =1.6.(1)解方程: x−2x−3+1=23−x(2)解不等式组: {3x >2x −22x +1≥5x −57.解方程: 1−x−32x+2=3x x+1 .8.(1)解方程: 2x x−2=3x−2+1 ;(2)解不等式: 4(x −1)−12<x . 9.解方程: x 2−3x −2=0 .10.先化简,再求值: x 2x 2−1÷(1x−1+1) ,其中 x 为整数且满足不等式组 {x −1>1,5−2x ≥−2.11.解方程: (x −1)2=412.解方程:x 2﹣4x ﹣7=0.13.解方程组: {2x −y =33x +11−5y 2=9 . 14.方程组 {2a +4b =64a −3b =4m的解a ,b 都是正数,求非正整数m 的值. 15.解方程: x x −2=2x −1+116.关于x 、y 的方程组 {2x +y =4a +63x −y =a +4的解满足x 大于0,y 小于4.求a 的取值范围. 17.已知 {x =12y =1是二元一次方程组 {mx +ny =2nx −my =1 的解,计算 √3m −4n 3 的值. 18.先化简,再求值: (2x−1−1x )÷x+1x ,其中x 是一元二次方程x 2+2x ﹣3=0的根.19.解方程或不等式组:(1)x x−1−31−x =2(2){2x −4≥01+2x 3>x −120.解不等式组 {3x +1≥5x x−12>−2 .并写出所有整数解. 21.解不等式组 {2x +5<3(x +1)x−12≤x 3 ,并把它的解集表示在数轴上. 22.解不等式组: {3x −1≥22x+13>x −1 ,并把不等式组的解集在数轴上表示出来.23.解不等式: 1+x 2≥2x+13 ,并把它的解集表示在如图M2-6所示的数轴上24.先化简,再求值: (1+1m 2−1)÷(m −1m+1) ,其中实数m 使关于x 的一元二次方程x 2﹣4x ﹣m =0有两个相等的实数根.25.解分式方程: 22−x +3= 1−x 2−x26.解不等式组: {5(x +1)>2x −113x −1≥12(x −3) ,并把它的解集在数轴上表示出来.27.求不等式 x 3 ≤1+ x−12 的负整数解.28.解不等式组: {2(x +1)>x,1−2x ⩾x+72. 并在数轴上表示它的解集.29.若点 P 的坐标为(x−13 , 2x −9 ),其中 x 满足不等式组 {5x −10≥2(x +1)12x −1≤7−32x , 求点 P 所在的象限.30.解不等式组 {x +3≥1(1)4x ≤1+3x (2) 请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得________.(Ⅱ)解不等式(2),得________ .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:________(Ⅳ)原不等式组的解集为________ .答案一、计算题1. 解:原方程可变形为: {−x +8y =5①x −2y =1②, ①+②得:6y=6,解得:y=1,将y=1代入②得:x=3,∴原方程组的解为: {x =3y =1. 2. 解:方程两边同乘以(x ﹣2)得:x 2+2+x ﹣2=6, 则x 2+x ﹣6=0,(x ﹣2)(x+3)=0,解得:x 1=2,x 2=﹣3,检验:当x =2时,x ﹣2=0,故x =2不是方程的根, x =﹣3是分式方程的解.3. 解:解①得x >2,解②得x >﹣3,所以不等式组的解集为﹣3<x <2.4. 解:方程两边同时乘以(3+x)(3-x),得9(3-x)=6(3+x),解得: x =35 , 检验:当 x =35时,(3+x)(3-x)≠0, 所以 x =35 是原分式方程的解. 5. 解: x x−1 ﹣ 3(x−1)(x+2) = x(x+2)−3(x−1)(x+2) = x 2+2x−3(x−1)(x+2) =1,∴x 2+2x ﹣3=(x ﹣1)(x+2),∴x =1,经检验x =1是方程的增根,∴原方程无解;6. (1)解: x−2x−3+1=23−x ,两边同时乘以 x −3 ,得x −2+x −3=−2 ,∴x =32 ,检验:当x=32时,x-3≠0,所以原方程的根为:x=32(2)解:{3x>2x−2①2x+1≥5x−5②,由①得,x>-2,由②得,x≤2,∴不等式组的解集为−2<x≤27. 解:方程两边同时乘以2(x+1),得2x+2﹣(x﹣3)=6x,解得,x=1,检验:当x=1时,2(x+1)≠0,所以x=1是原分式方程的解8. (1)解:方程两边同乘以(x−2)得2x=3+x−2∴x=1检验:将x=1代入(x−2)得1−2=−1≠0 x=1是原方程的解.∴原方程的解是x=1(2)解:化简4(x−1)−12<x得4x−4−12<x∴3x<92∴x<32∴原不等式的解集为x<329. 解:∵a=1,b=−3,c=−2∴Δ=(−3)2−4×1×(−2)=17>0∴x1=3+√172,x2=3−√17210. 解:原式=x2(x+1)(x−1)÷(1x−1+x−1x−1)=x2(x+1)(x−1)•x−1x=xx+1,解不等式组{x−1>1,5−2x≥−2.