高三第一轮复习(直线的方程)练习题+解析+考查知识点
第01讲直线的方程(九大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考)

(2)求 + 2 的最小值及此时直线l的方程.
2
2
即
【解析】(1)设直线: + = 1,且 > 0, > 0
当且仅当
∵直线过点 1,2
∴此时直线: + − 3 = 0,
1
2
∴ + = 1则1 = 1 + 2 ≥ 2
取值范围为 −∞, 1 .
“斜率变化分两段,90∘ 是其分界,遇到斜率要谨记,存
故选:B
在与否要讨论”.这可通过画正切函数在 0, 2 ∪
【解题方法总结】
正确理解倾斜角的定义,明确倾斜角的取值范围,熟
−
记斜率公式 = 1 −2 ,根据该公式求出经过两点的直线
1
2
的图像来认识.
,
2
上
A. ≥
1
2
B. ≤ −2
【答案】D
【解析】由已知直线恒过定点 2,1 ,
如图所示,若与线段相交,则 ≤ ≤ ,
3−1
−1−1
1
因为 = 1−2 = −2, = −2−2 = 2,
1
所以−2 ≤ ≤ 2.
故选:D.
1
C. ≥ 或 ≤ −2
2
D.−2 ≤ ≤
4
4
所以4 − + 1 − = 5 + − + −
故选:C.
【解题方法总结】
要重点掌握直线方程的特征值(主要指斜率、截距)
等问题;熟练地掌握和应用直线方程的几种形式,尤其
是点斜式、斜截式和一般式.
题型五:直线与坐标轴围成的三角形问题
2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题05 直线运动综合问题(解析版)

1.(浙江新高考2018年4月选考科目物理试题)如图所示,竖直井中的升降机可将地下深处的矿石快速运送到地面。某一竖井的深度约为104m,升降机运行的最大速度为8m/s,加速度大小不超过1m/s2,假定升降机到井口的速度为零,则将矿石从井底提升到井口的最短时间是
A. 13s B. 16s
根据对称性,汽车离开通道时的速度也恰好为v′=4 m/s=v2,又知汽车从ETC通道匀速通过收费站的速度为v2=4 m/s,即两车在进入通道前与离开通道后的运动规律是一样的。
所以汽车通过ETC通道的时间为t1= = s=4 s,
汽车通过人工收费通道的时间为
t2= +t0= s+20 s=28 s,
节约的时间为Δt=t2-t1=(28-4)s=24 s。
联立解得:a=5 m/s2
设运动员做匀加速运动的时间为t1,匀速运动的时间为t2,匀速运动的速度为v,跑完全程的时间为t,全程的距离为s,依题意及运动学规律,得t=t1+t2,v=at1,s= at +vt2
设加速阶段通过的距离为s′,则s′= at
求得s′=10 m,选项A正确。
2.(2022福建三明重点高中质检)图所示,“蛟龙号”载人潜水器是迄今为止中国自主设计的最复杂的海洋调查装备,具有世界第一的下潜深度,且各项技术指标世界领先。“蛟龙号”载人潜水器某次潜水试验,下潜深度3000m,其下潜过程可简化为由静止开始竖直向下先做加速度大小为a1=0.2m/s2的匀加速直线运动然后做加速度大小为a2=0.1m/s2的匀减速直线运动直到速度零,求:
2.常见“形异质同”问题
水平刹车与沿粗糙斜面上滑
汽车在水平路面上的刹车问题和物体沿粗糙斜面上滑问题,表面上看是两种不同的问题,但是,若物体在斜面上满足mgsinθ≤μmgcosθ,则物体的运动规律与汽车在水平路面上的刹车问题是相同的。
高三数学 专题9.1 直线的方程(讲+练)(原卷版+解析版)

专题9.1 直线的方程1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识点一 直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角,当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的范围是[0,π). 知识点二 直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ.(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 .知识点三 直线方程的五种形式考点一 直线的倾斜角与斜率【典例1】(山西平遥中学2019届模拟)(1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围是__________.【答案】 (1)B (2)(-∞,-3]∪[1,+∞)【解析】(1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3. (2)如图,因为k AP =1-02-1=1, k BP =3-00-1=-3, 所以k ∈(-∞,-3]∪[1,+∞).【方法技巧】直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此求倾斜角或斜率的范围时,要分⎣⎡⎭⎫0,π2,⎩⎨⎧⎭⎬⎫π2和⎝⎛⎭⎫π2,π三种情况讨论.当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).【变式1】(湖南浏阳一中2019届模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π【答案】B【解析】因为a 2+1≠0,所以直线的斜截式方程为y =-1a 2+1x -1a 2+1,所以斜率k =-1a 2+1,即tan α=-1a 2+1,所以-1≤tan α<0,解得3π4≤α<π,即倾斜角的取值范围是⎣⎡⎭⎫3π4,π.故选B. 考点二 直线方程的求法【典例2】( 北京师范大学实验中学2019届模拟)根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.【解析】(1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010, 则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1.又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0;当斜率存在时,设斜率为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上,所求直线方程为x -5=0或3x -4y +25=0. 【方法技巧】求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程.(2)待定系数法:设出所求直线方程的某种形式,由条件建立所求参数的方程(组),解这个方程(组)求出参数,再把参数的值代入所设直线方程即可.【变式2】(河北正定中学2019届模拟)过点P (3,1),且比直线l :x +3y -1=0的倾斜角小30°的直线方程为__________.【答案】 3x +y -4=0【解析】直线l :x +3y -1=0的斜率为-33,所以其倾斜角为150°,则所求直线的倾斜角为120°,因此所求直线的斜率k =- 3.又直线过点P (3,1),所以所求直线的方程为y -1=-3(x -3),即3x+y -4=0.考点三 直线方程的综合应用【典例3】( 辽宁阜新实验中学2019届模拟)(1)已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.