分数小数四则混合运算与分数大小比较
小学数学知识点和重点难点大全

小学数学知识点和重点难点大全一、整数及四则运算1.整数的认识2.整数的比较大小3.整数的加法、减法、乘法、除法运算4.整数的混合运算5.整数的括号运算6.整数的奇偶性7.整数的约数和倍数二、分数1.分数的认识2.分数的加法、减法、乘法、除法运算3.真分数、假分数和带分数之间的转化4.分数的比较大小5.分数的化简和约分6.分数的四则混合运算7.分数的加减混合运算三、小数1.小数的认识2.小数与分数的转化3.小数的加法、减法、乘法、除法运算4.小数的周期性与循环小数5.有限小数和无限小数的判断6.分数的小数化和小数的分数化7.小数的四则混合运算四、长度和面积1.长度单位的认识(米、厘米、千米)2.长度单位之间的换算3.长度的加法、减法运算4.面积单位的认识(平方米、平方厘米)5.面积单位之间的换算6.长方形和正方形的面积计算7.长方形和正方形的周长计算五、容量和质量1.容量单位的认识(升、毫升、立方米)2.容量单位之间的换算3.容量的加法、减法运算4.质量单位的认识(千克、克、吨)5.质量单位之间的换算6.质量的加法、减法运算7.容量和质量的换算六、几何图形1.点、线、线段、射线、角的认识2.三角形、四边形、多边形的认识3.正方形、长方形、圆的认识4.平行线、垂直线、相交线的认识5.直角、钝角、锐角的认识6.图形的对称性7.图形的放大和缩小七、时间1.时间的认识(秒、分钟、小时、一天的24小时)2.时刻的表示3.时钟的读法和时钟的表记4.时间的加法、减法运算5.天、周、月和年的认识6.日期的计算八、统计与概率1.数据的收集和整理2.数据的图表示法(条形图、折线图、饼图)3.数据的分析和解读4.概率的认识5.事件的概率计算6.试验和样本空间的认识7.赌博问题的概率计算以上为小学数学的知识点和重点、难点的大致概括,学生在学习数学时,应注重对每个知识点的透彻理解和巩固。
通过大量的练习和实际应用,培养学生的数学思维和解决问题的能力,以提高数学学习的效果。
北师大版五年级数学下册知识整理

北师大版五年级数学下册知识整理一、数与代数(一)分数加、减、乘、除法以及四则混合运算。
1、分数加、减法知识点。
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
同分母分数相加减,分母不变,只把分子相加减。
○1、异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。
○2、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
○3、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。
在计算过程中,整数的运算律对分数同样适用。
○4、计算异分母分数混合运算主要有两种方法,一是将所有的分数实行通分,再实行计算,二是先根据需要实行部分通分。
根据算式特点来选择方法。
2、分数乘、除法知识点。
○1、理解分数乘整数的意义。
分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
○2、分数乘整数的计算方法。
分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
○3、计算时,能够先约分在计算。
○4理解打折的含义。
例如:九折,是指现价是原价的十分之九原价=现价÷折扣折扣=现价÷原价○5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的能够先约分。
计算结果要求是最简分数。
○6、比较分数相乘的积与每一个乘数的大小。
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
○7、倒数的意义。
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存有的。
○8、求倒数的方法。
把这个数的分子和分母调换位置。
注:1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
○9、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
10、一个数除以分数的意义和基本算理。
小学数学的知识点

小学数学的知识点小学数学的知识点一、小数部分:1、把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。
如1/10记作0.1,7/100记作0.07。
2、小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数。
3、小数的读法:整数部分整数读,小数点读点,小数部分顺序读。
4、小数的写法:小数点写在个位右下角。
5、小数的性质:小数末尾添0去0大小不变。
化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。
6、小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。
二、分数和百分数。
(一)分数和百分数的意义。
1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。
在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。
2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
也叫百分率或百分比。
百分数通常不写成分数的形式,而用特定的“%”来表示。
