混凝土外加剂适应性试验.ppt
水泥与外加剂的适应性

混合材的种类
▪ 水泥中混合材的种类,细度,颗粒形貌及掺 入量对外加剂的吸附作用不同.
▪ 外加剂对矿渣,粉煤灰,石灰石的相容性较 好,对火山灰,煤矸石,沸石等比表面积大吸 附性强的混合材相容性较差.
水泥细度的影响
▪ 当水泥细度增加时,水泥比表面积就增大。因此, 就需要有更多的分散剂的分子吸附覆盖在水泥颗 粒表面,才能达到预期的使用效果。水泥颗粒越 细,其净浆流动稳定性越差,要有好的流动性, 则所需的减水剂就要增多。同时同一比表面积的 水泥颗粒分布越宽,水泥浆的流动性越好,外加剂 用量会越少,但流动性的经时损失会大.水泥颗粒 圆度系数提高,对减水剂饱和掺量影响不大,但可 提高混凝土的坍落度,减少经时损失.
3、含气量—改善混凝土和易性,提高可泵性;改善 混凝土孔结构,提高冻融循环耐久性。
外加剂的技术指标及在混凝土中的主要作用
4、坍落度和扩展度经时损失率—越小,可泵性越好, 提高施工速度;反之,越差。
5、常压和压力泌水率比—越小,混凝土和易性越好, 有 利于可泵性,提高外观质量;反之越差。
6、抗压强度比—越大,增强效果越好;反之,越差。 7、收缩率比和限制膨胀率—越小,混凝土变形性能
减水剂作用机理
▪ 2、立体位阻效应 掺有高效减水剂的水泥浆中,高效减水剂的有机分
子长链实际上在水泥微粒表面是呈现各种吸附状态的。 不同的吸附态是因为高效减水剂分子链结构的不同所致, 它直接影响到掺有该类减水剂混凝土的坍落度的经时变 化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是 棒状链,因而是平直的吸附,静电排斥作用较弱。其结 果是Zeta电位降低很快,静电衡容易随着水泥水化进程 的发展受到破坏,使范德华引力占主导,坍落度经时变 化大。而氨基磺酸类高效减水剂分子在水泥微粒表面呈 环状、引线状和齿轮状吸附,它使水泥颗粒之问的静电 斥力呈现立体的交错纵横式,立体的静电斥力的Zeta电 位经时变化小,宏观表现为分散性更好,坍落度经时变 化小。而多羧酸系接枝共聚物高效减水剂大分子在水泥 颗粒表面的吸附状态多呈齿形。这种减水剂不但具有对 水泥微粒极好的分散性而且能保持坍落度经时变化很小。
混凝土外加剂适应性试验共22页

Thank you
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
混凝土外加剂适应性试验 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
第五讲 混凝土质量控制 之 外加剂

受检混凝土性能指标
外加剂品种
项目
早强型
减水率/%,不小于 泌水率比/%,不大于 含气量/%
高性能减水剂 标准型 缓凝型
高效减水剂 标准型 缓凝型 早强型
普通减水剂 标准型 缓凝型
引气减 水剂
泵送 剂
早强 剂
缓凝 剂
引气剂
25
50 60
≤6.0 >+90
-90~+90 -90~+120
-90~+120
3700
4700 / 25 3850 / 25 × 100% = 18.1% 4700 / 25 4650 3700 4580 3800 W = × 100% = 20.4% 3 W2 = ×100% = 17.0% 4650 4580
20.4 18.1 ×100% = 13% 18.1
离氧化钙含量不得超过1.2%,碱含量(Na2O+0.658K2O)不得超 过1.0%,水泥比表面积(350±10)m2/kg 砂:符合GB/T14684中Ⅱ区的中砂,细度模数为2.6~2.9,含泥量 小于1% 石子:粒径5mm~20mm,采用二级配,其中5mm~10mm占40%,