(2)已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.【解析】(1)由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.故当四边形的面积最小时,实数a 的值为12.(2)依题意知直线l 的斜率k 存在且k <0, 则直线l 的方程为y -2=k (x -3)(k <0), 可得A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), 所以S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+-9k +4-k ≥ 12⎣⎢⎡⎦⎥⎤12+2-9k4-k =12×(12+12) =12, 当且仅当-9k =4-k,即k =-23时,等号成立.故△ABO 的面积的最小值为12, 此时直线l 的方程为2x +3y -12=0. 【方法技巧】(1)含有参数的直线方程可看作是直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题时,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.【变式3】(吉林长春市实验中学2019届模拟)当k >0时,两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形面积的最大值为__________.【答案】24【解析】因为2x +ky -2=0与x 轴交于点(1,0),由⎩⎪⎨⎪⎧kx -y =0,2x +ky -2=0,解得y =2kk 2+2,所以两直线kx -y=0,2x +ky -2=0与x 轴围成的三角形面积为12×1×2k k 2+2=1k +2k≤122,故三角形面积的最大值为24.考点四 综合考查【典例4】(黑龙江哈尔滨市第六中学2019届质检)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( )A .-12 B.-12或-2 C.12或2D .-2【答案】D【解析】∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+2sin θcos θ=15,∴2sin θ cos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2.【变式4】(江苏扬州中学2019届模拟)已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.【解析】(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.专题9.1 直线的方程1.(江苏省无锡一中2019届期中)直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°2.(河南省鹤壁一中2019届期末)若函数y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.+272C.+212D.-33+152723.(山西省晋城一中2019届质检)如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 24.(湖北省黄石一中2019届月考)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)5.(陕西师大附中2019届月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限6.(黑龙江省牡丹江一中2019届期中)设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43D.⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞7.( 浙江省舟山一中2019届期末)直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.8.(湖北省鄂州一中2019届期中)过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.9.(江西省南昌二中2019届期末)若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.10.(河北衡水中学2019届期中)已知点A (3,4),分别求出满足下列条件的直线方程. (1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.11.(江西省鹰潭一中2019届模拟)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )12.(广东惠州一中2019届质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-1,12 C .(-∞,-1)∪⎝⎛⎭⎫15,+∞ D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 13.(安徽省亳州一中2019届模拟)在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0 B.3x +y +6=0C .3x -y +6=0D .3x +y -6=014.(广西省来宾一中2019届模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B.(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)15.(山东省滨州一中2019届质检)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π416.(四川省德阳一中2019届模拟)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 的面积最大值是( )A .2 5B .5 C.52D. 5 17.(陕西省渭南一中2019届模拟)已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为__________________.18. (广东省云浮一中2019届模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.19.( 甘肃省兰州一中2019届调研)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.20.(四川省雅安一中2019届模拟)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程.1.(2019·浙江高三学业考试)直线y -26x =+的斜率为( )A.2B.-2C.12 D.12- 2.(2019·浙江高三学业考试)直线210x y +-=经过点( )A.(1,0)B.(0,1)C.11,22⎛⎫⎪⎝⎭D.11,2⎛⎫⎪⎝⎭专题9.1 直线的方程1.