百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。
4、成数:几成就是十分之几。
(二)分数的种类。
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数。
(三)分数和除法的关系及分数的基本性质。
1、除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
分数的四则混合运算与小数的运算

分数的四则混合运算与小数的运算分数(有理数)和小数是数学中常见的表示数值的方式。
它们在日常生活中广泛应用于计算和测量。
而分数的四则混合运算和小数的运算是我们在数学学习中必须掌握的基本技能。
本文将以实例为基础,介绍分数的四则混合运算和小数的运算。
1. 分数的四则混合运算分数的四则运算包括加法、减法、乘法和除法。
我们首先来看一个例子:假设有如下的分数运算:1/2 + 2/3 * 3/4 - 1/5 ÷ 2/5。
首先,我们按照次序进行乘法和除法运算:2/3 * 3/4 = 6/12,1/5 ÷2/5 = 1/2。
然后,我们按照次序进行加法和减法运算:1/2 + 6/12 - 1/2。
接下来,我们需要找到这些分数的最小公倍数,并将每个分数的分子乘以相应的倍数,使得它们的分母相同。
1/2 + 6/12 - 1/2 = 6/12 + 6/12 - 6/12 = 0所以,1/2 + 2/3 * 3/4 - 1/5 ÷ 2/5 = 0。
这个例子展示了如何正确地进行分数的四则混合运算。
2. 小数的运算小数的运算与分数相似,同样包括加法、减法、乘法和除法。
下面我们来看一个例子:假设有如下的小数运算:0.3 + 1.5 × 0.2 - 0.4 ÷ 0.2。
首先,我们按照次序进行乘法和除法运算:1.5 × 0.2 = 0.3,0.4 ÷0.2 = 2。
然后,我们按照次序进行加法和减法运算:0.3 + 0.3 - 2 = -1.4。
所以,0.3 + 1.5 × 0.2 - 0.4 ÷ 0.2 = -1.4。
通过这个例子,我们可以看到小数运算与分数相似,但需要注意小数的精度和计算规则。
3. 分数与小数之间的转换在实际应用中,分数和小数可以相互转换。
下面我们来看一个例子:假设需要将小数 0.75 转换为分数。
我们可以将小数 0.75 写成分数 75/100,然后简化这个分数,得到3/4。
(完整版)分数分数、小数四则混合运算

第十一讲分数分数、小数四则混合运算【知识点】一、分数与小数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 任何一个分数都能化为小数。
如:1/3=0.333……,1/5=0.2等。
但能化为有限小数的分数特征:首先将这个分数化为最简分数,在这个最简分数中,将分母进行分解素因数,若分母的素因数中只含有素因素2和5两,则这个分数可以化为最简分数。
否则不能。
二、分数、小数四则混合运算分数和小数的四则混合运算顺序和正整数的四则混合运算顺序相同。
整数的运算定律和运算性质都可以推广到分数和小数,同样适用于分数和小数的四则混合运算。
1、运算顺序:同级运算,从左到右依次进行运算;不同级的运算,先乘、除,后加、减;含括号的运算,先算小括号,再算中括号。
2、方法规律(1). 掌握分数加减混合运算法则、规律:同时化为小数或者同时化为分数后再计算;如果分数不能够化成有限小数,应同时化为分数。
(2). 带分数加减运算时,可以整数部分与分数部分分别计算,再合并到一起。
(3). 分数、小数乘除的混合运算法则即运算律:带分数化为假分数计算方便;某数除以一个数等于乘以这个数的倒数; 乘除混合运算顺序从左到右; 能够约分的先约分。
3、 在分数、小数的四则混合运算中,应注意以下几点:① 在进行运算之前,应考虑是把分数化为小数,还是把小数化为分数。
如果分数能够化为有限小数的,那么化为小数运算比较简单,如果分数不能化为有限小数的,那么只能化为分数运算。
② 在计算之前,要考虑运算顺序,即先算什么,再算什么。
③ 计算时,要认真审题,看清运算符号和数的特点,灵活选择合理的计算方法,数学中的运算性质、运算律在这方面有较大的作用。
通常在分数的计算中,两个分数相加、减时,能“凑整”的可以先算。
六年级上册数学知识点

六年级上册数学知识点青岛版六年级上册数学知识点在平平淡淡的学习中,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。
想要一份整理好的知识点吗?下面是店铺收集整理的青岛版六年级上册数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级上册数学知识点1一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r =8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
整数、分数、小数、百分数四则混合运算