得2<x≤72,则不等式组的整数解为3,当 x =3 时,原式 =33+1=34 . 11. 解:x-1=±2,x-1= 2或x-1=-2,解得:x=-1或x=3.12. 解:移项得:x 2﹣4x=7,配方得:x 2﹣4x+4=7+4,即(x ﹣2)2=11,开方得:x ﹣2=± √11 ,∴原方程的解是:x 1=2+ √11 ,x 2=2﹣ √1113. 解: {2x −y =3①3x +11−5y 2=9② , 由①可得:y =2x ﹣3③,把③代入②可得: 3x +11−10x+152=9 , 解得:x =2,把x =2代入③得:y =1,所以方程组的解为: {x =2y =114. 解:解方程组 {2a +4b =64a −3b =4m得: {a =8m+911b =12−4m 11 ∵a ,b 都是正数,∴ {8m +9>012−4m >0解得:﹣ 98<m <3, ∴非正整数m 的值是0,﹣1.15.解:化为整式方程得: x 2−x =2x −4+x 2−3x +2 −x −2x +3x =−20=−2 ,所以方程无解.16. 解:解方程组 {2x +y =4a +63x −y =a +4得: {x =a +2y =2a +2 , ∵x 大于0,y 小于4,∴ {a +2>02a +2<4, 解得:﹣2<a <1,故a 的取值范围为:﹣2<a <1.17. 解:把 {x =12y =1代入 {mx +ny =2nx −my =1 ,得:关于 m 、 n 的二元一次方程组: {12m +n =212n −m =1 ,解之得: {m =0n =2, 代入得:原式 =√3×0−4×23=√−83=−218. 解:原式=2x−(x−1)x(x−1)⋅x x+1 =2x−x +1x(x−1)⋅x x+1 =x +1x−1⋅1x+1 = 1x−1 ,由x 2+2x ﹣3=0得,x 1=﹣3,x 2=1,∵当x =1时,原分式无意义,∴当x =﹣3时,原式= 1−3−1=−14 19. (1)解:去分母得:x+3=2x ﹣2,解得:x =5,经检验x =5是分式方程的解(2)解: {2x −4≥0①1+2x 3>x −1② , 由①得:x ≥2,由②得:x <4,则不等式组的解集为2≤x <420. 解: {3x +1≥5x ①x−12>−2② , 解不等式①得:x ≤ 12 , 解不等式②得:x >﹣3,∴不等式组的解集为﹣3<x ≤ 12, ∴不等式组的所有整数解为﹣2,﹣1,0.21. 解: {2x +5<3(x +1)①x−12≤x 3② , ∵ 解不等式 ① ,得 x >2 ,解不等式②,得x≤3,∴不等式组的解集是2<x≤3,在数轴上表示为:.22. 解:{3x−1⩾2①2x+1 3>x−1②,由①得:x≥1,由②得:x<4,则不等式的解集为1≤x<4,23. 解:不等式两边同时乘6,得3(1+x)≥2(2x+1).去括号,得3+3x≥4x+2.移项、合并同类项,得-x≥-1.系数化为1,得x≤1,即不等式的解集为x≤1.不等式的解集在数轴上表示如答图M2-1.24. 解:原式=m2(m+1)(m−1)⋅m+1 m2=1m−1,∵实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根,∴△=16+4m=0,∴m=﹣4,∴原式=1−4−1=﹣15.25. 解:去分母得:2+6﹣3x=1﹣x,解得:x=3.5,经检验x=3.5是分式方程的解.26. 解:由①得,5x+5>2x-1,3x>-6x>-2由②得,2x-6≥3x-9,-x≥-3,x≤3∴原不等式组的解集为-2<x≤3在数轴上表示出来为:27.解: 2x ≤6+3(x-1), 2x ≤6+3x -3,解得:x ≥-3.所以这个不等式的负整数解为-3、-2、-1. 28. 解: {2(x +1)>x,①1−2x ⩾x+72.②解不等式①,得x >−2 .解不等式②,得x ⩽−1 .∴不等式组的解集为 −2<x ⩽−1 .29. 解:{5x −10≥2(x +1)①12x −1≤7−32x ②由①得;5x-10≥2x+23x ≥12x ≥4由②得:x-2≤14-3x4x ≤16解之:x ≤4所以此不等式组的解集为:x=4 ∴x−13=4−13=1 , 2x-9=2×4-9=-1 所以 点P (1,-1)∴点P 在第四象限30.x ≥-2;x ≤1;;− 2 ≤ x ≤ 1。
2020年中考数学专题复习卷:不等式与不等式组(含解析)

