热喷涂高性能陶瓷复合涂层的研究进展

热喷涂高性能陶瓷复合涂层的研究进展
热喷涂高性能陶瓷复合涂层的研究进展

文章编号:100025889(2004)0620005204

热喷涂高性能陶瓷复合涂层的研究进展

徐海燕1,周惠娣1,陈建敏1,冯治中1,张翠芳2

(1.中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州 730000;2.南京工程学校,江苏南京 211135)

摘要:论述了陶瓷复合涂层的种类、制备方法及应用.采用表面涂层热喷涂技术,能在金属基体上制备金属基陶瓷复合涂层、陶瓷与陶瓷复合涂层、梯度功能陶瓷复合涂层和纳米陶瓷复合涂层,这样就把陶瓷材料的特点与金属材料的特点有机结合在一起,赋予材料新的功能.这些复合材料已广泛应用于航天、航空、医学、生物和电子等领域.

关键词:复合涂层;热喷涂;纳米涂层;梯度功能涂层

中图分类号:TB332;TG174.453 文献标识码:A

Investigative progression of thermo2sprayed high2performance

ceramic composite coatings

XU Hai2yan1,ZHOU Hui2di1,CHEN Jian2min1,FEN G Zhi2zhong1,ZHAN G Cui2fang2

(1.State K ey Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Science,Lanzhou 730000,China;2. Nanjing Engineering School,Nanjing 211135,China)

Abstract:The category,preparation,and application of composite ceramic coating were introduction in this ar2 ticle.The composite ceramic coating such as metal2based ceramic composite coating,ceramic2ceramic composite coating,graded functional ceramic composite coating and nanometer ceramic composite coating,were prepared by surface2coated technology2thermal spraying.Those ceramic composite coating had many good properties applied in many fields such as spaceflight,aviation,medicine,biology and electron.

K ey w ords:thermal spray;composite coating;nano2coating;functionally graded coatings

陶瓷是金属元素和非金属元素组成的晶体或非晶体化合物,它与金属材料、高分子聚合物材料构成了固态工程材料的三大支柱.陶瓷材料是离子键和共价键极强的材料,与金属和高分子材料相比,其具有熔点高,抗腐蚀和抗氧化性强,耐热性好,弹性模量,硬度和高温强度高的特点.由于陶瓷材料的抗冲击性能差、塑性变形能力低、脆性大,因此成形加工和安装困难,易发生破裂,这成为陶瓷材料应用的致命弱点.然而,应用新型陶瓷复合粉末,采用表面涂层技术,在金属基体上制备陶瓷涂层,能把陶瓷材料的特点与金属材料的特点有机地结合起来,获得复合材料结构及制品,正成为当代复合材料及制品高科技领域的重要分支[1].1958年,世界上第一台等离子喷涂设备在美国问世,为喷涂高熔点陶瓷涂层

收稿日期:2004201218

基金项目:国家自然科学基金(59925513),国家杰出青年科学基金(59925513),中科院“百人计划”资助(科发人教

字[1999]0381号)

作者简介:徐海燕(19752),女,甘肃景泰人,硕士生.提供了理想的高温热源,迅速在航空发动机、火箭等尖端科技领域得到了成功的应用.自20世纪80年代以来,它又迅速向传统民用工业部门扩展,其应用遍及能源、交通、冶金、轻纺、石化等领域,成效非常显著.据报道,美国在20世纪90年代以来,陶瓷涂层的应用年增长率在12%以上.这表明在先进发达国家,陶瓷涂层高科技技术已成为一个新兴产业.由各种材料复合获得的陶瓷复合涂层种类主要有金属基陶瓷复合涂层、陶瓷与陶瓷复合涂层、多层复合涂层、梯度功能陶瓷复合涂层和纳米陶瓷复合涂层等[2].这些复合材料不仅具有单一材料所具有的性能,还由于复合材料的不同而获得了许多特殊性能或具有多功能性的涂层,已广泛应用于航天、航空、医学、生物、电子等领域[3].

1 复合陶瓷涂层的制备

复合陶瓷涂层具有许多其它材料所不具有的优良性能,所以科学家研究开发了许多陶瓷涂层的制

第30卷第6期2004年12月

兰 州 理 工 大 学 学 报

Journal of Lanzhou University of Technology

Vol.30No.6

Dec.2004

备方法,如热喷涂法、化学气相沉积法(CVD)、物理气相沉积法(PVD)、溶胶2凝胶法和原位反应法等.在众多的陶瓷复合涂层方法中,最有可能在短时间内产生市场效益的是热喷涂技术.据美国商用通讯公司的统计表明[4],1997年热喷涂陶瓷市场份额最大为53.5%,其后依次为CVD、PVD,见表1.

表1 1997年和2002年北美高性能陶瓷涂层市场的比较T ab.1 N orth Ameica market of high2performance ceramic coatings in1997upto2002yrs

类别

1997年

百万美元%

2002年

百万美元%

年增长率/%

(1997~2002年)

热喷涂38053.551051.7 6.1

PVD14119.818618.8 5.7

CVD15121.321822.17.6

其他338 5.4737.414.0

总计710100987100 6.8

注:3包括浸渍、喷涂、溶胶2凝胶及激光技术.

可见热喷涂技术是制备高性能复合陶瓷涂层的一项重要技术.与其它技术相比,热喷涂方法制备陶瓷复合涂层的主要优点是工艺简单、涂层与基体选择范围广、涂层厚度变化范围大、沉积效率高以及容易形成复合涂层.热喷涂技术最早是由瑞士M.U. Schoop发明的,由于当时只能用金属丝材喷涂防腐蚀涂层和进行维修,故称之为“金属喷涂”.第二次世界大战初期,自熔性合金粉末出现,粉末火焰风靡一时,到20世纪60~70年代,由于现代电子和计算机技术、传感器测试技术、自动化技术、真空技术等先进技术的渗透和改进,热喷涂技术真正发展成熟了起来.到目前为止,热喷涂技术已经广泛应用于航天、航空、航海、冶金、机械、石化、轻工等几乎所有工业领域[3].具体而言,热喷涂技术是利用某种高温热源,如氧2乙炔焰、电弧、等离子弧将预喷涂材料加热至熔融或半熔化状态,然后高速喷涂到基材上形成涂层的过程.根据热喷涂使用热源的不同,热喷涂技术可分为火焰喷涂法、电弧喷涂法、等离子喷涂法、气体爆炸喷涂法、超音速火焰喷涂法和激光喷涂法等,这些热喷涂法均可喷涂金属材料、陶瓷材料、有机材料、纳米材料和复合材料.热喷涂技术已经是制备陶瓷复合涂层的一种极具有竞争力的方法.

