线代解析
考研 线代 知识点

考研:线性代数知识点解析导言线性代数作为数学的一个重要分支,广泛应用于各个领域,特别是在计算机科学、物理学和工程学中。
对于准备参加考研的同学来说,掌握线性代数的基本知识点是非常重要的。
本文将从基础概念、矩阵运算、特征值与特征向量等多个角度,逐步解析线性代数的知识点。
基础概念线性代数的基础概念是理解和掌握后续内容的关键。
下面介绍几个重要的基础概念:1.向量:向量是具有大小和方向的量,常用箭头表示。
在线性代数中,向量可以表示为n维列向量或行向量。
2.矩阵:矩阵是由一组数按照一定规则排列成的矩形数组。
常用大写字母表示矩阵,如A、B等。
3.行列式:行列式是一个与矩阵相关的数值,它可以用于判断矩阵是否可逆,以及计算矩阵的特征值等。
4.线性方程组:线性方程组是由若干线性方程组成的方程组。
解线性方程组的问题在线性代数中是非常重要的。
矩阵运算矩阵运算是线性代数中的核心内容之一,掌握矩阵运算的规则对于解决线性代数问题至关重要。
下面介绍几个常见的矩阵运算:1.矩阵加法与减法:矩阵加法是指将两个相同维度的矩阵按元素相加,减法类似。
加法与减法的结果仍为一个矩阵。
2.矩阵乘法:矩阵乘法是指将一个m×n的矩阵A与一个n×p的矩阵B相乘,得到一个m×p的矩阵C。
矩阵乘法的规则是:C的第i行第j列元素等于A的第i行与B的第j列对应元素的乘积之和。
3.矩阵转置:矩阵转置是指将矩阵的行与列对调得到的新矩阵。
转置后的矩阵记为A^T。
特征值与特征向量特征值与特征向量是线性代数中一个重要的概念,广泛应用于矩阵的对角化、特征分解等问题。
下面介绍特征值与特征向量的定义和计算方法:1.特征值:矩阵A的特征值是指满足方程Av=λv的实数λ,其中v是一个非零向量。
特征值表示矩阵A在某个特定方向上的拉伸或压缩的程度。
2.特征向量:矩阵A的特征向量是指满足方程Av=λv的非零向量v。
特征向量表示矩阵A在对应特征值方向上的方向向量。
线性代数中常见的难题,易错题目解析

线性代数中常见的难题,易错题目解析
1、代数精度:在数值分析中,精度指的是数值计算中所得结果的可靠性,也就是说计算结果是否正确取决于数值计算的精度。
此题目可能会难以回答,要求学生根据自身的数学定义和知识框架来理解和作答,其中的考点是数值计算的精度与数值计算成果的可靠性之间的关系。
2、矩阵的秩:矩阵的秩是矩阵的数学定义,它表示某个矩阵的列数减去它的0行的数目,考察学生对该数学概念的理解程度。
因此,求解矩阵的秩需要对矩阵中的元素进行运算,并判断结果来计算矩阵的秩。
3、线性方程组的系数矩阵:系数矩阵是一个线性方程组的重要概念,表示该线性方程组的解的性质。
系数矩阵的求解主要是根据矩阵操作的行列式计算方法、决定系统的可解性来确定系数矩阵的结构。
4、矩阵乘法:矩阵乘法是线性代数最重要的基本概念之一,它以秩、矩阵维数和矩阵中元素的乘法计算来表示两个矩阵的乘积结果。
矩阵乘法可以有效地解决实际问题,是解决线性方程组最常用的工具之一。
5、矩阵求逆:矩阵求逆是线性代数中常见的概念,它表示将矩阵转换成单位矩阵的变换。
考生在面对本题时,除了熟悉矩阵求逆的基本概念外,还需要掌握大量的乘法和除法运算,以及应用消元法计算矩阵求逆的过程。
6、行列式:行列式是一种矩阵形式的数形式,它由矩阵中各元素的行列式代数计算所构成的一种数字的结果。
通过行列式可以判断矩阵的可逆性、行列式的值与矩阵元素有关。
学生在解答本题时,要掌握行列式的基本概念和行列式的计算方法,以及应用行列式来确定矩阵的可逆性的过程。
2021考研数学一试卷线性代数部分难度解析

2021考研数学一试卷线性代数部分难度解析
就总体难度而言,2021年考研数学一试题与2021年相比,难度相差无几。
不过今年的题目又有一些新的特点,第一道选择题考察二次型以及特征值的性质,是一道综合性较强的题目,只需要把特征值的性质及惯性定理理解了就比较容易做出来,这两部分知识点有一个不熟悉就做不出来了。
第二道选择题考察线性方程组解的结构同时与解析几何结合,实际上重点还在线性方程组解的结构上,解析几何只不过是个幌子,要学会看到题目背后本质要考察的点。
填空题考察了方程组解的判定定理,即非齐次线性方程组有无穷多解的条件。