答案知识梳理教学重、难点作业完成情况典题探究例1.一个数,减去它的20%,再加上5,还比原来小3.那么,这个数是40.考点:整数、分数、小数、百分数四则混合运算.分析:把这个数看做单位“1”,减去它的20%为1﹣20%=80%,再加上5,还比原来小3,也就是(5+3)是原来的20%,列式为:(5+3)÷20%,计算即可.解答:解:(5+3)÷20%,=8÷0.2,=40.答:这个数是40.故答案为:40.点评:此题也可这样解答,设这个数为x,由题意得:(1﹣20%)x+5=x﹣3,解方程即可.例2.求值:1.2×[7﹣4÷(+)+2÷1]=4.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:按照先算小括号里面的,再同时算中括号里面的除法,然后算中括号里面的减法,以及中括号里面的加法,最后算括号外面的乘法顺序计算即可解答.解答:解:1.2×[7﹣4÷(+)+2÷1]=1.2×[7﹣4÷+2÷1]=1.2×[7﹣5+1]=1.2×3=4故答案为:4.点评:依据四则运算计算方法正确进行计算,是本题考查知识点.例3.用简便方法计算.×﹣÷133.5×98+35×0.2.考点:整数、分数、小数、百分数四则混合运算;运算定律与简便运算;小数四则混合运算.专题:运算顺序及法则;运算定律及简算.分析:①运用乘法的分配律进行计算即可.②把3.5×98化成35×9.8,然后运用乘法的分配律进行计算即可.解答:解:①×﹣÷13=×﹣×=(﹣)×=×=②3.5×98+35×0.2=35×9.8+35×0.2=35×(9.8+0.2)=35×10=350点评:考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算律简便计算.例4.只列式不计算.(1)12.5的比1.3除52的商少多少?(2)一种混凝土把石子、沙和水泥按6:2:1的比调配而成,要配制这种混凝土27吨,需要水泥多少吨?考点:整数、分数、小数、百分数四则混合运算;按比例分配应用题.专题:文字题;压轴题;比和比例应用题.分析:(1)先求出12.5×的积,再求出52÷1.3的商,最后用求得的商﹣求得的积即可解答,(2)根据一种混凝土把石子、沙和水泥按6:2:1的比调配而成,求出混凝土中石子、沙和水泥的总份数,再依据按比例分配方法即可解答.解答:解:(1)52÷1.3﹣12.5×,=40﹣10,=30,答:少30;(2)×27,=27,=3(吨),答:需要水泥3吨.点评:解答本题的关键是明确解决问题需要的数量间的等量关系,以及解决问题所用的方法.演练方阵A档(巩固专练)一.选择题(共13小题)1.某数减少它的后是50,这个数是()A.B.125 C.160 D.70考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:把这个数看作单位“1”,求单位“1”用除法计算,数量50除以对应的分率(1﹣).解答:解:50÷(1﹣),=50÷,=125.答:这个数是125.故选:B.点评:本题关键是对题意的理解,找出先算什么,再算什么,根据计算的顺序列出算式求解.2.(2010•湖北模拟)30比()少20%.A.36 B.24 C.37.5考点:整数、分数、小数、百分数四则混合运算.分析:30比一个数少20%,将这个数当做单位“1”则30是这个数的1﹣20%,已知一个数的几分之几是多少,求这个数用除法:30÷(1﹣20%).解答:解:30÷(1﹣20%),=30÷80%,,=37.5.故选:C.点评:本题是根据分数除法的意义即已知一个数的几分之几是多少,求这个数用除法,进行分析解答的.3.(2014•湘潭模拟)12加上一个数的,和是18,这个数是()A.12 B.15 C.18 D.20考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据题意数量间的相等关系:12+一个数×=18,设这个数为x,列并解方程即可.解答:解:设这个数为x,12+x=18,,12+x﹣12=18﹣12,x=6,x÷=6÷,x=15.答:这个数是15.故选:B.点评:解答这类题目,分清题里的数量关系,确定先算什么,在算什么,找清列式的顺序,列出算式或方程解答.4.的值是多少.()A.8B.18 C.6D.26考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:通过观察,此题把百分数和分数化为小数计算比较简单,然后运用乘法分配律简算.解答:解:3.5×0.8+5.5×80%+,=3.5×0.8+5.5×0.8+0.8,=(3.5+5.5+1)×0.8,=10×8,=8;故选:A.点评:此题解答的关键是注意数字转化,运用所学的运算定律灵活简算.5.的值是多少.()A.B.C.5D.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先算小括号内的,再算中括号内的乘法,然后算中括号内的加法,最后算括号外的除法.解答:解:1.8÷[3.6+(1﹣)×32],=1.8÷[3.6+×32],=1.8÷[3.6+12],=1.8÷15.6,=;故选:B.点评:此题考查了四则混合运算,注意运算顺序和运算法则,是完成此题的关键.6.的倒数的3倍减去的一半,差为()A.B.C.D.考点:整数、分数、小数、百分数四则混合运算;倒数的认识.专题:文字叙述题.分析:根据题意,的倒数是,那么可用与3的积减去与的积,列式解答后再选择即可得到答案.解答:解:×3﹣×=4﹣,=3.故选:C.点评:解答此题的关键是根据题干的叙述确定算式的运算顺序,然后再列式计算即可.7.1.5加上22.5的所得的和,再除以4.5,商是()A.B.2C.考点:整数、分数、小数、百分数四则混合运算.分析:本题先要求出1.5+22.5×的和,然后再去除以4.5,即可解得.解答:解:(1.5+22.5×)÷4.5,=(1.5+7.5)÷4.5,=9÷4.5,=2;故选:B.点评:本题考查了四则混合运算的顺序,特别是括号的使用,文字题要注意运用“缩句法”弄清文字题的主干.8.1+2﹣3×4÷5+6﹣7×8÷9的计算结果是()A.B.C.D.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:因为3×4÷5和7×8÷9的计算结果都除不尽,因此可把这两项的结果写成分数形式,运用加法交换与结合律简算即可.解答:解:1+2﹣3×4÷5+6﹣7×8÷9=3﹣+6﹣=(3+6)﹣(+)=9﹣=故选:A.