2 热喷涂陶瓷复合涂层的研究

2.1 金属陶瓷复合涂层

金属材料表层的物理化学性能对它的许多重要使用性能,如硬度、耐腐蚀、耐热性和抗氧化性等都具有决定的作用.金属陶瓷复合涂层能改变金属基体外表面的形貌、结构和化学组成,并赋予基体新的性能.金属陶瓷复合涂层既有金属的强度和韧性,又有陶瓷耐高温、耐磨损、耐腐蚀等优点,是一种优异的复合材料,它已成功地应用于航天、航空、国防、化工、机械、电力和电子等工业[5].例如Al是有较好抗腐蚀性能的涂层材料,但纯Al涂层的抗磨性差.通过在纯Al中添加硬质陶瓷AlN,Al2O3,SiC和TiC 等第二相,就可具有优异的防腐蚀性能,还具有显著的抗磨和防润滑性能,应用于舰船甲板防滑,效果显著.其中,在Al中添加SiC,涂层硬度可显著提高,复合涂层的抗磨性比添加Al2O3涂层的抗磨性高35%,且涂层的导热性仍然很好.Tsunekawa等人[6]通过单元素粉末Ti(或Fe)和Al并加入SiC,TiB2或WC颗粒,用等离子喷涂法制成的复合涂层结构致密,具有良好的高温抗冲蚀磨损性能,是应用于锅炉管道防腐和抗高温冲蚀的理想的复合涂层材料.

H.Liao等人[7]研究了WC/Co金属陶瓷复合涂层在不同粒径的磨粒磨损下的表面形貌,研究表明不锈钢基材在100μm磨粒磨损下,表面粗糙度高,磨损表面出现了大量的犁沟和粘着磨损.在同样实验条件下喷涂WC/Co金属陶瓷涂层的磨损表面比较平整,只出现少量裂纹和粘着磨损.

2.2 热喷涂陶瓷与陶瓷复合涂层

众所周知,燃气轮机的受热部件,如叶片、喷嘴和燃烧室处于高温氧化和高速气流冲蚀等恶劣环境中.对于承受温度高达1100℃的燃气轮机部件,已超过了镍基高温合金使用的极限温度(1075℃),提高受阻部件使用的有效办法是涂覆绝缘性能好的高熔点热障陶瓷涂层.研究实践表明,采用MCrAl Y 作粘结底层,喷涂Y2O3部分稳定的ZrO2绝缘陶瓷涂层,涂层坚硬致密,抗高温燃气冲蚀和抗热震性能优异,即使在1650℃高温下长期使用,其热稳定性和化学稳定性也很好.Y2O32ZrO2中加入少量CeO2能进一步改善涂层的抗热震性,在使用温度更低一些情况下,可采用MgO或CaO稳定的ZrO2热障陶瓷层.化工厂使用高压往复计量泵柱塞,采用等离子喷涂Al2O32TiO2复合氧化物陶瓷涂层,其使用寿命比原来用镀铬柱塞提高6倍,密封填料的寿命也提高3倍.Masaru等人[8]研究等离子喷涂MgO2Al2O3陶瓷涂层与烧结MgO2Al2O3整体材料的气孔率、热导性能和热膨胀性能,MgO2Al2O3陶瓷涂层的气孔呈层状结构分布,气孔孔径小、分布整齐,而整体材料气孔孔径较大,分布不均匀,呈点状分布.这些结构的不同导致两者性能上的差异,涂层热导率是烧结材料的50%,而且烧结材料的热导率与孔隙率成比例变化.M.I.Suzuk[9]研究了大气等离子喷涂方法制备的ZrO22SiO2陶瓷复合涂层,该材料喷涂后

?

6

? 兰州理工大学学报 第30卷

形成立方t2ZrO2和无定形a2SiO2涂层结构.通过1 473K温度下的热处理,t2ZrO2相转变为单斜m2 ZrO2,涂层中的裂纹小时,开孔孔隙下降,使该涂层可用于恶劣工况下防腐蚀和抗氧化保护.

2.3 热喷涂陶瓷梯度复合涂层

梯度涂层(F GM)是从基体材料到涂层表面在成分、组织、结构、密度和功能特性上逐渐连续变化的涂层结构.这种结构由于宏观特性的变化是逐渐过度的,因而涂层的内应力小,在高温差的作用下其热应力得到一定的缓和.因此,它是一种优异的涂层结构.F GM涂层特别适合于陶瓷涂层与高温合金的最佳性能匹配,可获得结合力高的耐热涂层,在高温或温差变化大的环境下,不会产生突变的热应力,有效地防止了涂层剥落.如导弹喷管涂层,它需要抗烧蚀、隔热、高辐射率、良好的热冲击性能涂层和基体材料的组合,而且希望密度尽可能小,采用已有的单一材料不可能达到这种多功能的要求.而具备上述性能的各种陶瓷涂层难以采用简单的组合来达到其力学性能和使用寿命的要求,采用梯度涂层技术,能够将各组分进行良好的多层次优化组合,并取得了良好的综合性能.K.A.Khor等人[10]研究了ZrO2/ NiCoAl Y梯度陶瓷涂层微观结构和热性能,研究表明两层间无明显界面,在金属层,具有好的机械强度和热导性;在陶瓷层,有好的抗热性,随着涂层厚度的变化,这些性能也呈梯度变化,这样减小了材料中各相间CTE和弹性模量剧变而引起的热应力变化大和涂层剥落倾向.在Y2O3部分稳定的ZrO2 (YSZ)层,由于陶瓷材料热膨胀性低,随着温度升高,CTE逐渐升高;而在金属层,随着温度升高, CTE迅速升高,在F GM涂层中,随着金属成分的增加,CTE也逐渐变化但其热膨胀性均居于金属与陶瓷之间.由此可见,由于金属与陶瓷材料的CTE有很大不同之处,因此,在双层涂层中,两层之间由于温度变化而引起的热不匹配性,可引起大量残余应力,这将导致涂层产生裂纹与剥落现象.而对于F GM涂层,由于不同层间CTE是连续变化的,因此由温度变化引起的热不匹配性减小,涂层结合强度高,不易产生裂纹和剥落倾向.

俄罗斯的科技人员已将F GM涂层的复合材料投入实际应用,在航空发动机的静子摩擦环表面先用等离子喷涂技术逐层喷涂以陶瓷为主的梯度涂层,再用激光或电子束进行控制重熔,最后磨平外表面,得到的涂层不仅成分组织和性能呈递度变化,涂层结合强度高,整体结合好,而且表面陶瓷层的硬度高和完美的平整性对摩擦端面的耐磨和密封十分有利[11].

2.4 热喷涂纳米陶瓷复合涂层

纳米材料的两大特性可用于制备纳米结构涂层.一是大量晶界的出现,它和涂层的物理和化学性能密切相关,如低温延展性、超塑性、高电导率、抗热震性和抗腐蚀性等;二是由于小尺寸效应,形成一些异常相,即当晶粒尺寸变得非常小时,大量的表面能对G ipps自由能的形成有贡献[12,13].对热喷涂传统粉末与纳米粉末工艺过程进行比较,可见,热喷涂纳米涂层的制备与传统涂层的制备不尽相同,热喷涂微米级颗粒时,仅仅使颗粒表面产生熔融,而纳米颗粒由于比表面大,活性高而极易被加热熔融,在热喷涂过程中纳米颗粒将均匀地熔融.由于熔融程度好,纳米颗粒在碰到基材后变形剧烈,平铺性明显优于微米级颗粒.热喷涂纳米结构涂层熔滴接触面更多,涂层孔隙率低,表现在性能上就是纳米结构涂层的结合强度大、硬度高、断裂强度好和耐腐蚀好.M.