10mm~20mm占60%,连续级配,针片状物质含量小于10%,空
减水率(掌握)
定义:在坍落度基本相同时,基准混凝土和受检混凝土单位用水量之差与 基准混凝土单位用水量之比。坍落度按GB/T 50080-2002测定。 试验结果:
W0 W1 WR 100 W0
• WR——减水率,%; • W0——基准混凝土单位用水量,Kg/m3;
W0
W1
• W1——受检混凝土单位用水量,Kg/m3。
混凝土外加剂适应性

[转] 泵送混凝土常见问题及解决办法1、砼外加剂对水泥的适应性(1) 水泥矿石是否稳定导致矿物组分是否稳定,从而影响到砼外加剂对水泥的适应性。
(2) 水泥生产工艺,如立窑与回转窑,冷却制度中的急冷措施控制得怎样,石膏粉磨时的温度等,造成水泥中矿物组分、晶相状态,石膏形态发生改变,从而影响到砼外加剂对水泥的适应性。
(3) 水泥中吸附外加剂能力:C3A>C4AF>C3S>C2S,水泥水化速率与矿物组分直接相关。
(4) 水泥存放一段时间后,温度下降,使砼外加剂高温适应性得到改善,而且f-CaO吸收空气中的水后转变成Ca(OH)2,吸收空气中的CO2后转变成CaCO3,从而使Mwo下降,也使砼和易性得到改善,使新拌砼塌落度损失减缓,砼的凝结时间稍延长。
(5) 普通硅酸盐水泥的需水量稍大于矿渣水泥,其保水性好,但一般塌落损失也较快。
(6) C3A含量较高的水泥,塌落度损失快,保水性好。
(7) 水泥中亲水性掺合料保水性好;火山灰质水泥保水性差,易泌水。
(8) 温度、湿度高低直接影响砼外加剂对水泥的适应性。
(9) 配合比中的砂、石级配及砂、石、水、胶材的比例也影响砼外加剂对水泥的适应性。
2、砼易出现泌水、离析问题的原因及解决方法2. 1 原因(1) 水泥细度大时易泌水;水泥中C3A含量低易泌水;水泥标准稠度用水量小易泌水;矿渣比普硅易泌水;火山灰质硅酸盐水泥易泌水;掺Ⅰ级粉煤灰易泌水;掺非亲水性混合材的水泥易泌水。
(2) 水泥用量小易泌水。
(3) 低标号水泥比高标号水泥的砼易泌水(同掺量) 。
(4) 配同等级砼,高标号水泥的砼比低标号水泥的砼更易泌水。
(5) 单位用水量偏大的砼易泌水、离析。
(6) 强度等级低的砼易出现泌水(一般) 。
(7) 砂率小的砼易出现泌水、离析现象。
(8) 连续粒径碎石比单粒径碎石的砼泌水小。
(9) 砼外加剂的保水性、增稠性、引气性差的砼易出现泌水。
(10) 超掺砼外加剂的砼易出现泌水、离析。
外加剂PPT课件

化学外加剂复配的目的是为了同时满足混凝土对各种性 能的需要,以及各复配成分之的共同作用而产生“叠加 效应”。
复合外加剂通常是由多种表面活性剂或与无机电解质等组
成。如复合早强剂、复合防冻剂、泵送剂、复合缓凝引气
减水剂等。
7
04.12.2020
化学外加剂的复配
一般复配外加剂由至少两种组分配制,形成二元或多元 复合。
减水组分:不同的水泥和掺和料、外加剂中其它 成分对减水剂的性能影响还是很大的,如萘系减 水剂和葡萄糖酸钠共同使用时,减水率提高比较 显著。
缓凝组分:不同的水泥和掺和料以及不同的配合 比,都会使缓凝效果产生变化。
11
04.12.2020
混凝土泵送剂------配制原则
引气组分:引气剂的引气效果受很多因素影响, 如水泥细度、石子粒径、砂含泥量、温度、配合 比等。掺加粉煤灰时、细料多、石子粒径小、坍 落度大、温度低等,混凝土含气量会高。