总体来说,这份试题中线代考察的重点与以往类似,没有特别偏特别难。
总结试卷会发现依然是换汤不换药,无论形式怎么变,对线性代数来讲,重点依旧是线性方程组、特征值与特征向量、相似与相似对角化、二次型这四部分知识。
只要抓住了考试重点,线代部分拿个比较理想的分数还是不难的。
第 1 页共1 页。
2021年 线代大题 数二 解析

2021年线代大题数二解析一、题目分析2021年的线性代数大题数二是一个涉及线性空间、线性变换和矩阵的综合性题目。
题目内容包括线性空间的定义和性质、线性变换的定义和性质、矩阵的特征值和特征向量等内容。
在解答这道大题时,我们需要全面理解线性代数的相关概念,并灵活运用这些概念进行分析和求解。
二、线性空间的性质与定义我们来探讨线性空间的性质与定义。
线性空间是指一个集合,其中定义了加法和数量乘法运算,并满足一定的性质,例如封闭性、结合律、分配律等。
在解答题目时,我们需要明确线性空间的定义,并根据定义来判断给定的集合是否构成线性空间。
还需要深入了解线性空间的性质,例如零向量的存在唯一性、加法逆元的存在唯一性等,这些性质在后续的分析中将起到重要作用。
三、线性变换的性质与定义我们需要深入讨论线性变换的性质与定义。
线性变换是指一个向量空间到另一个向量空间的映射,并满足保持加法和数量乘法运算的性质。
在解答题目时,我们需要理解线性变换的定义及其基本性质,例如线性变换的可逆性、零空间和值域的性质等。
通过对线性变换的深入理解,我们可以更好地应用线性变换的理论知识来解决实际问题。
四、矩阵的特征值和特征向量我们要讨论矩阵的特征值和特征向量。
矩阵的特征值和特征向量是线性代数中非常重要的概念,它们对于描述矩阵的性质和行为起到了关键作用。
在解答题目时,我们需要掌握求解矩阵特征值和特征向量的方法,理解它们的几何和代数意义,并能够灵活运用这些知识来分析和解决与线性空间和线性变换相关的问题。
五、个人观点和总结从以上内容可以看出,2021年线代大题数二涉及的内容深度和广度都较大,需要我们在掌握线性代数基础知识的基础上,能够灵活应用这些知识来分析和解决复杂的问题。
在解答这道大题时,我深刻认识到了线性代数在数学和实际问题中的重要性,也意识到自己在理解和运用线性代数知识时还存在不足之处,需要进一步加强学习和实践。
2021年线代大题数二考察了我们对线性代数的全面理解和灵活运用能力,需要我们不断深化对线性代数概念和方法的理解,才能更好地应对这类综合性的数学问题。
线性代数解题技巧及典型题解析01-求解线性方程组_16

解 方程组中未知量个数 n 3,又方程组 AX 0 有惟一零解,
所以 r ( A) n,故 r ( A) 3.
例3 设 n 元非齐次线性方程组 AX b 有解,其中 A 为(n 1) n 矩阵,求|A|.
解 因为 AX b 有解,故 r ( A ) r ( A) n n 1,从而 | A | 0.
求axb的通解特殊方程组的求解与方程组的基本理论有关的问题含参数的方程组与向量组的线性表示有关的问题与方程组有关的证明题1写出系数矩阵a并对其作初等行变换化为行最简形式同时得到ra这样也就可以确定基础解系所含解向量的个数
线性方程组的主要内容——求解线性方程组
1. 求 AX=O 的通解或基础解系 2. 求 AX=b 的通解 特殊方程组的求解 与方程组的基本理论有关的问题 含参数的方程组
1 (1, 2,1, 0)T , 2 (1, 1, 0,1)T .
方程组的通解为 * k11 k22 , k1 , k2 为任意常数.
1. 在求解线性方程组时,一定要将系数矩阵或增广矩阵化为行最 简形式,这样有利于求解. 2. 若根据同解方程组(1)式写导出组的基础解系一定不要将常 数加进去.因此一般建议写出导出组的同解方程组(2)求基础解 系.
a=0
1 2 1 2 设A 0 1 t t , 且方程组 AX 0 的基础解系含有两个解向量, 求 AX 0 的通解. 1 t 0 1
1 1 a 1 设A 1 a 1 , 1 ,若线性程组AX 有解但不唯一. a 1 1 2 求:(1)a的值; (2)方程组AX 的通解.
A (n+1)a n .
特殊方程组的求解最重要的是分析出其解的结构来!