不等式与不等式组一、选择题1.下列式子一定成立的是( ) A.若ac 2=bc 2,则a=b B.若ac>bc,则a>bC.若a>b,则ac 2>bc 2D.若a<b,则a(c 2+1)<b(c 2+1)2.已知实数a ,b ,若a >b ,则下列结论错误的是( ) A. a-7>b-7 B. 6+a >b+6 C.D. -3a >-3b 3.不等式3x ﹣1≥x+3的解集是( )A. x≤4B. x≥4C. x≤2D. x≥2 4.不等式2x >3﹣x 的解集是( )A. x >3B. x <3C. x >1D. x <15.设a ,b 是常数,不等式>0的解集为x < ,则关于x 的不等式bx ﹣a <0的解集是( )A. x >B. x <﹣C. x >﹣D. x < 6.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. B.C.D.7.下列各数中,为不等式组解的是()A. -1 B. 0C. 2D. 48.不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B.C. D.9.不等式组的最小整数解是()A. 1B. 2C. 3D. 410.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A. B. a≤C. ≤a<﹣1 D. a≥11.不等式组有3个整数解,则的取值范围是()A. B.C. D.12.关于x的不等式组的解集为,那么m的取值范围为()A. B.C.D.二、填空题13.函数中自变量x的取值范围为________.14.不等式3x+1>2x﹣1的解集为________.15.不等式组的解集为________.16.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________17.在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集表示在数轴上如图所示,则k的值是________18.当x________时,代数式1- 的值不大于代数式的值.19.若关于x,y的方程组的解满足x>y,则p的取值范围是________20.不等式组的所有整数解的和为________21.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是________.22.对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x的取值范围是________三、解答题23.解不等式组,并把它的解集在数轴上表示出来.24.解不等式组并写出它的所有非负整数解.25.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。
池州市中考数学二轮复习拔高训练卷 专题2 方程与不等式

池州市中考数学二轮复习拔高训练卷专题2 方程与不等式姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A . 40 cm2B . 20 cm2C . 25 cm2D . 10 cm22. (2分)(2016·贵阳模拟) 今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A . 3种B . 4种C . 5种D . 6种3. (2分)已知方程组的解满足x+y<0,则m的取值范围是()A . m>﹣1B . m>1C . m<﹣1D . m<14. (2分)某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A . 8人B . 10人C . 12人D . 14人5. (2分)(2018·龙岗模拟) 二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是 )A . 4个B . 3个C . 2个D . 1个6. (2分)(2020·沙河模拟) 欧几里得在《几何原本》中,记载了用图解法解方程的方法,类似地可以用折纸的方法求方程的一个正根。
2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)

2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)一、选择题(共16题)1.在数轴上表示不等式﹣2≤x <4,正确的是( ) A.B.C. D.2.下列方程中是关于x 的一元二次方程的是( ) A. B.C.D.3.用配方法解方程2237x x +=时,方程可变形为( )A.273724x ⎛⎫-= ⎪⎝⎭B.274324x ⎛⎫-= ⎪⎝⎭C.271416x ⎛⎫-= ⎪⎝⎭D.2725416x ⎛⎫-= ⎪⎝⎭4.若2211m m m m m --=--,则m 等于( ) A.1- B.0 C.1-或1 D.1-或25.对于任意的实数x ,代数式259x x -+的值是一个( ) A.整数B.非负数C.正数D.不能确定6.关于x 的一元一次方程3xy -2=4的解为2,则y 的值是( ) A.y = 1B.y =-2C.y =-6D.y =-57.已知下列方程:①2x +3y =0;①x +3=7;①y 2-y +1=0;①3x =7x +2;①2x -3=4x ;①73y =3.其中属于一元一次方程的有( ) A.2个 B.3个 C.4个 D.5个8.不等式组的解集在数轴上表示为( ).A. B. C. D.9.在平面直角坐标系中,若点(),1P a a -在第一象限内,则a 的取值范围在数轴上表示为( )A. B.C. D.10.