G ell,E.H.Jordan等人[15]研究了纳米陶瓷涂层与微米级陶瓷涂层摩擦学性能.研究表明,纳米结构涂层致密,裂纹短而小,磨损表面光滑平整,摩擦磨损性优于微米级颗粒涂层.纳米涂层耐磨性高于微米级涂层,且经处理的纳米结构涂层的耐磨性最高,约为微米级涂层的2倍.据报道,在氧化铝陶瓷作为摩擦副,载荷为80N的条件下,纳米WC2Co涂层的摩擦系数为0.32.同样条件下,传统WC2Co涂层的摩擦系数为0.39.真空等离子喷涂的纳米WC2Co涂层还具有较高的抗磨损性能.在40~60N的载荷下,其磨损率仅为同条件下传统磨损率的1/6[16].纳米结构氧化铝、氧化钛复合陶瓷涂层具有优良的抗磨损性能,显示了良好的韧性和吸附应力的能力[16~18],其粘结强度是传统涂层的2倍,抗磨损性是它的3~4倍,抗冲击性能也得到很大提高.涂层抗磨损能和涂层的硬度不是简单的对应关系,添加CeO2或ZrO2到Al2O3/TiO2纳米粉中进行热喷涂,在保持与传统涂层相同硬度的条件下,其抗磨损能也将大大提高.涂层的抗磨损性能取决于涂层的韧性、摩擦过程中显微组织的变化以及涂层的密度和涂层的硬度.

3 讨论

作为材料表面的一种改性技术,热喷涂是适用于制备陶瓷复合涂层的一种有效方法.热喷涂陶瓷复合涂层有许多优异的特性,具有广泛的应用前景.随着计算机的推广应用,自动化喷涂设备的不断完善,喷涂技术、涂层材料研究应用的深入,新型陶瓷

?

7

?

第6期 徐海燕等:热喷涂高性能陶瓷复合涂层的研究进展

涂层将会产生明显的社会经济效益.

目前,热喷涂陶瓷涂层的研究热点主要集中在:

1)热喷涂纳米结构陶瓷涂层:纳米结构陶瓷涂层的结构和表征,涂层材料在热喷涂过程中的熔融与冷却过程、粉末颗粒熔化类型和机制,涂层摩擦磨损机理研究.

2)热喷涂梯度陶瓷涂层:梯度涂层性能的优化设计和热应力松弛与涂层结构关系,涂层摩擦磨损机理研究;涂层形成机理,裂纹扩展的研究以及在不同工况环境中摩擦磨损失效机理等方面的研究.

参考文献:

[1] 陈学定,韩文政.表面涂层技术[M].北京:机械工业出版社,

1994.

[2] 徐滨士,张 伟,梁秀兵.热喷涂材料的应用与进展[J].新材

料产业,2002,104(7):53257.

[3] 蔡建平,李 波.热喷涂陶瓷涂层[J].机械工程材料,2000,24

(1):527.

[4] 唐绍裘.高性能陶瓷涂层材料技术及应用市场[J].表面

技术,2002,31(2):46247.

[5] 刘福田,李兆前.金属陶瓷复合涂层技术[J].济南大学学报,

2002,16(1):84291.

[6] TSUN EKAWA Y.Nitriding of metal droplets in synthesis of in2

termetallic matrix composite coatings by reactive RF plasma

spraying[A].PETVOVICOVCL E.Thermal spray meeting the challenges of the21st century,proceedings of the15st internation thermal spray conference[C].Nice France:Surface Engineering

Publishing Company,1998.1143.

[7] L IAO H,NOMAND B,CODDET C.Influence of coating mi2

crostructure on the abrasive wear resistance of WC/Co cerment

coatings[J].Surface and Coatings Technology,2000(124):2352

242.[8] MASARU N,TA KESHI T.Material design of ceramic coating by

plasma spray method[J].Fusion Engineering and Design,1998

(41):1432147.

[9] SUZU K I M,SODEO KA S.Strcture and properities of plasma2

sprayed zircon Coating[A].TWARDOWSKI T.2000Thermal

spray2surface engineering via applied research[C].Nice France:

Surface Engineering Publishing Company,2000.333.

[10] KHOR K A,GU Y W.Thermal properties of plasma2sprayed

functionally graded thermal barrier coatings[J].Thin Solid

Films,2000(372):1042113.

[11] 将志强.俄罗斯航天发动机静子摩擦环耐磨及封严涂料层的

实物解剖分析[J].兵器材料科学与工程,1999,22(2):432

47.

[12] ATIAAC R.Nanostructured ceramic coatings:engineering on an

atomic scale[J].Surf Eng,1999,15(3):1952204.

[13] MCPHERSON R.The relationship between the mechanism of

formation and properities of plasma2sprayed coatings[J].Thin

Solid Films,1981(83):2972310.

[14] KEAR B H,STRU TT P R.Chemical processing and application

for Nanostructured material[J].Nanostruct Mater,1995(6):

2272236.

[15] GELL M,JORDAN E H,SOHN Y H.Development and imple2

mentation of plasma sprayed nanostructured ceramic coatings

[J].Surface and Coatings Technology,2001(1462147):48254.

[16] ZHU Y ingchun,KAN Yukimura,DIN G Chuanxian,et al.Tri2

bological properities of nanostructured and conventional WC2Co

coatingd deposited by plasma spraying[J].Thin Solid Films,

2001(388):2772282.

[17] ZHU Y,HUAN G M,HUN G J,et al.Vacuum2plasma sprayed

nanostructured titanium oxide films[J].Therm Spray Technol,

1999,8(2):2192222.

[18] BERND T C.Thermal spray processing of nanoscale materials2

extended abstracts[J].J Therm Spray Technol,2001,7(3):

1472181.

?