点评:此题通过转化的数学思想,运用运算定律进行简算.9.算式等于()A.1020 B.204 C.273 D.747考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:把带分数化成小数,先算乘法、再算加法.解答:解:2×19.5+7.2×20,=2.8×19.5+7.2×20.75,=54.6+149.4,=204.故应选:B.点评:既有加减、又有乘除法,先算乘除法、再算加减.10.如果甲数的3倍是48,那么甲数的是()A.16 B.4C.12 D.30考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:先用48除以3求出甲数,再把甲数看成单位“1”,用乘法求出它的即可.解答:解:48÷3×,=16×,=4;答:甲数的是4.故选:B.点评:本题先根据倍数关系求出甲数,再找出单位“1”,根据已知单位“1”的量求它的几分之几是多少用乘法求解.11.(2010•白云区模拟)甲数的60%等于乙数的,那么()(甲、乙不为0).A.甲=乙B.甲>乙C.甲<乙考点:整数、分数、小数、百分数四则混合运算;分数大小的比较.分析:由甲数的60%等于乙数的可得:甲数×60%=乙数×.两两相乘数的积相等,乘较小数的那个数较大,比较60%与的大小,则可判定甲乙两数的大小.解答:解:甲数×60%=乙数×,60%=<,所以甲数>乙数.故选:B.点评:根据“两两相乘数的积相等,乘较小数的那个数较大”来判定甲乙两数的大小.12.的值是多少.()A.5B.12 C.1D.10考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;运算定律及简算.分析:我们运用乘法的分配律进行计算即可,然后再进行正确的选择.解答:解:7.5×+2.5×+10×,=×(7.5+2.5)+10×,=+10×,=10×(),=10;故选:D.点评:本题先把题干的算式进行计算,再与答案进行对比在进行选择即可.13.(2008•淳安县)下面算式中,结果最小的是()A.7÷0.16 B.7×1.6 C.7×16% D.7÷160%考点:整数、分数、小数、百分数四则混合运算.专题:计算题;压轴题.分析:把算式7÷0.16改写成7×6.25,把算式7×16%改写成7×0.16,把算式7÷160%改写成7×0.625,再根据一个因数7相同,看另一个因数的大小即可断定结果最小的算式.解答:解:A、7÷0.16=7×6.25;B、7×1.6;C、7×16%=7×0.16;D、7÷160%=7×0.625;因为一个因数7相同,另一个因数0.16<0.625<1.6<6.25,所以7×0.16的积最小,即结果最小的算式是7×16%.故选:C.点评:解决此题关键是把每个选项中的算式分别改写成7乘一个数的形式,再根据另一个因数最小,则积就最小解答即可.二.填空题(共14小题)14.甲数的40%是乙数的,如果乙数是20,那么甲数是16.考点:整数、分数、小数、百分数四则混合运算.专题:文字题.分析:根据题意数量间的相等关系,乙数×=甲数×40%,设甲数为x,列并解方程即可.解答:解;设甲数为x,x×40%=20×,x=,x÷=÷,x=16.答:甲数是16.故答案为:16.点评:此题考查列方程解答的列式计算题,找出数量间的相等关系设未知数x,列并解方程.15.10﹣1.2+5﹣3.4+3﹣5.6+2﹣7.8=2.考点:整数、分数、小数、百分数四则混合运算;运算定律与简便运算.分析:根据小数加减法的法则进行计算即可得到答案.解答:解:10﹣1.2+5﹣3.4+3﹣5.6+2﹣7.8=10+5+3+2﹣{(1.2+7.8)+(3.4+5.6)}=20﹣{9+9}=20﹣18=2;故答案为:2.点评:此题主要考查的是在小数加减法中简便运算的使用.16.[2﹣(5.55×﹣÷0.4)]÷0.135=10.考点:整数、分数、小数、百分数四则混合运算.分析:按四则混合运算的顺序解答即可.解答:解:[2﹣(5.55×﹣÷0.4)]÷0.135=[2﹣(×﹣÷)]÷0.135=[2﹣(﹣×)]÷0.135=[2﹣(﹣)]÷0.135=[2﹣]÷0.135=÷0.135=1.35÷0.135=10.故答案为:10.点评:此题考查分数与小数四则混合运算,计算中注意小数和分数的互化.17.脱式计算,能简算的要简算(1)(2)(3)12.87+3.65+1.35(4)74.6×19+19×25.4(5)(6)168.1÷(4.5×2﹣0.8)考点:整数、分数、小数、百分数四则混合运算;运算定律与简便运算;分数的简便计算.分析:不能简算的题,要先算乘除法,再算加减法;能简算的题,运用运算定律进行简算,要有择优意识.解答:解:(1)×=××==;(2)()×15=×15=14;(3)12.87+3.65+1.35=12.87+(3.65+1.35)=12.87+5=17.87;(4)74.6×19+19×25.4=(74.6+25.4)×19=100×19=1900;(5)【1﹣()】=【1﹣】×=×=;(6)168.1÷(4.5×2﹣0.8)=168.1÷8.2=20.5;点评:属于数的四则运算,灵活运算.18.直接写得数.×10= ﹣= ÷= 0.75+= ÷4=考点:整数、分数、小数、百分数四则混合运算.专题:计算题.分析:①分数乘法注意分母和分子约分,②﹣先通分,再计算,③变成×,④0.75+看做0.75+0.25,⑤÷4变成×.解答:解:×10=8 ﹣=÷=0.75+=1 ÷4=点评:此题考查同学们快算计算的能力,注意选择合适的方法计算,能用简便方法的用简便方法计算.19.(2012•楚州区模拟)用计算器计算“364÷7”,如果你的计算器的键“6”坏了,你怎么计算?