线代求公共解的三大方法

线代求公共解的三大方法线性代数是数学中的一个重要分支,研究了向量空间和线性映射的性质及其相关的代数结构。
在线性代数中,求解线性方程组是一个常见的问题。
而求解线性方程组的公共解可以通过三大方法进行求解。
本文将介绍这三大方法并对其进行详细解析。
一、高斯消元法高斯消元法是求解线性方程组的常用方法之一。
其基本思想是通过一系列的行变换将线性方程组转化为一个上三角形的增广矩阵,然后利用回代法求解方程组的解。
具体步骤如下:1. 将线性方程组表示为增广矩阵的形式;2. 选取一个主元,将该主元下面的元素消为零;3. 重复上述步骤,直到将矩阵转化为上三角形;4. 利用回代法求解线性方程组的解。
高斯消元法的优点是求解过程简单、直观,适用于小规模的线性方程组。
但是当线性方程组的规模较大时,计算量会增加,效率较低。
二、矩阵的秩与零解矩阵的秩是矩阵中线性无关的列向量的最大个数。
对于线性方程组Ax=0,如果矩阵A的秩等于列数n,则方程组只有零解。
这是因为矩阵的秩等于列数意味着矩阵的列向量线性无关,无法找到非零解。
在求解公共解时,我们可以通过计算矩阵的秩来判断方程组是否有非零解。
如果矩阵的秩小于列数n,则方程组存在非零解。
此时,可以通过求解齐次线性方程组的通解,再加上非齐次方程的任意特解,得到线性方程组的公共解。
三、矩阵的逆与唯一解如果线性方程组的系数矩阵A是可逆的,即存在矩阵B使得AB=BA=I,其中I为单位矩阵,则方程组有唯一解。
此时,解可以通过矩阵的逆来计算,即x=A^(-1)b。
矩阵的逆存在的条件是矩阵A的行列式不为零。
如果矩阵A的行列式为零,则矩阵A不可逆,方程组可能没有解,或者有无穷多个解。
总结:通过高斯消元法可以求解线性方程组的公共解,但对于大规模方程组效率较低。
通过计算矩阵的秩可以判断方程组是否有非零解,进而求解公共解。
如果方程组的系数矩阵可逆,则方程组有唯一解,解可以通过矩阵的逆来计算。
线性代数是数学中的重要分支,其中求解线性方程组的公共解是一个常见问题。
线性代数解题技巧及典型题解析01-典型的n阶行列式计算_10

Dn Dn1 (Dn1 Dn2 ) 2 (Dn2 Dn1) n2 (D2 D1) n.
解方程组Dn Dn
Dn1 Dn1
n n
, ,
得
n1 n1
Dn
(n 1) n
, .
2a 1
A
a
2
2a
,
1
a2
2a nn
求其行列式的值。 求证:A (n+1)an .
1 0
1 0
1 0 1 0
2+22 23 2+22
=2n+1 2.
1 0 1
1
2
x a aa b xaa 求Dn b b x a . b b bx
Dn
a(x
b)n b(x ab
a)n
,(a
b).
a
b
a
b
3 求Dn
ab cd
. (未写出的为0)
c
d
c
d
解 将D2n按第1行展开,则
a3 1
(a 4)3 (a 4)2
a4 1
an (a 1)n (a n)n
an1 (a 1)n1 (a n)n1
Dn1 a
. a 1 a n
1
1 1
0
[a (n 1)b](a b)n1.
0 0 0 ab
这一行列式的特点是只有两个数,主对角线上的元素全为 a,其他位置上的数全为b,根据这一特点,将第2至第n行(列) 都加到第1行(列)上去,从而第1行(列)变成相同的数,进一步 将该行列式化为三角形行列式求出其值. 对于这类题目,用这 种方法是最简便的.
1.利用行列式按行(列)展开定理,可以得到关于所求行列 式值的递推式. 一般来说,递推式的形式多种多样,如前面介绍 的,不同的递推式有不同的解法,应注意这一点.
2022考研线性代数强化讲义(知识体系+重点题型解析)

第一章行列式一、知识体系 1122,,A i j i j A i j i j =a A a A a A ≠ i j i j 1122 +++= 0,= a A a A a A i j i j +++= ≠ 0, in jnn ! 项不同行不同列元素乘积的代数 定 ni nj 义和 性质 上()或下三角、主对角行列式 副对角行列式ab 型行列式 拉普拉斯展开式 范德蒙行列式行列式12,,,,12,,,T n kA k A A A D n D D x x x −D D D1−1n −1i =1 行列式的概念重要行列式展开定理=nAB A B ==A A= 行列式的公式 * =A A=12=== = ∏ n i 设 n A A 的特征值为λλλλ则 若A B A B 与相似,则Cramer 法则二、重点题型重点题型一数字行列式的计算【方法】【例1.1】设212322212223333245354435743x x x x x x x x x x x x −−−−−−−− f x ()=−−−−x x x x −−− 则方程f x ()0 =根的个数为【】(B )2(C )3(A )1【详解(D )4】【例1.2】利用范德蒙行列式计算222a a bcb bac cc ab=.【详解】【例1.3】设x x x x 1234≠0,则11121314212223243132333441424344x a a a a a a a a a x a a a a a a a a a x a a a +a a a a a a x a 2+2=+2+2.【详解】【例1.4】计算三对角线行列式000000000000αβαβαβαβαββαβ+++D n =++αβα【详解】重点题型二代数余子式求和【方法】【例1.5】已知1234522211312451112243150A=27,则A A A 414243=++=,A A 4445+=.【详解】010000200001n 000【例1.6】设A =n −,则A 的所有代数余子式的和为.【详解】重点题型三抽象行列式的计算【方法】【例1.7】(2005,数一、二)设α1,α2,α3均为3维列向量,A =(α1,α2,α3),(,24,39)B ααααααααα=++++++123123123.若A =1,则=B .【详解】【例1.8】设A 为n 阶矩阵,αβ,为n 维列向量.若A a =,TAαb=0,β则TA β【详解】(2)(2)A A O −O A 1*−【例1.9】设A 为2阶矩阵,B =2 .若A =−1,则=B .