8

? 兰州理工大学学报 第30卷

热喷涂高性能陶瓷复合涂层的研究进展

文章编号:100025889(2004)0620005204 热喷涂高性能陶瓷复合涂层的研究进展 徐海燕1,周惠娣1,陈建敏1,冯治中1,张翠芳2 (1.中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州 730000;2.南京工程学校,江苏南京 211135) 摘要:论述了陶瓷复合涂层的种类、制备方法及应用.采用表面涂层热喷涂技术,能在金属基体上制备金属基陶瓷复合涂层、陶瓷与陶瓷复合涂层、梯度功能陶瓷复合涂层和纳米陶瓷复合涂层,这样就把陶瓷材料的特点与金属材料的特点有机结合在一起,赋予材料新的功能.这些复合材料已广泛应用于航天、航空、医学、生物和电子等领域. 关键词:复合涂层;热喷涂;纳米涂层;梯度功能涂层 中图分类号:TB332;TG174.453 文献标识码:A Investigative progression of thermo2sprayed high2performance ceramic composite coatings XU Hai2yan1,ZHOU Hui2di1,CHEN Jian2min1,FEN G Zhi2zhong1,ZHAN G Cui2fang2 (1.State K ey Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Science,Lanzhou 730000,China;2. Nanjing Engineering School,Nanjing 211135,China) Abstract:The category,preparation,and application of composite ceramic coating were introduction in this ar2 ticle.The composite ceramic coating such as metal2based ceramic composite coating,ceramic2ceramic composite coating,graded functional ceramic composite coating and nanometer ceramic composite coating,were prepared by surface2coated technology2thermal spraying.Those ceramic composite coating had many good properties applied in many fields such as spaceflight,aviation,medicine,biology and electron. K ey w ords:thermal spray;composite coating;nano2coating;functionally graded coatings 陶瓷是金属元素和非金属元素组成的晶体或非晶体化合物,它与金属材料、高分子聚合物材料构成了固态工程材料的三大支柱.陶瓷材料是离子键和共价键极强的材料,与金属和高分子材料相比,其具有熔点高,抗腐蚀和抗氧化性强,耐热性好,弹性模量,硬度和高温强度高的特点.由于陶瓷材料的抗冲击性能差、塑性变形能力低、脆性大,因此成形加工和安装困难,易发生破裂,这成为陶瓷材料应用的致命弱点.然而,应用新型陶瓷复合粉末,采用表面涂层技术,在金属基体上制备陶瓷涂层,能把陶瓷材料的特点与金属材料的特点有机地结合起来,获得复合材料结构及制品,正成为当代复合材料及制品高科技领域的重要分支[1].1958年,世界上第一台等离子喷涂设备在美国问世,为喷涂高熔点陶瓷涂层 收稿日期:2004201218 基金项目:国家自然科学基金(59925513),国家杰出青年科学基金(59925513),中科院“百人计划”资助(科发人教 字[1999]0381号) 作者简介:徐海燕(19752),女,甘肃景泰人,硕士生.提供了理想的高温热源,迅速在航空发动机、火箭等尖端科技领域得到了成功的应用.自20世纪80年代以来,它又迅速向传统民用工业部门扩展,其应用遍及能源、交通、冶金、轻纺、石化等领域,成效非常显著.据报道,美国在20世纪90年代以来,陶瓷涂层的应用年增长率在12%以上.这表明在先进发达国家,陶瓷涂层高科技技术已成为一个新兴产业.由各种材料复合获得的陶瓷复合涂层种类主要有金属基陶瓷复合涂层、陶瓷与陶瓷复合涂层、多层复合涂层、梯度功能陶瓷复合涂层和纳米陶瓷复合涂层等[2].这些复合材料不仅具有单一材料所具有的性能,还由于复合材料的不同而获得了许多特殊性能或具有多功能性的涂层,已广泛应用于航天、航空、医学、生物、电子等领域[3]. 1 复合陶瓷涂层的制备 复合陶瓷涂层具有许多其它材料所不具有的优良性能,所以科学家研究开发了许多陶瓷涂层的制 第30卷第6期2004年12月 兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.30No.6 Dec.2004

不锈钢表面金属陶瓷涂层技术

摘要 近年来,随着现代化工业的不断进步与发展,人们对于材料的性能要求越来越高,其中较为重要的一点便是材料的耐磨性。众所周知,磨损现象不论在科研实践还是日常生活中都是很常见的,并且若不及时更换调整便极有可能造成严重的安全事故。因此,如何提高易磨损材料的耐磨性能便显得尤为重要。 锌锅沉没辊是热浸镀锌设备中一种重要零件,我国锌锅沉没辊的辊轴与辊套需要从国外进口,不仅价格昂贵而且磨损严重,平均一周就需要更换一次设备,导致轧制的成本很高。所以锌锅沉没辊辊轴与辊套的耐磨性是一个越来越受到重视的问题。本设计旨在制备316L不锈钢表面的耐磨陶瓷涂层来缓解锌锅沉没辊的辊轴与辊套过于严重的磨损,以此延长锌锅沉没辊的辊轴与辊套的寿命,提高生产效率。 我们通常用表面合金化、表面形变强化、表面涂层强化等方法来提高材料耐磨性。本设计借助钎涂原理,分别以氧化铝和碳化钨作为陶瓷增强相材料,Ni82CrSiB合金为钎料,利用真空钎涂的方法制作出较为耐磨的陶瓷涂层,从而达到提高不锈钢表面耐磨性的要求。试验结果表明:氧化铝与钎料的润湿效果不够理想,在涂层中没能发现氧化铝相,即以氧化铝作为陶瓷增强相材料无法达到预期目标;而碳化钨颗粒在涂层中分布较均匀,涂层表面光滑,有金属光泽,并且与不锈钢表面冶金结合良好,硬度达到了不锈钢基体的6倍以上,有望大幅提高材料的耐磨性能。 关键词:金属陶瓷涂层;钎涂技术;硬度

Brazing Process of Metal-ceramic Coating on Stainless Steel Abstract In recent years, with the continuous progress and modernization of industrial development, people are increasingly demanding high-performance materials, one of the important points is the wear resistance. As we all know, the wear phenomena both in research and practice is still very common in daily life, and if not timely replacement of adjustments it is very likely result in serious accidents. Therefore, how to improve the wear resistance of the material is particularly important. The zinc pot sink roll is one of the important parts of hot dip galvanizing equipments. The bush of zinc pot sink rolls needs to be imported from abroad, and it is not only expensive but also badly worn., it needs to be replaced once per week, and that would lead to the high cost of rolling. Therefore, the wear resistance of the zinc pot sink roller bearing is a question with more and more attention. This design is in order to prepare the surface of 316L stainless steel wear-resistant ceramic coating to solve the zinc pot sink roll shaft and insert wear too serious problem to extend the life of the equipment and The main methods of improving the wear resistance for material are surface strain hardening, surface alloying, surface coating strengthened and so on. In this design, we use the braze coating principle, and make the Al2O3 and WC as ceramic reinforcement materials, Ni82CrSiB as the brazing. The method of using the vacuum braze coating to produce more wear-resistant ceramic coating, so as to improve wear resistance of the stainless steel surface requirements. The results showed that: The wetting effect of Al2O3 and brazing filler is not satisfactory, and we could not find alumina phase in the coating, that is to say, Al2O3 as the ceramic reinforcement materials can not achieve the desired goal. However, WC particles in the coating are distributed more evenly. The coating surface is smooth, with a metallic luster, and it is a good metallurgical bond with the stainless steel surface. Its hardness is more than 6 times the stainless steel substrate, and it can be required to improve the wear resistance. Key Words:metal-ceramic coating; braze coating process; hardness

