超几何分布与二项分布的联系与区别

合集下载

超几何分布于二项分布的区别与联系

超几何分布于二项分布的区别与联系

§超几何分布与二项分布的区别与联系1、二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1),0,1,2,...,.k k n k n P X k C p p k n -==-=此时称随机变量X 服从二项分布,记作X ~(,)n p ,并称p 为成功概率。

2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,2,...,.k N K M N M n NC C P X k k m C --⋅=== 此时称随机变量X 服从超几何分布。

注意:超几何分布中必须同时满足两个条件:一是抽取的产品不再放回去; 二是产品数是有限个为N (总数较少).当这两个条件中任意一个发生改变,则不再是超几何分布.一、 当抽取的方式从无放回变为有放回,超几何分布变为二项分布【例1】从含有3件次品的10产品中有放回地逐次取,每次取一个,取3次,用X 表示次品数。

(1) 求X 的分布列;(2) 求()E X 和()D X二、 当产品总数N 很大时,超几何分布变为二项分布【例2】 从批量较大的产品中,随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量ξ表示这10件产品中的不合格品数,求随机变量ξ的数学期望()E ξ【例3】根据我国相关法规则定,食品的含汞量不得超过1.00ppm,沿海某市对一种贝类海鲜产品进行抽样检查,抽出样本20个,测得含汞量(单位:ppm)数据如下表所示:(1)若从这20个产品中随机任取3个,求恰有一个含汞量超标的概率;(2)以此20个产品的样本数据来估计这批贝类海鲜产品的总体,若从这批数量很大的贝类海鲜产品中任选3个,记ξ表示抽到的产品含汞量超标的个数,求ξ的分布列及数学期望Eξ.()【例5】一条生产线上生产的产品按质量情况分为三类:A类、B类、C类。

超几何分布和二项分布

超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。

它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。

本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。

一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。

具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。

其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。

超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。

2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。

3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。

超几何分布在实际应用中有着广泛的应用。

例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。

二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。

具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。

其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。

二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。

2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。

超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别开滦一中张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =nNk -n M-N k MCC C,,2,1,0k, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An)2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn kp p )1(Ck n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。

1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题; (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk -n M-N k MCC C,,2,1,0k, m,二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn kp p )1(Ck n(k=0,1,2,…,n),温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。

二项分布与超几何分布的区别

二项分布与超几何分布的区别

二项分布与超几何分布的区别:
定义:若有N 件产品,其中M 件是废品,无返回...
地任意抽取n 件,则其中恰有的废品件数X 是服从超几何分布的。

概率为()k n K M N M n N C C P X k C --==. 若有N 件产品,其中M 件是废品,有.
返回..
地任意抽取n 件,则其中恰有的废品件数X 是服从二项分布的。

概率为()()1n k k k n P X k C p p -==-,其中M p N
=. 区别:(1)二项分布是做相同的n 次试验(n 次独立重复试验),
(2)当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布。

在废品为确定数M 的足够多的产品中,任意抽取n 个(由于产品个数N 无限多,无返回与有返回无区别,故可看作n 次独立重复试验)中含有k 个废品的概率当然服从二项分布。

在这里,超几何分布转化为二项分布的条件是①产品个数应无限多,否则无返回地抽取n 件产品是不能看作n 次独立试验的.②在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。

(3)实际上,在以样本估计总体时,从样本中无返回地任意抽取n 件,当然废品件数X 服从超几何分布的;而从总体中无返回地任意抽取n 件,理想认为....
废品件数X 服从二项分布的。

二项分布与超几何分布的区别与联系

二项分布与超几何分布的区别与联系
=233×132+13×233×13+132×233 =881.
谢谢
谢谢
例题解析
1、从含有 2 件优等品的 5 件产品中,随机抽取 2 件,求
抽取的 2 件产品中的优等品数 的分布列及其均值。
解: 可能的取值为 0,1,2,
P( i) C2i C32i
C52
(i 0, 1, 2) ,
的分布列为
012
P
3 10
3 5
1 10
均值
E( )
1
3 52 1 10源自4 5结论:在实际应用 时,只要N≥10n, 不放回抽取可以近 似看成是放回抽取, 可用二项分布近似 描述不合格品个数 , 即当超几何分布计 算非常困难时应考 虑用二项分布近似 代替。
练习:
[2009 广东理 17 题部分]对某城市一年(365 天)的空 气质量进行监测,发现一年中有 219 天空气质量为良或 轻度污染,求该城市某一周至少有 2 天的空气质量为轻 微污染的概率.
超几何分布一般地在含有m件次品的n件产品中任取n件其中恰有x件次品则事件xk发生的概率为服从参数为nmn的超几何分布1从含有2件优等品的5件产品中随机抽取2抽取的2件产品中的优等品数10均值2011广东理17部分从含有2件优等品的5件产品中随机抽取2件求抽取的2件产品中的优等品数的分布列及其均值
二项分布与超几何分布的区别与 联系
C1MCnN--1M CnN

CmMCnN--mM CnN
为超几何分布列,如果随机变量X的分布列为超几何 分布列,则称随机变量X服从超几何分布.
3、二项分布、超几何分布的均值、方差 (1)若 X~B(n,p),则 E(X)=np,D(X)=np(1-p). ※(2)若 X 服从参数为 N、M、n 的超几何分布, 则 E(X)=nNM.