【详解】【例1.10】设n 阶矩阵A 满足A A 2=,A E ≠,证明A =0.【详解】第二章矩阵一、知识体系 ()AB A A Ax +A B kAAT⇔≠||0 ⇔=r A n ⇔ ⇔=⇔=定 义 性质 定义法 初等变换 求法伴 随矩法阵法 分块矩阵法的列(或行)向量组线性无关 充要条件齐次线性方0 程组只有零解 非齐次线性方程组Ax b 有唯一解 ⇔A 的特征值均不为零 定义矩性质阵求法基本运算逆 秩定 义 伴随矩阵性质 定义 性质 求矩阵的逆初等变换与初等矩阵 求矩阵的秩线性 应用求表极大示线性无关组 解线性方程组 求二次型的标准形分块矩阵二、重点题型重点题型一求高次幂【方法】2131【例2.1】设46A a b c − =,B 为3阶矩阵,满足BA O=,且r B ()1>,则A n =.【详解】200412 【例2.2】设A =−320,则A n=.【详解】−−121 【例2.3】设A =−− −−363 121,P 为3阶可逆矩阵,B P AP =−12022B E ,则()+=.【详解】重点题型二逆的判定与计算【方法】 【例2.4】设n 阶矩阵A 满足A 2=2A ,则下列结论不正确的是【】 (B )A E (C )−可逆A E(D )+可逆A E −3可逆 (A )A 可逆【详解】,为n 阶矩阵,【例2.5】设A B a b ,为非零常数.证明: I )若(AB aA bB ,则=+AB BA =2+=,则(II )若A aAB E AB BA ;=.【详解】11a 0110a 【例2.6】(2015,数二、三)设A a =−,满足A O 3=. (I )求a 的值;(II )若矩阵X 满足22X XA AX AXA E ,求X −−+=.【详解】重点题型三秩的计算与证明 【方法】秩的性质(1)设A 为m ×n 阶矩阵,则()min ,r A m n {}≤; 2)(()()()r A B r A r B +≤+; ({3)()min (),()r AB r A r B }≤;({4)max (),()()()()r A r B r A B r A r B }≤≤+;5)r A r kA k (()()(0)=≠;(6)设A 为m ×n 阶矩阵,P 为m 阶可逆矩阵,Q 为n 阶可逆矩阵,则()()()()r A r PA r AQ r PAQ ===;7)设A 为m ×n 阶矩阵,若(r A n ()=,则()()r AB r B ;若=r A m ()=,则()()r CA r C =;===TTT8)(()()()()r A r A r AA r AA ;(9)设A 为m ×n 阶矩阵,B 为n ×s 阶矩阵,AB O =,则r A r B n ()()+≤.,为n 阶矩阵,【例2.7】(2018,数一、二、三)设A B () X Y 表示分块矩阵,则【】 (A )( )()r A AB r A (B )=( )()r A BA r A ={ }(C )( )max (),()r A B r A r B =T T(D )r A B r A B ( )( )=【详解】 【例2.8】设A 为n 阶矩阵.证明:I )若A 2=A ,则(r A r A E n ()()+−=;2=,则(II )若A E r A E r A E n ()()++−=.【详解】重点题型四关于伴随矩阵【伴随矩阵的性质】||01**11(1),AA A AA E A A A A AA A≠**−−== →==; (*1*=n 2)()kA k A −; 3)()AB B A (***=(4;)*A A n −1=;(** A A 5)()()T T=;( 6)()()A 1**1A A A−−==;( n −7)()A A A 2**=; ,()8)r A r A n (()1,()1=n r A n *==−r A n <−0,()1.【例2.9】设n 阶矩阵A 的各列元素之和均为2,且A =6,则A ∗的各列元素之和均为【】(B )31(C )3 (A )2【详解(D )6】ij 为n n 【例2.10】设A a =()(3)阶非零矩阵,A ij 为a ij 的代数余子式,≥证明:(*(,1,2,,)TTI )a A i j n A A AA E ij ij ==⇔=⇔= 且A =1;*(,1,2,,)TT(II )a A i j n A A AA E ij ij =−=⇔=−⇔= 且A =−1.【详解】重点题型五初等变换与初等矩阵【初等变换与初等矩阵的性质】(1)E i j (,)1=−,(())E i k k =,E ij k (())1=; T2)((,)(,)E i j E i j =T,E ij k E ji k T ,E i k E i k (())(())=(())(())=;−13)((,)(,)E i j E i j =1,E i k E i k(())−1=−1,(())(())E ij k E ij k =−;(4)初等行(或列)变换相当于左(或右)乘相应的初等矩阵;(5)可逆矩阵可以写成有限个初等矩阵的乘积.【例2.11】(2005,数一、二)设A 为n (n ≥2)阶可逆矩阵,交换A 的第1行与第2行得到矩阵B ,则【】(A )交换A *的第1列与第2列,得B *(B )交换A *的第1行与第2行,得B *(C )交换A *的第1列与第2列,得−B *(D )交换A *的第1行与第2行,得−B *【详解】123012001 【例2.12】设A = 001010100,P =110010001 ,Q = ,则()()T −P A Q 120212022=__________.