陶瓷涂层

陶瓷涂层 一、金属基陶瓷涂层简介 金属基陶瓷涂层是指涂在金属表面上的耐热无机保护层或表面膜的总称。他能改变金属底材料外表面的形貌、结构及化学组成,并赋予底材料新的性能。涂层的种类很多;按其组成可分为硅酸盐系涂层、氧化物涂层、非氧化物涂层及复合陶瓷涂层等,按工艺方法可分为熔烧涂层、喷涂涂层、气相沉积及扩散涂层、低温烘烤涂层、电化学工艺涂层、溶胶-凝胶涂层及原位原位反应涂层等;按其性能与用途可分为温控涂层(包括温控、隔热、红外辐射涂层等)、耐热涂层(包括抗高温氧化、抗腐蚀、热处理保护涂层等)、摩擦涂层(包括减磨、耐磨润滑涂层)、电性能涂层(包括导电、绝缘涂层等)、特种性能涂层(包括电磁波吸收、防原子辐射涂层等)及工艺性能涂层等。 二、金属基陶瓷涂层制备技术 1.喷涂法(等离子喷涂法) 2.化学气相沉积法(CVD):在相当高的温度下,混合气体与基体的表面相互作用,使混合气体的某些成分分解,并在基体表面形成一种金属或化合物的固态薄膜镀层。 3.物理气相沉积法(PVD):离子镀法、溅射法、蒸镀法、离子注入等,离子化使镀层更致密。目前CVD和PVD的界限已不明显,两者相互渗透,CVD技术引入等离子活化等物理过程,出现了PACVD技术,PVD技术也引入反应气体产生化学过程。 4.复合镀层 5.溶胶-凝胶法 6.原位反应法 三、应用 航天航空工业:航天飞机机身外皮发动机涡轮叶片燃烧室内壁齿轮箱传送装置 电力电子工业:增加介电常数 汽车工业:为了减轻重量而开发新一代汽车发动机,欧洲、日本的汽车制造厂已经采用了合金上电解沉积Ni-SiC复合镀层,这种镀层还能大大提高耐膜性能、润滑性能和耐高温氧化性能。将氧化锆陶瓷粉末喷涂在内燃机的燃烧室内壁,可提高内燃机的工作温度、节省燃料和简化结构。 切削刀具上的应用:硬度高、耐热粘结性强、化学稳定性高、切削韧性好、切削性能优良等特点。单双三层刀具,陶瓷镀层刀具寿命是原来的1-2倍,多镀层刀具是陶瓷镀层刀具寿命的0.5-1倍, 冶金和机械工业:金属的冶炼热加工和热处理都要在高温下进行,防止金属的高温氧化、渗氮、渗氧,往往在金属表面涂热处理保护涂层。 生物医学的应用:改善人体与金属的生物相容性。 石油化工:防腐 陶瓷、玻璃生产:增加强度和寿命 食品包装:耐热、高阻隔、透明度

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

陶瓷涂层技术知识

陶瓷涂层技术知识 一、金属基陶瓷涂层简介 金属基陶瓷涂层是指涂在金属表面上的耐热无机保护层或表面膜的总称。他能改变金属底材料外表面的形貌、结构及化学组成,并赋予底材料新的性能。涂层的种类很多;按其组成可分为硅酸盐系涂层、氧化物涂层、非氧化物涂层及复合陶瓷涂层等,按工艺方法可分为熔烧涂层、喷涂涂层、气相沉积及扩散涂层、低温烘烤涂层、电化学工艺涂层、溶胶-凝胶涂层及原位原位反应涂层等;按其性能与用途可分为温控涂层(包括温控、隔热、红外辐射涂层等)、耐热涂层(包括抗高温氧化、抗腐蚀、热处理保护涂层等)、摩擦涂层(包括减磨、耐磨润滑涂层)、电性能涂层(包括导电、绝缘涂层等)、特种性能涂层(包括电磁波吸收、防原子辐射涂层等)及工艺性能涂层等。 二、金属基陶瓷涂层制备技术 1.喷涂法(等离子喷涂法) 2.化学气相沉积法(CVD):在相当高的温度下,混合气体与基体的表面相互作用,使混合气体的某些成分分解,并在基体表面形成一种金属或化合物的固态薄膜镀层。 3.物理气相沉积法(PVD):离子镀法、溅射法、蒸镀法、离子注入等,离子化使镀层更致密。目前CVD和PVD的界限已不明显,两者相互渗透,CVD技术引入等离子活化等物理过程,出现了PACVD技术,PVD技术也引入反应气体产生化学过程。 4.复合镀层 5.溶胶-凝胶法 6.原位反应法 三、应用 航天航空工业:航天飞机机身外皮发动机涡轮叶片燃烧室内壁齿轮箱传送装置 电力电子工业:增加介电常数 汽车工业:为了减轻重量而开发新一代汽车发动机,欧洲、日本的汽车制造厂已经采用了合金上电解沉积Ni-SiC复合镀层,这种镀层还能大大提高耐膜性能、润滑性能和耐高温氧化性能。将氧化锆陶瓷粉末喷涂在内燃机的燃烧室内壁,可提高内燃机的工作温度、节省燃料和简化结构。 切削刀具上的应用:硬度高、耐热粘结性强、化学稳定性高、切削韧性好、切削性能优良等特点。单双三层刀具,陶瓷镀层刀具寿命是原来的1-2倍,多镀层刀具是陶瓷镀层刀具寿命的0.5-1倍, 冶金和机械工业:金属的冶炼热加工和热处理都要在高温下进行,防止金属的高温氧化、渗氮、渗氧,往往在金属表面涂热处理保护涂层。 生物医学的应用:改善人体与金属的生物相容性。 石油化工:防腐 陶瓷、玻璃生产:增加强度和寿命 食品包装:耐热、高阻隔、透明度 四、发展方向 1.发展新涂层:研究解决陶瓷涂层与金属基体的热膨胀系数匹配问题,从而提高涂层与金属的结合力。 2.发展新工艺:简便、成本低、生产效率高以及产生无缺陷涂层的工艺 3.无损探伤方法,韧性、粘结强度等。 五、金属陶瓷镀膜技术在车用内燃机上的应用 为降低内燃机活塞环与气缸套表面的摩擦因数,提高发动机的机械效率,进而提高内燃机的性能,在内燃机活塞环上应用了金属陶瓷镀膜技术。采用此项技术后,发动机成本仅增加3%-5%,而整机动力性和经济性得到了明显改善,实用价值很高。