用算式表示出过程:364÷7=(280+84)÷7=280÷7+84÷7=40+12=52;.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:我们可以把364分成280与84的和,然后用280除以7加上84除以7,把商相加在一起即可.解答:解:364÷7,=(280+84)÷7,=280÷7+84÷7,=40+12,=52;故答案为:364÷7=(280+84)÷7=280÷7+84÷7=40+12=52.点评:本题运用两个数的和除以一个数,可以运用这两个数分别除以这个数.20.(13.5﹣8﹣4.75)÷[5×(x+1)÷1]=,则x=.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先化简方程,根据等式的性质,两边同时乘以[x+],再两边同时减去,然后两边同时除以求解即可.解答:解:(13.5﹣8﹣4.75)÷[5×(x+1)÷1]=[13.5﹣(8+4.75)]÷[5×(x+1)÷1]=[(13.5﹣13]÷[5×(x+1)÷1]=0.5÷[×(x+1)]=0.5÷[x+]=0.5÷[x+]×[x+]=×[x+]0.5=x+0.5﹣=x+﹣0.275=x0.275=xx=;故答案为:.点评:此题考查的目的是理解方程的意义,掌握利用等式的性质解方程的方法步骤.21.一个数的和20的40%相等,这个数是28.考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据分数乘法的意义,20的40%是20×40%,又一个数的和20的40%相等,根据分数除法的意义,用20的40%除以即得这个数是多少.解答:解:20×40%=8=28答:这个数是28.故答案为:28.点评:已知一个数的几分之几是多少,求这个数,用除法.求一个数的几分之几是多少,用乘法.22.[240﹣(0.125×76+12.5%×24)×8]÷14=10.考点:整数、分数、小数、百分数四则混合运算.分析:按照四则混算的运算顺序计算,在小括号内(0.125×76+12.5%×24)把12.5%变成0.125后可以运用乘法分配律进行简算.解答:解:[240﹣(0.125×76+12.5%×24)×8]÷14,=[240﹣(0.125×76+0.125×24)×8]÷14,=[240﹣(76+24)×0.125×8]÷14,=[240﹣12.5×8]÷14,=[240﹣100]÷14,=140÷14,=10.点评:按计算顺序和计算法则计算,同时注意运用定律进行简算.23.计算2.25÷[﹣(+0.45)÷1]=6.考点:整数、分数、小数、百分数四则混合运算.分析:此题按运算顺序进行计算,先算小括号内的加法,把0.45化成分数再计算;然后算小括号外的除法,把除法改为乘法;再算中括号内的减法,最后算括号外的除法.解答:解:2.25÷[﹣(+0.45)÷1],=2.25÷[﹣(+)÷1],=2.25÷[﹣(+)÷1],=2.25÷[﹣÷1],=2.25÷[﹣×],=2.25÷[﹣],=2.25÷,=2.25×,=6.点评:此题考查了学生对四则混合运算顺序的掌握,以及综合计算能力.24.+(0.875×+1+6.5÷8)×1=.考点:整数、分数、小数、百分数四则混合运算.分析:把小数化为分数,原式变为+(×+1+)×,在计算中,可以运用乘法分配律简算.解答:解:+(0.875×+1+6.5÷8)×1,=+(×+1+)×,=+××+×,=++,=,=.点评:此题计算量较大,需要仔细认真,最后注意通分.25.计算:8.5=17.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先算小括号里的乘法,再算小括号里的减法,再算中括号里的除法,最后算括号外的除法.解答:解:8.5,=8.5÷[(4﹣3.5)÷1],=8.5÷[÷1],=8.5÷,=17;故答案为:17.点评:考查了整数、小数、分数的四则混合运算的顺序,有小括号先算小括号里的,再算中括号里的,最后算括号外的.26.5个减去2个,还剩3个,就是.考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据题意,求结果相同的加数和的简便运算用乘法,再由同分母分数减法的计算方法进行解答即可.解答:解:根据题意,由同分母分数减法的计算方法可得:5×﹣2×==答:5个减去2个,还剩3个,就是.故答案为:3,.点评:本题主要考查同分母分数的减法的计算方法,然后再根据题意进一步解答即可.27.(2012•中山市模拟)计算[(10.75﹣4)×2]÷[(1.125+)÷(2.25÷10]=.考点:整数、分数、小数、百分数四则混合运算.分析:本题有两个中括号,两个中括号同时进行计算,都要先算小括号内的,再算中括号内的,在运算过程中,可以运用除法的性质,进行简算.解答:解:[(10.75﹣4)×2]÷[(1.125+)÷(2.25÷10],=[(10﹣4)×2]÷[(1+)÷(2÷10],=[(10﹣4)×2]÷[(1+)÷(×],=×÷[÷],=×÷[×],=×××,=.故答案为:.点评:此题计算量较大,应按运算顺序一步步进行.重点考查学生对运算顺序的掌握,以及仔细计算的能力.三.解答题(共1小题)28.(2014•海安县模拟)脱式计算.6760÷13+17×25 4.82﹣5.2÷0.8×0.6 35÷×1﹣.考点:整数、分数、小数、百分数四则混合运算.分析:(1)根据整数的四则混合运算进行计算即可;(2)根据小数的四则混合运算进行计算即可;(3)根据分数的四则混合晕进行计算即可.解答:解:(1)6760÷13+17×25,=520+425,=945;(2)4.82﹣5.2÷0.8×0.6,=4.82﹣6.5×0.6,=4.82﹣3.9,=0.92;(3)35÷×1﹣=40×1﹣,=40﹣,=39.