【详解】第三章向量一、知识体系212(,,,)(,,,) (,,,)s k k k x 1x x r r βαααααααααβ αααβαβ+ k α [αβ,] =+++ ⇔= ⇔= →1122 s s 12 s 12 s s 12 s 定初等行变换义非齐次线性方程组(,,,)αααβ有解 充要条件 充分条件 求法行最简形矩阵向线性相关量 1 22 (,,,)0(,,,)x x x s r s x 1x x s ααα 定ααα义 ⇔=⇔< ⇔= 12s 12 s 12s ⇔至少有一个向量可由其余向量线性表 示齐次线性方程组充要条件ααα有非零解 充分条件齐次线性方程组充要条件(,,,)0只有零解 (,,,)ααα基本运算线性表示定义⇔任意向量均不能由其余向量线性表示线性无 关αs =s ⇔r (,,αα12,)12 s → 充分条初等行变换件定义极大线性无关组与向量组的秩求法行阶梯形矩阵二、重点题型重点题型一线性表示的判定与计算 【方法】,,与数【例3.1】设向量组αβγk l m ,,满足k l m km αβγ++=≠0(0),则【】,与(A )αβαγ ,等价 ,与(B )αββγ,等价(D )α与γ,,与(C )αγβγ等价等价【详解】【例3.2】(123(1,2,0),(1,2,3),(1,2,2)T T T2004,数三)设αααa ab a b ==+−=−−−+,β=−(1,3,3)T .当a ,b 为何值时, ,,线性表示I )β不能由ααα(123;,,唯一地线性表示,并求出表示式(II )β可由ααα123;,,线性表示,但表示式不唯一,并求出表示式(III )β可由ααα123. 【详解】【例3.3】(2019,数二、三)设向量组(123(1,1,4),(1,0,4),(1,2,3)T TT a 2I )ααα===+;向量组2a a a 123(1,1,3),(0,2,1),(1,3,3)T T T (II )βββ=+=−=+I )与(II )等价,求a 的.若向量组(值,,,线性表示并将β3由ααα123.【详解】重点题型二线性相关与线性无关的判定【方法】【例3.4】(2014,数一、二、三)设ααα123,,均为3维列向量,则对任意常数k l,,1323,αααα ++k l ,,线性无关的【线性无关是ααα123】(B )充分非必要条件(C )充分必要条件(A )必要非充分条件【详解(D )既非充分又非必要条件】【例3.5】设A 为n 阶矩阵,ααα123,,均为n 维列向量,满足A A 2αα11=≠0,212A A2ααα=+, 2323A A ααα=+ ,,线性无关,证明ααα123.【详解】,,线性无关,与4维列向量β1,β2两两正交,证明β1,β2线性相关【例3.6】设4维列向量ααα123.【详解】重点题型三极大线性无关组的计算与证明【方法】 1234(1,1,1,3),(1,3,5,1),(3,2,1,2),(2,6,10,)TTTT【例3.7】设ααααa a ==−−=−+=−−.(I )当a 为何值时,该向量组线性相关,并求其一个极大线性无关组;(II )当a 为何值时,该向量组线性无关,并将α=(4,1,6,10)T 由其线性表示.【详解】,为I )设A B m n ×矩阵,则()()()r A B r A r B +≤+;×矩阵,B 为n s {×矩阵,则()min (),()r AB r A r B 【例3.8】证明:((II )设A 为m n 【详解}≤.】重点题型四向量空间(数一专题)【方法】过渡矩阵12,,,n 到基β1,β2, ,βn 的过渡矩阵为由基ααα(,,,)(,,,)=βββααα12C 12 n n ,−12αααβββ1C =(,,,)(,,,) 12 n n .12坐标变换公式,,, n 下的坐标为设向量γ在基αααx x x x12 n T,在基β1,β2, ,βn 下=(,,,)的坐标为y y y y 12 n T,则坐标变换公式为x =Cy =(,,,).2015,数一)设向量组ααα【例3.9】(123,,为R 3的一个基,113βαα=+22k ,βα22=2,313k=++βαα(1).,,为R 3的一个基I )证明向量组βββ(123;(II )当k 为何值时,存在非零向量ξ在基ααα123,,下的坐标相同,并求所有的ξ,,与基βββ123.I 【详解】()3123201(,,)(22,2,(1))(,,)020201k k βββαααααααα1231321=+++= k k +201020201令C =k k +,则,,为R 3的一个基,,线性无关,故βββ=≠40,从而βββC 123123.(II )设ξ在基ααα123,,下的坐标为x ,,与基βββ123,则 123123123Cx x=ξαααβββααα(,,)(,,)(,,)=x =C E x −=得()0.对C E −作初等行变换,1011010100102000k k kC E −=→当k =0时,方程组()00−C E x −=有非零解,所有非零解为1x c 1=,在两个基下坐标相同的所有非零向量为1231231xc −ξαααααααα1=(,,)(,,)0()==−c 31,其中c 为非零常数第四章线性方程组一、知识体系11220 () 0() ()()()()1 ()()()()r A n Ax r A n r A r A n r A r A n k k k ξξξ−− =⇔= Ax =0Ax =⇔<Ax b r A r A r A r A =⇔<⇔=− Ax b Ax b ==⇔== Ax b =⇔=< +++ 性 n r n r 质只有零解有非零解无解 判定有唯一解有无穷多解的通解线性方程组 1122()()()()()()()AX BAX B r A r A B n r A r A B n ξξξη−− Ax =0 ++++ Ax b k k k = =⇔< AX B r A r A B =⇔== AX B =⇔=< A B → n r n r =的通初等行变换解 定义无解矩阵方程判定有唯一解有无穷多解 求法行最简形矩阵 定义 求法,的行向量组等价()()A ⇔r A r r B B 解的性质与判定解的结构公共解定义公共解与同解 ⇔ A B 同解充要条 件==二、重点题型重点题型一解的判定【方法】【例4.1】(0TA2001,数三)设A 为n 阶矩阵,α为n 维列向量,且r r A α α=(),则线性方程组(A )Ax =α有无穷多解(B )Ax =α有唯一解A x α (C )αT0y =0只 有零解Ax α(D ) αT 0y =0有 非零解 【详解】 ×阶矩阵,且【例4.2】设A 为m n r A m n ()=<,则下列结论不正确的是【】T =0(A )线性方程组A x 只有零解 T (B )线性方程组A Ax =0有非零解 (C )∀b ,线性方程组A x b(D )∀b ,线性方程组T =有唯一解Ax b =有无穷多解【详解】重点题型二求齐次线性方程组的基础解系与通解【方法】1234为4阶矩阵,(1,0,1,0)T为线性方程组Ax =0【例4.3】(2011,数一、二)设A =αααα(,,,)的 *=0的基础解系可为【基础解系,则A x 】 , (A )αα12,(B )αα13,,(C )ααα123,,(D )ααα234【详解】a b c ,【例4.4】(2005,数一、二)设3阶矩阵A 的第1行为(,,)a b c 12324636k ,,不全为零,B =,满足AB O=,求线性方程组Ax =0的通解.