(江苏省无锡一中2019届期中)直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°【答案】A【解析】由直线l 的方程为3x +3y -1=0可得直线l 的斜率为k =-33,设直线l 的倾斜角为α(0°≤α<180°),则tan α=-33,所以α=150°.故选A. 2.(河南省鹤壁一中2019届期末)若函数y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.+272C.+212D.-33+272【答案】B【解析】设z =(x 1-x 2)2+(y 1-y 2)2,则z 的几何意义是两条曲线上动点之间的距离的平方.因为y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,所以y 1′=2cos 2x 1.因为函数y 2=x 2+3的斜率为1,所以令y 1′=2cos 2x 1=1,解得x 1=π6,则y 1=0,即函数在⎝⎛⎭⎫π6,0处的切线和直线y 2=x 2+3平行,则最短距离为d =⎪⎪⎪⎪π6+32.所以(x 1-x 2)2+(y 1-y 2)2的最小值为d 2=⎝ ⎛⎭⎪⎪⎫⎪⎪⎪⎪π6+322=+272.故选B.3.(山西省晋城一中2019届质检)如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【答案】D【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.故选D.4.(湖北省黄石一中2019届月考)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)【答案】A【解析】因为k ,-1,b 三个数成等差数列,所以k +b =-2,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2).5.(陕西师大附中2019届月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】直线Ax +By +C =0的斜率k =-A B <0,在y 轴上的截距为-C B>0,所以直线不经过第三象限. 6.(黑龙江省牡丹江一中2019届期中)设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43 D.⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞ 【答案】B【解析】易知直线ax +y +2=0恒过点M (0,-2),且斜率为-a .因为k MA =3---2-0=-52, k MB =2--3-0=43, 由图可知-a >-52且-a <43,所以a ∈⎝⎛⎭⎫-43,52. 7.( 浙江省舟山一中2019届期末)直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.【答案】y =23x 【解析】直线l 平分平行四边形ABCD 的面积,则直线l 过BD 的中点(3,2),则直线l :y =23x . 8.(湖北省鄂州一中2019届期中)过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.【答案】y =-53x 或x -y +8=0 【解析】当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y -a=1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0.9.(江西省南昌二中2019届期末)若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.【答案】16【解析】根据A (a,0),B (0,b )确定直线的方程为x a +y b =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,可得ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时,等号成立.故ab 的最小值为16.10.(河北衡水中学2019届期中)已知点A (3,4),分别求出满足下列条件的直线方程.(1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.【解析】(1)设直线在x ,y 轴上的截距均为a .①若a =0,即直线过点(0,0)及(3,4),所以直线的方程为y =43x ,即4x -3y =0. ②若a ≠0,设所求直线的方程为x a +y a =1.又点(3,4)在直线上,所以3a +4a=1,所以a =7.所以直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0.(2)由题意可知所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).故所求直线的方程为x -y +1=0或x +y -7=0.11.(江西省鹰潭一中2019届模拟)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )【答案】B【解析】由题意l 1:y =-ax -b ,l 2:y =-bx -a ,当a >0,b >0时,-a <0,-b <0.选项B 符合.12.(广东惠州一中2019届质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-1,12C .(-∞,-1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 【答案】D【解析】设直线l 的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k<3,解不等式得k <-1或k >12. 13.(安徽省亳州一中2019届模拟)在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0 B.3x +y +6=0C .3x -y +6=0D .3x +y -6=0【答案】C【解析】因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.14.(广西省来宾一中2019届模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2] B.(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)【答案】C【解析】令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 15.(山东省滨州一中2019届质检)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4【答案】D【解析】由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以-b =a ,则直线ax -by +c =0的斜率为k =a b =-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4,故选D.16.