点评:此题主要考查的是整数、分数和小数的四则混合运算,要注意运算顺序.B档(提升精练)一.选择题(共15小题)1.(2010•湖北模拟)30比()少20%.A.36 B.24 C.37.5考点:整数、分数、小数、百分数四则混合运算.分析:30比一个数少20%,将这个数当做单位“1”则30是这个数的1﹣20%,已知一个数的几分之几是多少,求这个数用除法:30÷(1﹣20%).解答:解:30÷(1﹣20%),=30÷80%,,=37.5.故选:C.点评:本题是根据分数除法的意义即已知一个数的几分之几是多少,求这个数用除法,进行分析解答的.2.(2014•湘潭模拟)7.8减去1.8的所得的差,除3.4,商是()A.2B.4C.D.考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:先列出1.8的,用7.8减去1.8的,再用3.4除以差即可.解答:接:3.4÷(7.8﹣1.8×),=3.4÷6.8,=.答:商是.故选:D.点评:解答这类题目,分清题里的数量关系,确定先算什么,在算什么,找清列式的顺序,列出算式解答.3.的倒数的3倍减去的一半,差为()A.B.C.D.考点:整数、分数、小数、百分数四则混合运算;倒数的认识.专题:文字叙述题.分析:根据题意,的倒数是,那么可用与3的积减去与的积,列式解答后再选择即可得到答案.解答:解:×3﹣×=4﹣,=3.故选:C.点评:解答此题的关键是根据题干的叙述确定算式的运算顺序,然后再列式计算即可.4.的值是多少.()A.12 B.7C.10 D.5考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:根据整数、分数、小数的四则混合运算的计算方法进行计算即可得到答案.解答:解:=2×[3.8÷(3﹣)],=2×[3.8÷],=2×5,=12.故答案为:A.点评:此题主要考查的是整数、小数、分数的四则混合运算的计算方法的应用.5.甲数的等于乙数的60%,那么()A.甲数>乙数B.乙数>甲数C.甲数=乙数D.无法确定考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:由题意可知:甲数×=乙数×60%,分两种情况进行解答,(1)逆运用比例的基本性质,得出甲数与乙数的比,即可进行判断;(2)当甲数和乙数都等于0时,等式仍然成立,此时甲数等于乙数,据此解答即可.解答:解:甲数×=乙数×60%,(1)甲数:乙数=60%:=9:10所以甲数<乙数;(2)当甲数和乙数都等于0时,等式仍然成立,此时甲数等于乙数,故选:D.点评:此类题目,若没注明取值范围,则要分两种情况进行解答.6.一个数的30%减去15,结果是95,求这个数的算式是()A.90÷30%﹣15 B.90÷30%+15 C.(90+15)÷30% D.(90+15)×30%考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:用结果95加上15,就是这个数的30%,所得的和再除以30%,就是这个数.解答:解:(90+15)÷30%,=105÷30%,=350.故选:C.点评:本题的关键是找出单位“1”,并找出单位“1”的百分之几对应的数量,用除法就可以求出单位“1”的量.7.计算+0.25+时,正确简便的方法是()A.把分数化成小数B.把小数化成分数C.两种方法都可以考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:因和不能化成有限小数,所以要把小数化成分数,再进行计算.据此解答.解答:解:+0.25+=++=(+)+==.故选:B.点评:本题主要考查了学生根据题目特点采用合适的方法进行简便计算的能力.8.一个数的40%加80是700的,如果设这个数为X,根据题意可列方程()A.40%X+700=80×B.40%X﹣700×=80C.700×﹣80=40%XD.80+700×=40%X考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据题意,设这个数为X,这个数的40%是40%X,40%X加80是700×,也就是700×﹣80等于40%X,由此列方程为700×﹣80=40%X,解决问题.解答:解:设这个数为X,得:40%X+80=700×即700×﹣80=40%X40%X=340X=850故选:C.点评:此题考查了学生根据等量关系列方程的能力.9.一个最简分数,如果分子加上3,就可以变成100%;如果分子减去1,就可以约简成,这个最简分数是()A.B.C.考点:整数、分数、小数、百分数四则混合运算.分析:根据条件“如果分子加上3,就可以变成100%”,因为100%=1==,又因为“如果分子减去1,就可以约简成”,==;→≠1,排除选项A;→=1,→=,符合要求,以此作出选择.解答:解:→==1,→==,故答案选B.点评:此题可用排除法,并运用分数的基本性质将分数化简,作出选择.10.(2010•河池)一个数的比它的25%少5,这个数是()A.99 B.100 C.25考点:整数、分数、小数、百分数四则混合运算.专题:压轴题.分析:一个数的比它的25%少5,即5占这个数的25%﹣,根据分数除法的意义可知,这个数为5÷(25%﹣).解答:解:5÷(25%﹣)=5÷,=100.答:这个数是100.故选:B.点评:根据分数减法意义求出5占总数的分率是完成本题的关键.11.(2010•白云区模拟)甲数的60%等于乙数的,那么()(甲、乙不为0).A.甲=乙B.甲>乙C.甲<乙考点:整数、分数、小数、百分数四则混合运算;分数大小的比较.