【详解】【例4.5】(2002,数三)设线性方程组n 0n 0n 0 123n 0++++=ax bx bx bx bx ax bx bx 123++++=123++++=bx bx ax bx123++++=bx bx bx ax其中a ≠0,b ≠0,n ≥2. 当a b 求其通解,为何值时,方程组只有零解、有非零解,当方程组有非零解时,.【详解】重点题型三求非齐次线性方程组的通解【方法】,,为非齐次线性方程组【例4.6】设A 为4阶矩阵,k 为任意常数,ηηη123Ax b =的三个解,满足124ηη12+=23245 3,ηη23+==,则.若r A ()3Ax b =的通解为【】11203142− (A ) +k (B )21324051 +k (C )01102132− +k (D )11121011 +k【详解】2017,数一、二、三)设3阶矩阵A =【例4.7】((,,)=+2ααα123有三个不同的特征值,其中312ααα. I )证明r A (()2=;(II )若βααα=++123,求线性方程组Ax =β的通解.【详解】1101011λλλ 【例4.8】(2010,数一、二、三)设A =−11a ,b =,线性方程组 Ax b=有两个不同的解.(I )求λ,a 的值;(II )求方程组Ax b =的通解.【详解】【例4.9】设A 为m n ×阶矩阵,且r A r 12,,,()=.若ξξξ−为齐次线性方程组Ax =0的 n r 基础解系,η为非齐次线性方程组Ax =b 的特解,证明:(,,,,I )ηξξξ12 n r −线性无关;,,,,(II )ηηξηξηξ+++12 n r −线性无关;,,,,(III )ηηξηξηξ+++n r −为Ax =b 所有解的极大线性无关组12 .【详解】重点题型四解矩阵方程【方法】矩阵方程解的判定AX B=无解⇔<()()r A r A B AX B ()()r Ar A B n =有唯一解⇔==AX B ()()r Ar A B n =有无穷多解⇔=<矩阵方程的求法对()AB 作初等行变换,化为行最简形矩阵,得矩阵X .101−202101【例4.10】设A =−−,矩阵X 满足AX E A X 20222,求矩阵X +=+.【详解】【例4.11】(123401111203−−2014,数一、二、三)设A =− −.(I )求线性方程组Ax =0的一个基础解系;(II )求满足AB E =的所有矩阵B .【详解】重点题型五公共解的判定与计算【方法】【例4.12】(2007,数一、二、三)设线性方程组(+ +=++=001321x x I )x x 1+4x 2+a 2x 3=0ax 2x 32x 与方程(II )x 1+2x 2+x 3=a −1有公共解,求a 的值及所有公共解.【详解】【例4.13】设齐次线性方程组(123420x x x 123+−=230I )x x x x ++−= 12(2,1,2,1),(1,2,4,8)齐次线性方程组(II )的一个基础解系为ααa a T T =−+=−+.(1)求方程组(I )的一个基础解系;(2)当a 为何值时,方程组(I )与(II )有非零公共解,并求所有非零公共解.【详解】重点题型六同解的判定与计算【方法】【例4.14】(2005,数三)设线性方程组( =+=++ I )202132+321 x 35 x 1+x 2+ax 3=0x x x x 3x +=++0 12+321 2(1)x 3=0c x 0与(II ) x cx b x +bx 2同解,求a ,b ,c 的值.【详解】第五章特征值与特征向量一、知识体系 (0)0()0A E B P AP P AP A n A λλA αλαα−1=≠ −= A E x −= =−1=Λ ⇔ ⇔k k A n 定义性质 特征方程法 定义 性质特征值与特 定义征有个线性无关的特征向量 充要条件重特征值有个线性无关的向特征向量量有个不同的特征值 充分条件为实对称矩阵 T k k 特征值与特征向量相似矩阵相似对角化==Λ特征值均为实数不同特征值的特征向量正交实对称矩阵重特征值有个线性 无关的特征向量,使得− A 可正交相似对角化,即存在正交矩阵Q Q AQ Q AQ 1二、重点题型重点题型一特征值与特征向量的计算【方法】特征值与特征向量的性质 (1)不同特征值的特征向量线性无关;(2)不同特征值的特征向量之和不是特征向量;(3)k 重特征值最多有k 个线性无关的特征向量;4)设A 的特征值为12(,,,λλλnn ,则i =1∑nA λi=tr A (),λi i =1=∏;=,即A =αβT,其中5)若r A (()1αβ,为n 维非零列向量,则A 的特征值为TT tr A ()λαββαn1===0 ,λλ2===(6)设α为矩阵A 属于特征值λ的特征向量,则【例5.1】设1111111111111111−−A = −− −−求A 的特征值与特征向量.【详解】322 223010001【例5.2】(2003,数一)设A = 232 ,P = 101 ,B =P −1A *P ,求B +2E 的特征值与特征向量.【详解】12214212a 【例5.3】设A = −−− 的特征方程有一个二重根,求A 的特征值与特征向量. 【详解】 2【例5.4】设3阶非零矩阵A 满足A O = ,则A 的线性无关的特征向量的个数是【】(B )1(C )2(A )0【详解(D )3】【例5.5】设A =+αββαTT,其中αβ 1,为3维单位列向量,且αβT 3=,证明:(I )0为A 的特征值; ,(II )αβαβ为A +−的特征向量;(III )A 可相似对角化.