下列方程组的解为31x y =⎧⎨=⎩的是① ①A.224x y x y -=⎧⎨+=⎩ B.253x y x y -=⎧⎨+=⎩ C.32x y x y +=⎧⎨-=⎩ D.2536x y x y -=⎧⎨+=⎩ 11.已知a 、b 、c 都是实数,则关于三个不等式:a >b 、a >b +c 、c <0的逻辑关系的表述,下列正确的是( ) .A.因为a >b 、c <0所以a >b +cB.因为a >b +c ,c <0,所以a >bC.因为a >b +c ,所以a >b ,c <0D.因为a >b 、a >b +c ,所以c <012.下列方程中,有实数根的方程是( ) A.4y 10+=B.2x x 10++=C.x 1x 1x 1=-++x -13.下列方程变形中,正确的是( ) A.方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B.方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C.方程23t =32,未知数系数化为1,得t =1D.方程2x+3=x ,去分母得x +6=2x14.下列一元二次方程中,两根分别为5和-7的是( ) A.7)50()(x x ++= B.7)50()(x x =-- C.7)50()(x x +-=D.7)50()(x x +=-15.方程组3455792x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A.20.25x y =⎧⎨=-⎩B. 5.54x y =-⎧⎨=⎩C.10.5x y =⎧⎨=⎩D.10.5x y =-⎧⎨=-⎩16.如果二次函数22y x x t =++与一次函数y x =的图像两个交点的横坐标分别为m 、n ,且1m n <<,则t 的取值范围是( )A.2t >-B.2t <-C.14t >D.14t <二、综合题(共10题)17.用不等式表示:x 的4倍大于x 的3倍与7的差:__________.18.把分式方程311xx x -=+化成整式方程,去分母后的方程为______________________ 19.关于x 的方程(2m ﹣1)x 2+mx+2=0是一元二次方程,则m 的取值范围是_____. 20.一项工程,甲单独完成要10天,乙单独完成要15天,则由甲先做5天,然后甲、乙合做余下的部分还要_____天完成.21.买一些4分、8分、1角的邮票共15张,用币100分最多可买1角的______张。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版备考2020年中考数学二轮复习拔高训练卷专题2 方程与不
等式D卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)若方程:的解互为相反数,则a的值为()
A .
B .
C .
D . -1
2. (2分)已知关于x的一元二次方程3x2+4x-5=0,下列说法不正确的是().
A . 方程有两个相等的实数根
B . 方程有两个不相等的实数根
C . 没有实数根
D . 无法确定
3. (2分) (2015九上·句容竞赛) 设m是整数,关于x的方程mx2-(m-1)x+1=0有有理根,则方程的根为()。
A .
B . x=-1
C .
D . 有无数个根
4. (2分)设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()
A . 2014
B . ﹣2014
C . 2011
D . ﹣2011
5. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b之值是().
A . 5
B . 6
C .
D . 10-
6. (2分)(2016·大庆) 若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2 ,则M与N的大小关系正确的为()
A . M>N
B . M=N
C . M<N
D . 不确定
7. (2分)(2018·龙岗模拟) 二次函数的图象如图,下列四个结论:
;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是 )
A . 4个
B . 3个
C . 2个
D . 1个
8. (2分)某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为()
A . 20%
B . 30%
C . 50%
D . 120%
9. (2分)(2017·百色) 以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b 与⊙O相交,则b的取值范围是()
A . 0≤b<2
B . ﹣2
C . ﹣2 2
D . ﹣2 <b<2
10. (2分)(2018·宁晋模拟) 不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()
A .