二项分布和超几何分布的区别

二项分布和超几何分布的区别

二项分布和超几何分布的区别超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取〔独立重复〕当总体的容量非常大时,超几何分布近似于二项分布。

超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取〔独立重复〕当总体的容量非常大时,超几何分布近似于二项分布。

超几何分布和二项分布的区别一样点:
超几何分布和二项分布都是离散型分布
超几何分布和二项分布的区别:
〔1〕超几何分布需要知道总体的容量,而二项分布不需要;
〔2〕超几何分布是“不放回〞抽取,而二项分布是“有放回〞抽取〔独立重复〕。

〔3〕当总体的容量非常大时,超几何分布近似于二项分布。

1。

超几何分布与二项分布的区别与联系-二项分布与超几何分布的区别

超几何分布与二项分布的区别与联系-二项分布与超几何分布的区别

吉林教育·教学7/2013二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。

在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。

一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。

其分布列为超几何分布列。

如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。

2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。

在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。

此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。

二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。

超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。

实质上,超几何分布是古典概型的一种特例。

二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。

这就是二者之间的区别。

本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。

解:(1)是不放回地抽取,X 服从超几何分布。

【数学】超几何分布与二项分布的区别与联系

【数学】超几何分布与二项分布的区别与联系

二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。

在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。

一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。

其分布列为超几何分布列。

如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。

2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。

在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。

此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。

二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。

超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。

实质上,超几何分布是古典概型的一种特例。

二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。

这就是二者之间的区别。

本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。

解:(1)是不放回地抽取,X 服从超几何分布。

从10个球中任取2球的结果数为C 102,从10个球中任取2个,其中恰有k 个黑球的结果数为C 4k C 62-k,那么从10个球中任取2个,其中恰有k 个黑球的概率为P (X=k )=C 4k C 62-kC 102,k=0,1,2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。

通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型,并能运用两模型解决一些实际问题。

然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布,学生对这两模型的定义不能很好的理解,一遇到含“取”或“摸”的题型,就认为是超几何分布,不加分析,随便滥用公式。

事实上,超几何分布和二项分布确实有着密切的联系,但也有明显的区别。

课本对于超几何分布的定义是这样的:一般的,若一个随机变量X的分布列为
,其中,则称X服从超几何分
布,记为。

其概率分布表为:
对于二项分布的定义是这样的:若随机变量X的分布列为
,其中则称X服从参数为n,p的二项分布,记为。

其概率分布表为:
超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量
X的取值都从0连续变化到l,对应概率和N,n,l三个值密切相关……可见两种分布之间有着密切的联系。

课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。

而对二项分布则使用比较容易理解的射击问题来建立模型。

若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。

在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。

“返回”和“不返回”就是两种分布转换的关键。

如在2.2节有这样一个例题:高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球、20个白球,这些球除颜色外完全相同,一次从中摸出5个球,摸到4个红球
1个白球就是一等奖,求获一等奖的概率。

本题采用的解法是摸出球中的红球个数X服从超几何分布,但是如果将“一次从中摸出5个球”改为“摸出一球记下颜色,放回后再摸一球,反复5次”,则摸出球中的红球个数X将不再服从超几何分布,而是服从二项分布。

我们分别来计算两种分布所对应的概率:
这时发现发现两种不同的分布其对应的概率之间的差距进一步缩小了,我们做出这样的猜想:样本个数越大超几何分布和二项分布的对应概率相差就越小,当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布!
也就是说。

下面我们对以上猜想作出证明:
产品个数N无限大,设废品率为p,则,
以上的证明与我们的直观思想相吻合:在废品为确定数M的足够多的产品中,任意抽取n个(由于产品个数N无限多,无返回与有返回无区别,故可看作n次独立试验)中含有k个废品的概率当然服从二项分布。

在这里,超几何分布转化为二项分布的条件是(1)
产品个数应无限多,否则无返回地抽取n件产品是不能看作n次独立试验的.(2)在产品个数N无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。

对于超几何分布的数学期望,二项分布的数学期望,
当我们将“不返回”改为“返回”时,,两种分布的数学期望相等,方差之间没有相等关
系。

超几何分布和二项分布的数学期望和方差是否也具有我们以上猜想并证明的极限关系呢?
事实上超几何分布的数学期望,方差

这两个极限值分别是二项分布的数学期望与方差。

需要指明的是这一性质并非只为超几何分布与二项分布之间所具有,一般地,如果随机变量依分布收敛于随机变量,则随机变量的数学期望和方差分别是随机变量的数学期望和方差的极限。

这样超几何分布与二项分布达到了统一。

一般说来,有返回抽样与无返回抽样计算的概率是不同的,特别在抽取对象数目不大时更是如此。

但当被抽取的对象数目较大时,有返回抽样与无返回抽样所计算的概率相差不大,人们在实际工作中常利用这一点,把抽取对象数量较大时的无返回抽样(例如破坏性试验发射炮弹;产品的寿命试验等),当作有返回来处理。

那么,除了在有无“返回”上做文章,有没有什么办法快速实现超几何分布向二项分布的转化呢?
设想N件产品装在一个大袋中,其中M件为废品,无返回地从中抽取n件,那么其中废品件数X服从超几何分布。

现若在大袋中再放进两个小袋,一袋装正品,一袋装废品,然后从大袋中任摸一个小袋,无返回地从中任取一件产品,则这样任取n件,其中废品件数X就不再服从超几何分布,而应服从的二项分布了。

事实上,我们把摸到正品袋中的产品看作“成功”,摸到废品袋中的产品看作“失败”,则“成功”与“失败”的概率相等,皆为且每次试验是相互独立的,正是典型的伯努力试验概型,因此可用二项分布去刻划其概率分布列。

,从这一点上讲,两种
分布仅“一袋之隔”。

将正品和废品隔离,则超几何分布将成为二项分布。

超几何分布和二项分布这两种离散型随机变量的概率分布表面上看来风马牛不相及,但通过以上的论证,我们发现这两种分布可以通过有无“返回”,隔离正品和次品等方法来互相转换,抛开转换问题,也可把二项分布看作超几何分布的极限,它们的期望和方差之间也存在这种极限关系。

相关文档
最新文档