分析:由甲数的60%等于乙数的可得:甲数×60%=乙数×.两两相乘数的积相等,乘较小数的那个数较大,比较60%与的大小,则可判定甲乙两数的大小.解答:解:甲数×60%=乙数×,60%=<,所以甲数>乙数.故选:B.点评:根据“两两相乘数的积相等,乘较小数的那个数较大”来判定甲乙两数的大小.12.的值是多少.()A.5B.12 C.1D.10考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;运算定律及简算.分析:我们运用乘法的分配律进行计算即可,然后再进行正确的选择.解答:解:7.5×+2.5×+10×,=×(7.5+2.5)+10×,=+10×,=10×(),=10;故选:D.点评:本题先把题干的算式进行计算,再与答案进行对比在进行选择即可.13.的值是多少.()A.5B.C.D.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先计算中括号里面的小括号,再计算中括号外面的小括号最后计算除法.进一步找出正确的答案.解答:解:[3(0.2+)×4.5]÷(7.05+6),=[3﹣()×4.5]÷(7.05+6.45),=[3.75﹣2.4]÷13.5,=1.35÷13.5,=0.1,=;故选:D.点评:考查了四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算律简便计算.14.的值是多少.()A.8.75 B.0.0875 C.0.8 D.0.875考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先依据四则运算计算方法,求出第一个括号的里面算式的得数,再运用除法性质即可解答.解答:解:(12﹣4 2.3)÷(100.875),=(12﹣2)÷(100.875),=1010×0.875,=1×0.875,=0.875,故答案为:D.点评:本题考查知识点:(1)四则运算计算方法,(2)除法性质的正确运用.15.下面的式子中()的结果最大.A.246÷6 B.246×0.6 C.24.6÷0.06考点:整数、分数、小数、百分数四则混合运算.专题:计算题.分析:我们通过对每一个选项进行计算,然后作出选择即可.注意小数点的位置的移动,以免出错.解答:解:A.246÷6=41;B.246×0.6=147.6;C.24.6÷0.06=410;故选:C.点评:本题运用计算方法选择出正确答案,计算时要认真计算.二.填空题(共14小题)16.(2013•北京模拟)=.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先进行小括号中的加法和减法运算,进而进行乘法和除法运算,最后进行减法运算,据此解答即可.解答:解:10﹣3.125×(1.6+)÷(2﹣0.625),=10﹣3.125×÷,=10﹣×,=10﹣,=.故答案为:.点评:此题主要考查整数、分数、小数、百分数四则混合运算的顺序的方法的灵活应用.17.(2013•永昌县模拟)列式计算:一个数的25%比它的少1.2.这个数是多少?考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据题意,把这个数看作单位“1”,那么这个数的25%比它的少它的(﹣25%),正好少了1.2,也就是说1.2站这个数的(﹣25%),因此,这个数是1.2÷(﹣25%),解决问题.解答:解:1.2÷(﹣25%)=1.2÷(﹣)=1.2÷=1.2×12=14.4答:这个数是14.4.点评:此题解答的关键是把这个数看作单位“1”,找准数量与对应分率,列式解答.18.(2014•长沙模拟)已知:,那么□=.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:根据题意设□的数为x,将所给的式子转化成含未知数的等式(即方程),根据加,减,乘,除,各部分的关系,利用逆推的方法,解答即可.解答:解:设□的数为x,则:,{13.5÷[11+]﹣1÷7}×1=1,13.5÷[11+﹣1×=1÷1,13.5÷[11+]﹣=,13.5÷[11+]=,11+=13.5÷1,=13.5﹣11,=2.5,×=,10﹣10x=9,x=,故答案为:.点评:解答此题的关键是,把所给的式子转化为方程,运用加,减,乘,除,各部分的关系,利用逆推的方法,解方程即可.19.(2014•岚山区模拟)a的与b的50%一定相等.(a、b均为自然数)×.(判断对错)考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据题干,假设a是8,b是12,据此分别求出它们的50%和是多少,再比较即可判断.解答:解:假设a是8,b是12,则a的是:8×=4,b的50%是:12×50%=6;4≠6,所以原题说法错误.故答案为:×.点评:本题中两分率对应的单位“1”不一定相同,单位“1”的大小不确定,它们分率所对应的大小就不能确定.20.(2013•黎平县)500克的相当于1千克的30%.考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:把要填的数看作单位“1”,单位“1”是未知的,用除法计算,数量500克的,500×=300克,300克=0.3千克,0.3除以对应分率30%.解答:解:500×=300(克),300克=0.3千克,0.3÷30%,=0.3÷0.3,=1(千克).答:500克的相当于1千克的30%.故答案为:1.点评:解决此题的关键是单位“1”确定和统一单位,把克统一成千克.21.(2013•广州模拟)我会列式,我会算乘的积减去1.5,再除以0.5,商是多少?