【详解】重点题型二相似的判定与计算【相似的性质】(1)若A B ,则A B ,有相同的行列式、秩、特征方程、特征值、迹;2)若(A B ,则()()f A f B ,A B −− 11 ,(0)AB BA A ≠,A B T T ,A B ** ;3)若(A B ,B C,则A C .【例5.6】设1000030000110022 A =矩阵B 与A 相似,则r B E r B E ()(3)−+−=.【详解】【例5.7】设n 阶矩阵A 与B 相似,满足A E 2=2,则 AB A B E +−−=. 【详解】【例5.8】(22−−002221 2019,数一、二、三)设A x =−−21001000y与B =−相似.I )求(x y ,的值;−(II )求可逆矩阵P ,使得P AP B 1=.【详解】重点题型三相似对角化的判定与计算【方法】【例5.9】设3阶矩阵A 的特征值为1,3,−2,对应的特征向量分别为ααα123,,.若P =−ααα(,2,)−1*=【132,则P A P 】12 (A )−1− 36 (B )−2 −36 (C ) −2 13(D ) −2【详解】【例5.10】设n 阶方阵A 满足32A A E O ,证明A 可相似对角化2−+=.【详解】【例5.11】(2020,数一、二、三)设A 为2阶矩阵,P A =(,)αα,其中α为非零向量且不是A 的特征向量.(I )证明P 为可逆矩阵; 2ααα+−=60,求II )若(A A P AP−1,并判断A 是否相似于对角矩阵.【详解】重点题型四实对称矩阵的计算【方法】2+=,n 阶矩阵B 满足【例5.12】设n 阶实对称矩阵A 满足A A O B B E 2+=,且r AB ()2=,则A +【详解】01413【例5.13】(2010,数二、三)设40A a a −=−T,正交矩阵Q 使得Q AQ 为对角矩阵.若Q的第12,1)T ,求a Q ,.【详解】 2=,【例5.14】设3阶实对称矩阵A 满足A E A E+的各行元素之和均为零,且r A E ()2+=.(I )求A 的特征值与特征向量;(II )求矩阵A .【详解】第六章二次型一、知识体系0,0T T f x Ax B C AC x Ax x Bx =x x Ax T =T ⇔ ⇔ 定∀≠>义 拉格朗日配方法 合同变换 标准形的求法法正交变换法 定义与有相同的正、负惯性指数 充要条件A B ,有相同的正、负特征值的个数 充分条件A B 与相似必要条件二次A B 与等价型有T 0(1,,)0A E A A 二次型与标准形合同矩阵定义 性质 ⇔f n ⇔ 正定矩阵 ⇔ii >= a i n > 的正惯性指数为与合同充要条件的特征 值均大于零⇔A 的顺序主子式均大于零必要条件二、重点题型重点题型一求二次型的标准形【方法】222【例6.1】(2016,数二、三)设二次型123123122313(,,)()222f x x x a x x x x x x x x x=+++++ 的正、负惯性指数分别为1,2,则【】(B )a <−2 a (A )a >1【详解(D )a =1或−(C )−<<212】 =−+++++222【例6.2】(2018,数一、二、三)设二次型1231232313(,,)()()()f x x x x x x x x x ax .I )求f x x x ((,,)0 123=的解;(II )求f x x x (,,)123的规范形.【详解】【例6.3】(2020,数一、三)设二次型121122(,)44f x x x x x x 1122x y =−+22经正交变换x y =Q化为二=++22,其中次型(,)4121122g y y ay y y by a b ≥.I )求(a b ,的值;(II )求正交矩阵Q .【详解】重点题型二合同的判定【方法】 12【例6.4】(2008,数二、三)设A =21,与A 合同的矩阵是【】−1221 (A )− 21− (B ) −12 21 12(C )12− (D )−21 【详解】【例6.5】设A B ,为n 阶实对称可逆矩阵,则存在n 阶可逆矩阵P ,使得 ①PA B −;②=P ABP BA 1−;③=P AP B 122T =;④P A P B =. 成立的个数是【 】 (A )1 (B )2(C )3 (D )4【详解】重点题型三二次型正定与正定矩阵的判定【方法】【例6.6】设A 为m n ×阶矩阵,且r A m ()=,则下列结论 ①AA T 与单位矩阵等价;③AA T 与单位矩阵合同;②AA T 与对角矩阵相似;④AA T 正定. 正确的个数是【 】(B )2(C )3 (A )1【详解(D )4】 I )设A 为n 阶正定矩阵,B 为n 阶反对称矩阵,则【例6.7】证明:(A B −2为正定矩阵;,为n 阶矩阵,且(II )设A B r A B n TT()+=,则A A B B +为正定矩阵.【详解】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:本篇可看作《高等数学难点总结及习题解读》的姊妹篇呵呵再次强调下,本人所做的习题解读分别针对:同济五版《线代》同济五版《高数》浙大版的《概率》等有时间再写首先是知识框架:线性代数知识点框架(一)线性代数的学习切入点:线性方程组。
换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论:(1)、方程组是否有解,即解的存在性问题;(2)、方程组如何求解,有多少个解;(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:(1)、把某个方程的k倍加到另外一个方程上去;(2)、交换某两个方程的位置;(3)、用某个常数k乘以某个方程。
我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。
我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。
阶梯形方程组,对应的是阶梯形矩阵。
换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r<n,则方程组有无穷多解。