后热处理对激光熔覆涂层应用的研究进展

后热处理对激光熔覆涂层应用的研究进展 摘要:随着社会的安徽赞,我国的科学技术的发展也有了很大的提高。激光熔 覆技术是在基材表面熔覆一层金属或复合粉末,形成具有特殊功能的低稀释率涂层,在成本较低的情况下显著提高基材的表面性能。激光熔覆工艺是一个急热急 冷的过程,因而所获涂层的组织细小致密,结合强度高,但这也致使其偏离了平 衡过程,且由于熔覆材料与基材间存在差异,导致熔覆层易出现气孔、裂纹及剥 落等问题。如何控制涂层中裂纹的萌生和发展是在制备激光熔覆涂层时必须考虑 的问题之一。虽然有关涂层中裂纹的形成机制的问题相当复杂,但降低涂层裂纹 倾向的方法却是殊途同归,其关键在于如何有效地降低涂层内的残余应力,提高 涂层强度和韧性。目前常用的手段包括优化工艺参数、预热处理、缓冷、设计梯 度涂层、添加增韧增塑元素和后热处理等,其中,热处理作为一种改善金属材料 性能的传统工艺,在一定的加热保温和冷却条件下,通过改善涂层内部的相和组 织结构,能够提升涂层韧性,缓解残余应力并消除涂层裂纹倾向,同时,对涂层 进行合适后热处理也有利于避免服役于高温下的表面涂层因相和组织的变化而导 致零件整体性能的不稳定。此外,对涂层进行高温处理也可作为激光熔覆涂层高 温稳定性的一种评定手段。本文综述了国内外后热处理对激光熔覆涂层应用的研 究现状,从热处理的3个基本要素出发,探讨了后热处理对激光熔覆涂层相和组织、力学性能、摩擦学性能等方面的影响机理,总结了后热处理过程对激光熔覆 涂层的组织演变规律和涂层性能变化的影响,以期为相关的工程应用和理论研究 提供参考。 关键词:后热处理;激光熔覆涂层应用;研究进展 引言 高温热处理是一种缓解激光熔覆涂层残余应力和检测涂层高温稳定性的有效 手段。本文从热处理的加热温度、保温时间和冷却速度角度出发,综述了热处理 工艺对激光熔覆涂层的研究进展。分析了热处理对激光熔覆涂层物相和组织结构、力学性能以及摩擦学性能的影响机理,讨论了热处理过程中熔覆涂层的相组织演 变以及涂层力学性能、摩擦学性能的变化规律。 1热处理工艺参数对激光熔覆涂层的影响 1.1热处理温度对涂层的影响 目前有关热处理温度对激光熔覆涂层影响的相关工作具体内容主要围绕两个 方面展开,一是研究热处理温度对涂层性能的影响,二是通过试验检测分析涂层 在特定温度下的高温稳定性。由于激光熔覆急热急冷的加工特性,涂层中常包含 大量过饱和固溶体和其他亚稳定相,过饱和固溶体中大量溶解其他元素,大量的 晶格畸变起到了固溶强化的作用,但由此也使得涂层基体塑性和韧性较差,加之 涂层本身的残余应力,使涂层极易开裂。涂层的热处理本质上是一个涂层相的有 序化和元素趋于均匀化的过程,在该过程中伴有组织长大、元素的扩散和置换、 相成分的调整和新相的产生等变化,从而引起涂层中枝晶形貌的改变。发现当热 处理温度较低(500℃)时,Ni21+20%WC+0.5%CeO2合金粉激光熔覆涂层组织和硬度基本没有变化。而随着热处理温度的上升(950℃),发现MoFeCrTiWAlNb高熔 点高熵合金涂层,随着退火温度升高,高熔点元素聚集在花瓣状组织,枝晶聚集 长大。

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/0d5237566.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

SiC晶金属陶瓷复合涂层制备技术的研究

龙源期刊网 https://www.360docs.net/doc/0d5237566.html, SiC晶金属陶瓷复合涂层制备技术的研究 作者:于美玲赵林 来源:《城市建设理论研究》2013年第10期 【摘要】随着科学技术与制造技术日新月异的发展,氧化铝陶瓷在现代工业中得到了深入 的发展和广泛的应用。本文介绍了SiC晶金属陶瓷在各个研究领域的应用及其制备工艺,以SiC 晶金属陶瓷性能为基础,综述了它在所应用领域的发展状况。采用泥浆预涂层反应法在C/SiC 复合材料表面制备Si/SiC涂层。通过理论计算和实验确定了制备致密不开裂涂层的泥浆配比;研究了埋粉烧结和气相硅真空反应烧结2种不同烧结气氛对Si/SiC涂层微观形貌和成分的影响;分析了不同涂层的工艺过程、工艺特点、性能以及优缺点,提出了高温反应合成涂层技术存在的问题,展望了研究发展方向。 【关键词】SiC涂层,金属陶瓷,复合涂层 中图分类号:TU74 文献标识码:A 文章编号: 一.前言 高新技术和工业现代化的持续高速发展使得各种机械零件的工作条件日益苛刻。由于零部件的破坏往往从表面开始,表面的局部破坏又会导致零件的整体失效,因此, C/C和SiC复合材料具有诸多优异的高温性能,如高温稳定性、较高温度下低的线膨胀系数、强度随温度升高而增加、摩擦系数稳定等,在航天、化工、冶金、交通和机械工业等领域备受青睐采用包埋法在C/C 复合材料表面制备了SiC高温防氧化涂层。涂层主要由β-SiC和少量的游离Si组成,涂层表面有裂纹存在,涂层与C/C和SiC复合材料基体结合良好,呈现犬牙状结合, 在SiC晶金属陶瓷复合涂层制备技术方面得到了完美体现。 二.SiC晶金属陶瓷复合涂层 采用料浆法在C/C复合材料siC内涂层表面制备出分别适用于900℃、1300℃和1500℃长 期防氧化的陶瓷外涂层。当siC内层为采用两步包埋法制备的致密涂层时,适用于900℃的 siC/陶瓷涂层具有较好的防氧化性能,涂层试件在900℃静态空气中氧化100小时后失重率仅为0.14%, 涂层在试件在氧化过程中表现为微量失重的主要原因是陶瓷涂层在氧化温度下的缓慢挥发。陶瓷的涂层适用1400℃左右的防氧化陶瓷密封层结构为MOSIZ相分散于硼硅酸盐玻璃相之中。而且该涂层具有非常好的的抗氧化性能和抗热震性能的特点,在1400℃左右的静态空气中氧化中放置160小时和经19次1400℃。室温急冷急热循环后,涂层试样的氧化失重率可能达到仅仅的2.16%。