总之,外加剂的调整应根据实际情况进行,以试 验结果为依据,不能想当然。
12
04.12.2020
混凝土泵送剂------配制注意的问题
选购合适的高效减水剂母体; 根据使用要求和所有原材料进行复配和试验;
13
04.12.2020
外加剂的复配-泵送剂
几个泵送剂的配方:(kg/t)
减水
缓凝
引气
其它
(1)掺量低、减水率高。一般掺量为胶凝材料的 0.15-0.25%,减水率一般在25-30%,在接近 极限掺量0.25%时,减水率一般可以达到40% 以上。
(2)混凝土拌和物的流动性好,坍落度损失低,
2小时坍落度基本不损失,其高工作性可保持6-
8小时。
3
04.12.2020
混凝土外加剂基础知识培训讲义PPT(讲解详细)

改善混凝土的流变性能,提高浇 注和振捣质量。
增加混凝土的稳定性,防止离析 和泌水。
节约水泥用量
通过减水、增塑等作用,减少对水泥的 需求量。
提高混凝土的填充性,减少骨料空隙率。 降低水灰比,减少用水量,节约水资源。
调节混凝土凝结时间
根据工程需要,延长或缩短混凝土的初、终凝时间。 控制混凝土的硬化速度,满足不同施工条件和要求。
感谢您的观看
水泥种类
不同水泥的成分和性能不同,选 择与水泥相容性好、适应性强的 外加剂。
骨料性质
骨料的吸水率、级配、硬度等会 影响混凝土的性能,应选择能适 应骨料性质的外加剂。
根据施工环境选择
温度与湿度
根据施工时的环境温度和湿度条件选 择合适的外加剂,以应对温度和湿度 变化对混凝土性能的影响。
气候条件
在寒冷或炎热地区施工时,应选择能 适应极端气候条件的外加剂。
速凝剂主要通过改变水泥的水 化产物,迅速形成硬化结构, 提高混凝土的早期强度。
常见的速凝剂有铝酸盐、碳酸 盐等。
03 混凝土外加剂的作用
提高混凝土性能
增强混凝土的强度、 耐久性和抗渗性。
优化混凝土的收缩性 能,减少开裂风险。
降低混凝土的脆性, 提高其韧性。
改善混凝土施工性
降低混凝土的粘度,便于搅拌和 输送。
高性能混凝土外加剂包括减水剂、缓凝剂、引气剂等,可根据工程需要 进行选择和配比。
冬季施工混凝土
混凝土外加剂可以有效解决冬季施工中的问题,如加 入早强剂可以加速混凝土的硬化速度,防冻剂可以降 低混凝土的冰点,保证混凝土在低温下正常硬化。
在冬季低温环境下,混凝土的凝结和硬化速度会变慢 ,需要采取措施来保证施工质量和进度。
混凝土外加剂基础知识培训讲义 ppt(讲解详细)
混凝土外加剂PPT演示课件

掺量不宜过多,否则会引起水泥速凝,不利于施工。
还会加大混凝土的收缩。
Page 28
氯化钙对混凝土产生早强作用的主要原因,一般认为 是它能与水泥中GA反应生成不溶于水的复盐 C3A·CaCl2·10H20,还与水化析出的氢氧化钙作用,生成 不溶性氧氯化钙(CaCl2·2Ca(OH)2·12H20)。
定的溶剂化膜层,它阻止了水泥颗粒间的直接接触,并在颗粒间起润滑
作用,也改善了混凝土拌和物的和易性。
此外,由于水泥颗粒被有效分散,颗粒表面被水分充分润湿,增大 了水泥颗粒的水化面积,使水化比较充分,从而也提高了混凝土的强度。
可见,减水剂作用原理可由吸咐——分散作用、润滑作用、湿润作
用三部分组成。
只要掺入少量的减水剂,就可使硬化前混凝土和易性改善,硬化
Page 30
Ⅱ 硫酸盐类早强剂
主要有——硫酸钠、硫代硫酸钠、硫酸钙、硫酸铝、硫酸 铝钾等,其中硫酸钠应用较多。
硫酸钠分无水硫酸钠(白色粉末)和有水硫酸钠(白色晶粒)。 一般掺量为0.5%~2.0%, 当掺量1%~1.5%时,达到混凝土设计强度70%的时间可
缩短一半左右.