B . a≤
C . ≤a<﹣1
D . a≥
二、填空题 (共5题;共5分)
11. (1分)(2017·山东模拟) 关于x的分式方程的解为正数,则m 的取值范围是________.
12. (1分)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于________.
13. (1分)方程x2-3x+1=0的解是________。
14. (1分)对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1 , x2是一元二次方程x2﹣6x+8=0的两个根,则x1⊗x2=________.
15. (1分) (2017八下·丽水期末) 在△ABC中,已知两边a=3,b=4,第三边为c.若关于x的方程有两个相等的实数根,则该三角形的面积是________
三、计算题 (共2题;共12分)
16. (6分) (2017七下·平谷期末) 解不等式组并求出它的非负整数解.
17. (6分)解方程:3x(2x+1)=4x+2.
四、解答题 (共3题;共16分)
18. (4分)化简|1-a|+|2a+1|+|a|,其中a<-2.
19. (8分)如图,已知抛物线y=﹣x2﹣2x+m+1与x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣,x1•x2= )
(1)求m的取值范围;
(2)若OA=3OB,求抛物线的解析式;
(3)在(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q 的坐标.
20. (4分) (2017八上·宜城期末) 某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?
五、综合题 (共5题;共47分)
21. (8分)今年我校准备购买一批办公桌椅,现从甲乙两家家具公司了解到:同一款式的桌椅价格相同,一套桌椅总价280元,办公桌价格是椅子的3倍。
甲公司的优惠政策是:每买一张办公桌赠送一把椅子,多买的椅子按原价付款;乙公司的优惠政策是:办公桌和椅子都实行8折优惠。
(1)求桌椅的价格分别是多少?
(2)若购买20张办公桌和m(m不少于20)把椅子,当m为多少时,甲、乙两家公司付款一样多?
(3)若购买20张办公桌和30把椅子,可以到甲乙任一家公司购买,请你设计一种购买方案,使得付款最少。
22. (9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)
求每吨水的政府补贴优惠价和市场调节价分别是多少元?
(2)
求每吨水的政府补贴优惠价和市场调节价分别是多少元?
(3)
设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式。
(4)
设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式。
(5)
小黄家3月份用水26吨,他家应交水费多少元?
(6)
小黄家3月份用水26吨,他家应交水费多少元?
23. (10分) (2016七上·罗山期末) 为更好的参与“阳光体育”大课间活动,某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的兵兵球和乒乓球拍.兵乓球拍毎副定价30元,兵兵球毎盒定价5元,两店促销活动如下:甲店毎买一副球拍赠一盒乒乓球,乙店两种商品均按定价的9折优惠.
(1)若该班需球拍5副,乒乓球x盒(不小于5盒),请用含x的代数式表示此时甲店和乙店分别所需费用.
(2)当购买乒乓球多少盒时,两种优惠办法付款一样?
(3)当购买10副球拍30盒乒乓球时,请你去办这件事,你打算去如何购买才能最省钱?需要花费多少元?
24. (10分)(2017·东兴模拟) 为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).
(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;
(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?
25. (10分) (2017七下·红河期末) 把文字翻译成数学符号,构建方程组模型是解此类题的关键某超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表统计了近两周的销售情况:
(1)
求A、B两种型号的电风扇每台的销售价分别是多少元?
(2)
若超市准备用不超过5250元的金额再采购这两种型号的电风扇共30台,
①求A种型号的电风扇最多能采购多少台?
②超市销售完这30台电风扇是否能实现利润不低于1240元的目标?若能实现,请写出相应的采购方案,若不能实现,请说明理由.
(进价、售价均保持不变,利润=销售收入﹣进货成本)
参考答案
一、单选题 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、填空题 (共5题;共5分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
三、计算题 (共2题;共12分)
16、答案:略
17、答案:略
四、解答题 (共3题;共16分)
18、答案:略
19、答案:略
20、答案:略
五、综合题 (共5题;共47分)
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略。