在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。
在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。
行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。
线性代数知识点框架(二)在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。
数域上的n元有序数组称为n维向量。
设向量a=(a1,a2,...,an),称ai是a的第i个分量。
n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。
要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。
矩阵与向量通过行向量组和列向量组相联系。
对给定的向量组,可以定义它的一个线性组合。
线性表出定义的是一个向量和另外一组向量之间的相互关系。
利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。
同时要注意这个结论的双向作用。
从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。
为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。
通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。
从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。
部分组线性相关,整个向量组线性相关。
向量组线性无关,延伸组线性无关。
回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,...,an 线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到答案:b, a1, a2, ..., an线性相关。
如果这个向量组本身是线性相关的,则需进一步探讨。
任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。
如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。
如果A和B能互相线性表出,称A和B等价。
一个向量组可能又不止一个极大线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。
注意到一个重要事实:一个线性无关的向量组不能被个数比它更少的向量组线性表出。
这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。
一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。
向量线性无关的充分必要条件是它的秩等于它所含向量的数目。
等价的向量组有相同的秩。
有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。
向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。
线性代数知识点框架(三)为了求向量组的秩,我们来考虑矩阵。
矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。
对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。
总而言之,初等变换不会改变矩阵的秩。
因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。
非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。
另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。
当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解线性代数知识点框架(四)在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。
即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。
如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
矩阵乘法的特点:若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。
需要主义的是矩阵乘法不满足交换律,满足结合律。
利用矩阵乘积的写法,线性方程组可更简单的表示为:Ax=b。
对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。
关于矩阵乘积的另外一个重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。
一些特殊的矩阵:单位阵、对角阵、初等矩阵。
尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。
每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。
若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。
第一种求逆阵的方法:伴随阵。
这种方法的理论依据是行列式的按行(列)展开。
矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。
单位阵和初等矩阵都是可逆的。
若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。