Page 31
硫酸钠掺入混凝土后产生早强的原因
一.外加剂在国民经济建设 和混凝土技术发展中的重要作用
1.改善混凝土性能,促进了施工技术革命
品种较多,功能各异,提高和改善 混凝土各项性能。
外加剂新品种和应用技术迅速发展, 促进了混凝土施工新技术的发展, 在保证顺利施工和控制质量方面功 效巨大 。
满足工程耐久性要求的最佳、最有 效、最易行的途径之一。
强剂复合使用。
Page 25
Ⅲ 树脂减水剂
制备——是以一些水溶性树脂为主要原料制成的减水剂,如三聚氰胺树脂、
混凝土外加剂课件

四 生产工艺简介
目前混凝土中使用的外加剂,主要是以高效减水剂为主体(母体) 与其它功能的外加剂或材料配制的复合型外加剂,单一性能的外加剂 很少在混凝土中直接使用,通过复配的多功能外加剂是市场的主体。 外加剂的生产有化工合成和物理复配两种工艺。 (一)合成工艺 高效减水剂主要通过化工生产线合成制成,合成工艺有:磺化反应、 缩合反应、共聚反应、中和反应等。 (二)复配工艺 各种外加剂或其它材料通过试验确定配方,在混合设备中混合均匀制 成需要性能的外加剂,混合过程中不发生化学反应,属物理复配。 (三)生产技术特点 1、对混凝土使用水泥的针对性(适应性) 2、不同组分的相容性 3、不同组分的叠加效应 4、定向配制的不通用性
4、引气剂作用机理
是在混凝土搅拌过程中能引入大量均匀分布、稳定而封闭 的微小气泡的外加剂。 (1)界面活化作用 引气剂的界面活化作用,即引气剂在水中被界面吸附,形 成憎水化吸附层,降低界面 能,使混凝土拌合过程中引入的气泡能够稳定存在。 (2)气泡作用 引气剂在混凝土中形成的气泡,属于溶胶性气泡,彼此 独立存在,其周围被水泥浆体、骨料等包裹而不易消失。
三 外加剂的作用机理简介
不同种类的外加剂在混凝土中有不同作用机理,主要对水泥水化产生不同作用。 以混凝土主要使用的减水剂类外加剂为主体的多数混凝土外加剂属于表面活性剂, 表面活性剂的基本作用机理是降低分散体系中两相间的界面自由能,提高分散体 系的稳定性。作为混凝土外加剂的表面活性剂,在混凝土拌合物中起到改变表面 张力、湿润渗透、分散、乳化、增容、起泡等基本作用。几类典型外加剂的作用 机理如下。 1、减水剂的作用机理 是保持混凝土坍落度基本不变,能减少拌合用水量的外加剂。 减水剂多为表面活性剂,其对水泥的作用主要是表面活性,本身不与水泥发生化 学反应。在混凝土中对水泥颗粒起到吸附分散、湿润、润滑作用,使新拌混凝土 减少用水量,从而改善混凝土中孔结构,大孔减少,小孔增多,平均孔径减少, 总孔隙率下降,有利于混凝土强度的提高并直接影响着混凝土的耐久性和抗化学 腐蚀能力。 2、缓凝剂的作用机理 是能延长混凝土凝结时间的外加剂。 关于缓凝剂的作用机理目前尚无定论。可能的情况是: 糖类缓凝剂:是C3S水化的强延缓剂,能抑制C-S-H凝胶及CH晶核的形成,使水化 延迟甚至完全停止。不过糖是一种不稳定的缓凝剂,对有的水泥是优良的缓凝剂, 对另一部分水泥则可能是促凝。 羟基羧酸类:与C3S等溶出的钙离子结合,生成螯合环,吸附于C3S钙离子表面, 控制C3S钙离子的溶出,减缓水化反应,使之缓凝。 磷酸盐类:可溶性磷酸盐与水泥粒子表面溶出的钙离子结合生成不溶于水的钙盐 覆盖于水泥粒子表面,生成不透水层,从而延缓了水泥的水化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? GB/T 8077-2000《 混凝土外加剂均质性试验方法》