纳米复合镀层的研究进展

第26卷第2期 唐山师范学院学报 2004年3月 Vol. 26 No.2 Journal of Tangshan Teachers College Mar. 2004 ────────── 收稿日期:2003-07-01 作者简介:曹茂盛(1961-),男,江苏南通人,北京理工大学材料学院教授,博士后,博士生导师,主要从事纳米材料、吸 波材料及复方材料的研究。 纳米复合镀层的研究进展 曹茂盛 (北京理工大学 材料学院,北京 100083) 摘 要:介绍了纳米复合镀层的制备、分类及耐磨减磨、耐腐蚀、耐高温、自润滑、催化、导磁等方面的性能,综述了近年来有关纳米颗粒在复合镀层制备过程中的沉积机理和影响因素。 关键词:纳米颗粒;复合镀层 中图分类号:N34 文献标识码:A 文章编号:1009-9115(2004)02-0006-04 1 引言 复合镀技术是近年来发展起来的一项新技术,它是将一种或数种不溶性固体颗粒加入到镀液中,经过搅拌使之均匀地悬浮于镀液中,使固体颗粒与金属离子共沉积而形成复合镀层的一种沉积技术。该技术的研究已有20多年的历史,利用复合镀技术可以制备出一系列性能广泛变化的复合镀层,在强化材料表面等方面具有显著的效果。目前国内外研究及应用广泛的复合镀层采用的第二相粒子多是微米级的,其性能不能满足科技发展的要求。 纳米材料科学的发展,给复合镀技术带来了新的契机,纳米材料的表面效应、小尺寸效应、巨磁电阻效应、宏观隧道效应等使其呈现出常规材料不具备的特殊的光学、电学、力学、催化等方面的特性,使纳米材料具有比普通材料高的多的硬度、耐磨性、自润滑耐性和耐腐蚀性。纳米复合镀层就是在镀液中加入纳米固体颗粒,通过和金属共沉积获得镀层,从而使镀层复合了纳米材料的特异功能。纳米颗粒在复合镀层中的应用将有力地促进复合镀层的发展。 2 沉积机理及制备方法简述 纳米颗粒与金属离子共沉积机理包括电化学机理、吸附机理和力学机理等,这些理论强调沉积发生的热力学条件,Wagner 和Trand 等人提出的混合电位理论侧重于沉积发生的动力学条件。由于沉积过程本身是一系列反应链相互作用的结果,反应过程中许多中间态离子寿命短且难以检测,所以至今沉积机理尚无完善的理论解释。而且整个沉积过程是一个动态过程,最终镀层中纳米颗粒含量与各 个反应环节均有关联。综合上述的机理,共沉积过程可分为3个阶段:(1)悬浮于镀液中的纳米颗粒,由镀液深处移向试样表面,需要依靠搅拌形成的动力场或电场力来实现;(2)纳米颗粒粘附于试样表面,其动力学因素复杂,与颗粒、电极基质金属、镀液、添加剂和电镀操作条件等因素有关;(3)纳米颗粒被试样表面析出的基质金属牢固嵌入,形成复合镀层。 纳米复合镀层的制备工艺主要有复合电镀法、复合化学镀法及复合电刷镀等方法。复合电镀是指在电解质溶液中加入一种或几种不溶性纳米固体颗粒,在金属离子被还原的同时,将不溶性的纳米固体颗粒均匀地夹杂到金属镀层中,复合镀层是一类以基质金属为均匀连续相和以不溶性纳米粒子为分散相的金属基复合材料。复合化学镀是指利用化学镀技术来制备复合镀层。化学镀对粒子具有较强复合能力,用悬浮微粒镀液可获得微粒含量相当高的复合镀层。复合电刷镀是指为获得弥散镀层,在金属镀液中加入不溶性固体微粒,使这些固体微粒与金属镀液中的金属离子共沉积,并均匀弥散在金属镀层中的镀层而采用刷镀技术的一种工艺方法。 3 纳米结构表面化学复合镀的研究现状 3.1 纳米结构复合镀层的研究 纳米微粒在理论上可以大幅度提高镀层中化合物的含量,并给镀层带来优良的功能特性,目前开发的有镍基、铜基、银基等镀层,其中大量研究和应用的是镍基化学复合镀。常见的镀层主要分为两类:一类是加入硬质颗粒形成的高硬度、耐磨损镀层;另一类是加入减摩颗粒,形成自润滑镀层。

热喷涂技术资料

齐鲁工业大学|机械与汽车工程学院 热喷涂技术的研究综述 孙* (齐鲁工业大学机械与汽车工程学院 20130102****) 摘要: 本文介绍了热喷涂技术的由来,发展历程,工艺特点(热喷涂工艺的优缺点),基本概念,总结了热喷涂技术的应用状况,探讨了新工艺、新材料在热喷涂技术中的应用前景。 关键词:表面处理;热喷涂;热喷涂的优缺点;热喷涂的应用进展 前言: 高新技术的飞速发展对提高金属材料的性能、延长仪器设备中零部件的使用寿命提出了越来越高的要求。而这两个方面的要求又面临高性能结构材料成本逐年上升的问题。近年来,表面工程发展很快,尤其是热喷涂技术获得了巨大的进展,为解决上述问题提供了一种新的方法。热喷涂技术是一种将涂层材料 (粉末或丝材 )送入某种热源 (电弧、燃烧火焰、等离子体等 )中熔化,并利用高速气流将其喷射到基体材料表面形成涂层的工艺。由于热喷涂技术可以喷涂各种金属及合金、陶瓷、塑料及非金属等大多数固态工程材料,所以能制成具备各种性能的功能涂层,并且施工灵活,适应性强,应用面广,经济效益突出,尤其对提高产品质量、延长产品寿命、改进产品结构、节约能源、节约贵重金属材料、提高工效、降低成本等方面都有重要作用。热喷涂涂层具有耐磨损、耐腐蚀、耐高温和隔热等优良性能,并能对磨损、腐蚀或加工超差引起的零件尺寸减小进行修复,在航空航天、机械制造、石油化工等领域中得到了广泛的应用【1-3】。 热喷涂发展现状: 1、热喷涂技术的由来 热喷涂是指采用氧—乙炔焰、电弧、等离子弧、爆炸波等提供不同热源的喷涂装置,产生高温高压焰流或超音速焰流,将要制成涂层的材料如各种金属、陶

瓷、金属加陶瓷的复合材料、各种塑料粉末的固态喷涂材料,瞬间加热到塑态或熔融态,高速喷涂到经过预处理(清洁粗糙)的零部件表面形成涂层的一种表面加工方法。我们把特殊的工作表面叫“涂层”,把制造涂层的工作方法叫“热喷涂”,它是采用各种热源进行喷涂和喷焊的总称。 热喷涂技术最早出现在 20世纪早期的瑞士,随后在前苏联、德国、日本、美国等国得到了不断的发展,各种热喷涂设备的研制、新的热喷涂材料的开发及新技术的应用,使热喷涂涂层质量不断得到提高并开拓了新的应用领域【4】。热喷涂技术在我国始于20世纪50年代,至70年代末形成气候。目前,无论在设备、材料、工艺、科研等方面都在迅速发展与提高,成为表面技术重要组成部分。 2、热喷涂技术的发展历程 在 1993年以前【5-6】介绍较多的是单一热喷涂的技术与方法,其中以火焰喷涂法最为常见。虽然该法(火焰温度可达 3000℃),可熔化大多数金属,但由于陶瓷材料熔点太高而使该法受到限制。与现有的火焰喷涂、等离子喷涂、电弧喷涂等技术相比,气体爆炸喷涂具有致密性好,孔隙率低,结合强度高等优点。但因爆炸法之粉料以直线束方式射向基体表面,对形状复杂和细小件内壁难以处理,并需专门隔音装置以对付约140分贝的爆炸声,且涂层与基体之结合强度也有待于提高。新近研制的超音速喷涂法利用喷枪(具有混合气体室,燃烧室及扩张嘴)在压力下点燃混合气体,通过扩张使燃烧继续,由此可产生超音速(1370m/s)和高温(2760℃)的气流,从而能喷涂金属陶瓷,例如WC-Co和WC-Cr-Ni等粉末材料,并无脱碳现象。与爆炸喷涂相比,由于火焰的超音速提高了粒子的速度,其所制得的涂层致密且高耐水性。加上热源温度低,限制了粉末粒子加热,从而有效地抑制了粉末中 WC的分解。实验得出,超音速法所形成的涂层较等离子及氧—乙炔火焰法形成的涂层性能优越,其耐蚀性能与硬质合金YT相当。并且涂层材料已从金属、合金、陶瓷进而扩大到塑料等非导电性材料【7】。 我国热喷涂技术是从五十年代开始的,当时由吴剑春和张关宝在上海组建了国内第一个专业化喷涂厂,研制氧乙炔焰丝喷及电喷装置,并对外开展金属喷涂业务。我国热喷涂技术起步较早,50年代就发展了丝材电弧喷涂;60年代某些军工部分开始研究等离子喷涂,等离子弧焰温度高、等离于喷涂颗粒飞行速度快,