考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:根据题意,用乘的积减去1.5,再用所得到的差除以0.5即可,列式解答即可得到答案.解答:解:(×﹣1.5)÷0.5=(3﹣1.5)=1.5×2=3答:商是3.点评:解答此题的关键是根据题干确定算式的运算顺序,然后再列式解答即可.22.(2013•青羊区模拟)19.8千克比22千克轻10%,7.5米比5米长.考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:(1)把()应填写的数看做单位“1”,单位“1”不知道用除法进行解答即可.(2)把5米看做单位“1”,也就是求5米的(1+)是多少.用乘法进行解答.解答:解:(1)19.8÷(1﹣10%),=19.8×,=22(千克);(2)5×(1+),=5×1.5,=7.5(米);故答案为:22,7.5.点评:此题属于分数乘法应用题的基本类型:找准单位“1”,弄清谁比谁多或少几分之几,列式解答即可.23.(2013•北京模拟)×23=16×+×=.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:(1)此题若转化成×(23+)或×(24﹣)再计算,因为不能约分,又牵扯到通分,反而使计算量加大,所以最好的办法是把带分数转化为假分数,再用分数乘法法则进行即可;(2)根据混合运算的顺序,先算两边的乘法,最后算加法即可.解答:解:(1)×23,=×,=;(2)16×+×,=+,=+,=.点评:本题考查了分数的乘法及混合运算,应用分数乘法法则及混合运算的顺序进行,计算时要细心,很容易出错.24.(2013•华亭县模拟)比24 少它的的数是18.×.考点:整数、分数、小数、百分数四则混合运算.专题:文字叙述题.分析:先求出24的,再用24减去24的,据此判断即可.解答:解:24﹣24×,=24﹣8,=16.故答案为:×点评:解决此题的关键是先求出24的,再用24减去得数,25.(2014•长沙模拟)17.5+17.5×1÷(﹣0.06)=148.75;1÷=1;1﹣=.考点:整数、分数、小数、百分数四则混合运算;繁分数的化简.专题:运算顺序及法则.分析:(1)按照先算括号里面的减法,再算乘法,然后算除法,最后算加法顺序计算即可解答,(2)先求出2减的差,再用1除以求得的差,最后用1除以求得的商即可解答,(3)先求出2加的和,再用1除以所得的和,最后用1减求得的商即可解答.解答:解:(1)17.5+17.5×1÷(﹣0.06)=17.5+17.5×1÷0.24=17.5+31.5÷0.24=17.5+131.25=148.75;(2)1÷=1÷=1=1;(3)1﹣=1﹣=1﹣=.故答案为:148.75,1,.点评:针对不同的题型,采用不同的方法正确进行计算,是本题考查知识点.26.(2014•长沙模拟)(1.5﹣)÷[×(0.4+2)]=11.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:按照先算小括号里面的,再算中括号里面的顺序计算即可解答.解答:解:(1.5﹣)÷[×(0.4+2)]=1÷[×2.5]=1÷=11故答案为:11.点评:依据四则运算计算方法正确进行计算,是本题考查知识点.27.(2014•台湾模拟)计算:=.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先把算式中的带小数和带分数化成假分数,再把除以一个数改写成乘这个数的倒数,进而先约分,再计算得解.解答:解:,=×÷(×)×,=×××××,=;故答案为:.点评:解决此题要根据数据和运算符号的特点,灵活运用所学的简便方法进行计算.28.(2014•长沙模拟)计算:1×[6﹣4÷(+)+2÷1.5]=3.。
分数的比较大小

分数的比较大小分数是我们在数学学习中经常遇到的概念,它可以用来表示各种比较大小的情况。
在本文中,我们将讨论分数的比较大小的方法和技巧。
一、分数的定义及表示方法首先,我们需要明确什么是分数。
分数由两个整数构成,分子和分母。
分子表示我们所要表示的数量,而分母表示整体被分成的份数。
分子和分母之间用一条横线相连,分子在横线上方,分母在横线下方。
例如,1/2、3/4都是分数的表示方法。
二、同分母的分数比较大小当分数的分母相同时,我们可以直接比较它们的分子来确定大小关系。
分子较大的分数,表示的数量也就较大,反之,则较小。
例如,比较1/5和2/5的大小,由于它们的分母相同,我们只需要比较它们的分子。
2/5的分子2大于1/5的分子1,因此2/5大于1/5。
三、同分子的分数比较大小当分数的分子相同时,我们需要比较它们的分母来确定大小关系。
分母较小的分数,表示的数量较大,分母较大的分数,表示的数量较小。
例如,比较3/4和3/6的大小,由于它们的分子相同,我们只需要比较它们的分母。
3/6的分母6小于3/4的分母4,因此3/6小于3/4。
四、分数的通分比较当我们需要比较的分数没有相同的分母时,我们可通过通分的方法来进行比较。
通分是将两个或多个分数的分母改为相同的数。
通分后,我们再比较它们的分子来确定大小关系。
例如,比较1/2和2/3的大小,我们可以将1/2的分母2改为3,得到3/6,再比较3/6和2/3的大小,由于它们的分子相同,我们只需要比较它们的分母。
3/6的分母6小于2/3的分母3,因此1/2小于2/3。
五、借助十进制比较大小除了上述方法外,我们还可以将分数转化为十进制数来比较大小。
通过将分子除以分母得到的结果,我们可以直观地比较分数的大小。
例如,将1/4转化为十进制数,计算1 ÷ 4 = 0.25,将2/3转化为十进制数,计算2 ÷ 3 = 0.6666...。
显然,0.6666...大于0.25,因此2/3大于1/4。