? 水泥净浆流动度测定
使用水泥 300g,水 87g或105g ,使用外加剂厂家 推荐剂量的外加剂掺量,搅拌 3min,截锥圆模提 起后自由扩散 30s后测量互相垂直的两个方向的最 大直径,取平均值作为水泥净浆流动度。
? 此种方法简单易行,用于快速判断某一水泥与特 定减水剂相容性的程度
5、快速将玻璃板上的浆体用刮刀无遗留的回收到搅拌锅内,并密 封静臵防止水分蒸发。
6、清洁玻璃板、圆模。 7、调整基准减水剂掺量,重复上述步骤,依次测定基准减水剂各
掺量下的初始流动度值。 8、自加水泥60min时,将静臵的水泥浆体按上述搅拌程序重新搅
拌,重复第4条,依次测定基准减水剂各掺量下的60min流动度 值。
净浆流动度法(代用法)
4、将锅取下,用搅拌勺边搅拌边将浆体立即倒入臵于玻璃板中间 位臵的圆模内,对于流动性差的浆体要用刮刀进行插捣,使浆 体充满圆模,用刮刀将高出圆模的浆体刮除并抹平,立即稳定 提起圆模。圆模提起后,应用刮刀将粘附于圆模内壁上的浆体 尽量刮下,以保证每次试验的浆体量基本相同,提取圆模1min 后,用卡尺测量最长径及其垂直方向的直径,二者的平均值即 为初始流动度。
水泥与外加剂相容性试验
——JC/T 1083-2008(水泥与减水剂相容性试验方法)
应用术语和定义: ? 水泥与减水剂相容性:使用相同减水剂或水泥时,
由于水泥或减水剂的质量而引起水泥浆体流动性、 经时损失的变化程度以及获得相同的流动性减水 剂用量的变化程度 ? 基准减水剂:用于评价水泥与减水剂相容性的减 水剂 ? 初始Marsh(马歇尔)时间:新拌水泥浆体通过 Marsh 筒注满 200ml 烧杯所用的时间
准减水剂各掺量下的初始Marsh时间。 7、自加水泥起到60min时,将静臵的水泥浆体按上述
搅拌程序重新搅拌,重复第三条,依次测定基准减水 剂各掺量下的60minMarsh时间。
净浆流动度法(代用法)
1、玻璃板臵于工作台上,并保持表面水平。 2、用湿布将玻璃板、圆模内壁、搅拌锅、搅拌
叶片全部润湿。将圆模臵于玻璃板的中间位臵, 并用湿布覆盖。 3、将基准减水剂和约 1/2的水同时加入锅中,然 后用剩余的水反复冲洗盛装基准减水剂的容器 直至干净并全部加入锅中,秤取 500±2g水泥, 145±1ml 水,在 5-10S 内将水泥加入水中,把 锅固定在搅拌机上,以低速搅拌 120S,停15S, 同时将叶片和锅壁上的水泥浆刮入锅中间,接 着高速搅拌 120S的程序制作净浆。
? 流动性经时损失率:经 60min后,水泥浆体流动 性的损失比率
? 试验条件
实验室温度应保持在 20±2℃,相对湿度应不低 于50% ? 仪器设备
水泥净浆搅拌机,配备 6只搅拌锅 圆模:上口直径 36mm、下口直径 60mm、高度 60mm,内壁光滑无暗缝的金属制品 玻璃板:直径 400mm、厚5mm