送粉激光熔覆陶瓷掺杂复合涂层技术及涂层成形机理研究

送粉激光熔覆陶瓷掺杂复合涂层技术及涂层成 形机理研究 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

送粉激光熔覆陶瓷掺杂复合涂层技术及涂层成形机理研究 博士研究生张三川 摘要 激光熔覆是现代表面技术体系中的极具发展前途和颇具特色的新技术之一,在“21世纪的再制造工程”和“先进制造技术”中有着广阔的应用前景。首先作者综合评述了激光熔覆技术研究现状与发展趋势,对激光熔覆技术当前急需与未来发展等方面,提出了如下预测型结论: 1)激光熔覆过程数值模拟以及激光熔覆过程的超常物理场问题的研究,包括三维温度场模拟的进一步发展、激光熔覆组织的预测与控制模型、熔覆层的力学特性研究等,以进一步揭示激光与物质相互作用机理。 2)开展熔覆材料设计理论研究工作。研究激光熔覆合金设计的相关理论、建立设计模型与设计检验准则模型,为激光熔覆提供能适应快速凝固与摩擦学系统需求的熔覆合金材料体系,并促进具有良好适应性功能的激光熔覆技术的发展。 3)激光熔覆作为表面工程中的一种新型高技术,在“21世纪的再制造工程”发展中,开展激光熔覆再制造的相关技术与理论的研究将成为新的时代要求,并使该项技术由表面改性技术进一步发展成为集表面改性、维修、再制造于一体的具有绿色特征的表面技术。4)材料零件制造一体化是制造业发展的必然趋势,基于激光熔覆技术,结合三维打印成形或分层制造等快速成形技术和熔覆合金设计技术,研究和发展激光熔覆材料零件直接熔覆制造一体化技术。 在较详细的研究分析激光熔覆现状后,首次较为系统地对激光熔覆材料体系的设计问题进行研究。其基本思想是:由于激光熔覆过程的动态冶金特征与熔覆涂层的应用属性分别是自激急冷的快速凝固和涂层的耐磨损性,因而熔覆材料设计中,首先应以满足应用需求为最低要求,同时以熔覆材料的快速凝固为约束条件,从而提出了基于摩擦学系统的激光熔覆耐磨复合材料的设计原则

碳_碳复合材料磷酸盐抗氧化涂层的研究进展

碳/碳复合材料磷酸盐抗氧化涂层的研究进展* 黄剑锋,杨文冬,曹丽云,夏昌奎 (陕西科技大学教育部轻化工助剂化学与技术重点实验室,西安710021) 摘要 综述了国内外碳/碳复合材料磷酸盐抗氧化涂层的研究进展,介绍了磷酸盐涂层体系的抗氧化原理、制备方法及研究现状,总结了碳/碳复合材料现有磷酸盐涂层体系的不足之处,展望了磷酸盐涂层发展的前景,指出未来碳/碳复合材料磷酸盐抗氧化涂层工作的重点应该是探索新的低成本工艺技术制备致密、结合力好、能在全温度段保护碳/碳复合材料的磷酸盐涂层体系,并详细研究了该涂层的抗氧化、失效机理。 关键词 碳/碳复合材料 磷酸盐 涂层 氧化中图分类号:T B 332 文献标识码:A Advancement of the Phosphate Anti oxidation Coatings for Carbon/Carbon Composites HU ANG Jianfeng,YANG Wendong,CAO Liyun,XIA Changkui (K ey L abor ator y of A ux iliary Chemistr y &T echnolog y fo r Chemical Industr y of M inistry of Educatio n, Shaanxi U niversity o f Science &T echnolo gy ,X i an 710021) Abstract T he advancement of the phosphate ant i ox idatio n coating s for car bo n/carbon co mpo sites is rev iewed.A nti o xidation mechanism,pr epar ation technolog y and present status of the phosphate coating a re intro duced.T he shor tcomings o f ex isting phosphate coating ar e summarized.T he dev elo pment dir ections about this field in futur e have been pr oposed.T he fur ther resear ches will be focused o n preparing the dense and ho mogeneous co ating w ith ex cellent bonding to matrix using a low cost and simple pro cess.T he anti o xidation mechanism and failure mechanisms of the phosphate coat ing ar e also the most desider ated pro blems t o be resolved. Key w ords carbon/carbo n composit es,phosphate,coating s,o xidatio n *国家自然科学基金(50772063);教育部博士点基金(20070708001);陕西省自然科学基金(SJ08 ZT 05);教育部新世纪优秀人才 支持计划基金(N ECT 06 0893);陕西科技大学研究生创新基金 黄剑锋:男,1970年生,博士,教授 E mail:huang jf @https://www.360docs.net/doc/0d5237566.html, 杨文冬:通讯作者,男,1985年生,硕士研究生 E mail:wen do ng _2007@https://www.360docs.net/doc/0d5237566.html, 0 引言 21世纪,现代工业和尖端科学技术的迅速发展向材料提出了更加严格的要求,如轻质、高强、耐高温、耐热震、耐高温气流冲刷等。这些性能远非一般材料所能满足,因此需要探索研究各种新型材料。 碳/碳(C/C)复合材料是碳纤维增强碳基体的复合材料,具有耐高温、低密度、高比模、高比强、抗热震、耐腐蚀、摩擦性能好、吸振性好、热膨胀系数小等优异性能,是其他结构材料如树脂基、金属基、陶瓷基复合材料无法比拟的。在1500 以上高温环境下,C/C 复合材料的强度不降低,反而有升高趋势,使得其成为最有发展前途的高技术新材料之一。但是,C/C 复合材料有一个致命的弱点,即在高温氧化性气氛下极易氧化。高温氧化大大地限制了C/C 复合材料的应用范围,因此防氧化成为C/C 复合材料高温有氧气氛下应用的前提条件[1,2]。研究表明涂层技术将是解决C/C 复 合材料氧化问题更有效的途径[3-7] 。 纵观目前国内外对C/C 复合材料抗氧化涂层的研究,不 难发现开发新的涂层材料,在低成本、简单高效的工艺下制备多相复合涂层和梯度陶瓷涂层,将成为C/C 复合材料抗氧化涂层下一步研究工作的重点。 磷酸盐材料由于耐火温度高、耐热冲击性能好、耐蚀能力强、电学性能优越而受到各国涂层研究工作者的重视[8-10]。磷酸盐材料的结构和性能使其可以用作导弹发射台坐垫部件的耐高温防损涂料、导弹和火箭高温系统的轻质隔热材料、火箭和超音速飞机头部的防热抗氧化涂料、冲压式喷气发动机燃烧室防热内衬、电气绝缘材料、高温雷达罩材料、原子反应堆防蚀涂料等。然而对于C/C 复合材料磷酸盐抗氧化涂层的专题国内外还鲜有报道,为此有必要进行专题评述。本文结合课题组研究工作以及国内外学者的相关研究成果,对C/C 复合材料磷酸盐抗氧化涂层进行了综述,介绍了磷酸盐涂层体系的抗氧化原理、制备方法及研究现状,展望了磷酸盐涂层的发展前景。

相关文档
最新文档