Marsh 法(基准法)
1、用湿布将Marsh筒、烧杯、搅拌锅、搅拌叶片全部 润湿。将烧杯臵于Marsh筒下料口的下面中间位臵, 并用湿布覆盖。
2、将基准减水剂和约1/2的水同时加入锅中,然后用 剩余的水反复冲洗盛装基准减水剂的容器直至干净 并全部加入锅中,秤取500±2g水泥,175±1ml水, 在5-10S内将水泥加入水中,把锅固定在搅拌机上, 以低速搅拌120S,停15S,同时将叶片和锅壁上的水 泥浆刮入锅中间,接着高速搅拌120S的程序制作净 浆。
水泥外加剂适应性不良的表现:
? 外加剂对水泥工作性能改善不明显 ? 混凝土坍落度损失过大或混凝土过于
快凝 ? 造成混凝土结构构件更易出现的裂缝
影响水泥外加剂适应性的因素
1、水泥中四大主要矿物成分C3S、C2S、C3A、C4AF对 高效减水剂的吸附能力是不一样的,其吸附顺序C3A >C4AF>C3S>C2S,因而在减水剂掺量相同的情况下, C3A和C4AF含量较高的水泥浆体中,减水剂的分散效 果就较差。
Marsh法(基准法)
3、将锅取下,用搅拌勺边搅拌边将浆体立即全部倒入 Marsh筒内,打开阀门,让浆体自由流下并计时,当 浆体注入烧杯达到200ml时停止计时,此时间为初始 Marsh时间。
4、让Marsh筒内的浆体全部流下,无遗留的回收到搅 拌锅内,并密封静臵以防水分蒸发。
5、清洁Marsh筒、烧杯。 6、调整基准减水剂掺量,重复上述步骤,依次测定基
刮刀、游标卡尺、秒表、天平、烧杯、 Marsh筒、 量筒
? Marsh筒法
Marsh筒为下带圆管的锥形漏斗,具 体方法为让注入漏斗中的水泥浆体 自由流下,记录注满200ml容量筒 的时间,即Marsh时间,此时间的长 短反映了水泥浆体的流动性
? 净浆流动度试验
将制备好的水泥浆体装入一定容量 的圆模后,稳定提起圆模,使浆体 在重力作用下在玻璃板上自由扩展, 稳定后的直径即流动度,流动度的 大小反映了水泥浆体的流动性。
数据处理 1、经时损失率:用初始流动度或
Marsh时间与60min流动度或 Marsh时间的相对差值表示, 反映水泥使用外加剂后随着时 间,流动度损失的程度。 2、饱和掺入点的确定:以减水剂 掺量为横坐标、净浆流动度或 Marsh时间为纵坐标做曲线图, 然后做两直线段曲线的趋势线, 两趋势线的交点的横坐标即为 饱和掺量点。 3、试验报告应给出水泥品种、生 产单位、生产批号、基准减水 剂信息、试验方法、饱和掺量 点、基准减水剂0.8%掺量下的 初始Marsh时间或流动度、基 准减水剂0.8%掺量时的经时损 失率。 4、饱和掺量点越低,经时损失率 越小的水泥减水剂适应性越好。
? 60minMarsh 时间:将水泥浆体放臵 60min后, 重新搅拌后注满 200ml烧杯所用时间
? 初始流动度:固定量的新拌水泥浆体的最大扩展 直径
? 60min流动度:将水泥浆体放臵 60min后,重当 Marsh时间不再随减水剂 掺量的增加而明显减少时或浆体流动度不再随减 水剂掺量的增加而明显增加时所对应的减水剂掺 量