(四川省德阳一中2019届模拟)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx-y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 的面积最大值是( )A .2 5B .5C.52D. 5 【答案】C【解析】由题意可知动直线x +my =0过定点A (0,0).动直线mx -y -m +3=0⇒m (x -1)+3-y =0,因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △P AB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.当|P A |=|PB |时,△P AB 的面积取得最大值.由2|P A |=|AB |=12+32=10,解得|P A |= 5.所以S △P AB =12|P A |2=52.综上可得,△P AB 的面积最大值是52. 17.(陕西省渭南一中2019届模拟)已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为__________________.【答案】4x -3y -4=0【解析】由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12, 所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0.18. (广东省云浮一中2019届模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.【答案】(3+3)x -2y -3-3=0【解析】由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.19.( 甘肃省兰州一中2019届调研)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16. 【解析】(1)由题意知,直线l 存在斜率.设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.20.(四川省雅安一中2019届模拟)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 所在直线的方程.【解析】(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2. BC 边的中线AD 经过A (-3,0),D (0,2)两点,由截距式得AD 所在直线的方程为x -3+y 2=1, 即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12, 则BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.1.(2019·浙江高三学业考试)直线y -26x =+的斜率为( )A.2B.-2C.12D.12- 【答案】B【解析】由26y x =-+可知斜率2k =-,本题选B 。
2022高考数学一轮复习—直线与方程习题汇总含答案

两条直线的位置关系及距离公式命题范围:两条直线平行与垂直的条件,两点间的距离及点到直线的距离.[基础强化]一、选择题1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=02.若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.343.“a =3”是“直线ax +2y +2a =0和直线3x +(a -1)y -a +7=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.过点P (2,1)且与原点O 距离最远的直线方程为( )A .2x +y -5=0B .2x -y -3=0C .x +2y -4=0D .x -2y =07.若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是5,则m +n =( )A .0B .1C .-2D .-18.[2021·四川成都一中高三测试]三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠19.直线l 经过点M (2,1),若点P (4,2)和Q (0,-4)到直线l 的距离相等,则直线l 的方程为( )A .3x -2y -4=0B .x =2或3x -2y -4=0C .x =2或x -2y =0D .x =2或3x -2y -8=0二、填空题10.若曲线y =a x (a >0且a ≠1)恒过定点A (m ,n ),则A 到直线x +y -3=0的距离为________.11.若直线ax +2y -6=0与x +(a -1)y +a 2-1=0平行,则a =________.12.过点A (4,a )和B (5,b )的直线与直线y =x +m 平行,则两点间的距离|AB |=________.两条直线的位置关系及距离公式参考答案1.A 设所求的直线方程为x -2y +c =0,又(1,0)在直线l 上,∴1+c =0,∴c =-1,故所求的直线方程为x -2y -1=0.2.D ∵l 1与l 2垂直,∴3(a -1)+a =0,得a =34. 3.A 由两条直线平行,∴a 3=2a -1≠2a 7-a, 得a =-2或a =3.∴a =3是两条直线平行的充分不必要条件.4.B 由⎩⎪⎨⎪⎧ kx -y =k -1,ky -x =2k ,得⎩⎪⎨⎪⎧ x =k k -1,y =2k -1k -1.又∵0<k <12, ∴x =k k -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.5.B 由点(1,3)到直线x +3y +C =0的距离为3,得|1+3×3+C |12+(3)2=|4+C |2=3,得C =2或C =-10. ∴C =2是点(1,3)到直线x +3y +C =0的距离为3的充分不必要条件.6.A 过点P (2,1)且与原点O 距离最远的直线就是过点P 且与OP 垂直的直线即y -1=-2(x -2),得2x +y -5=0.7.C ∵l 1∥l 2,∴12=-2n,∴n =-4, ∴l 2:2x -4y -6=0可化为x -2y -3=0 ∴|m +3|12+(-2)2=|m +3|5=5,又m >0,∴m =2, ∴m +n =2-4=-2.8.C 由l 1∥l 3,得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得x =1,y =1,若(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k ≠±5且k ≠-10,故选C.9.B 解法一:当直线l 的斜率不存在时,直线l 的方程为x =2,符合题意.当直线l 的斜率存在时,依题意可设直线l 的方程为y -1=k (x -2),即kx -y +1-2k =0,因为P (4,2)和Q (0,-4)到直线l 的距离相等,所以|4k -2+1-2k |=|4+1-2k |,解得k =32,则直线l 的方程为3x -2y -4=0,故选B.解法二:由题意知,所求直线经过P (4,2)和Q (0,-4)的中点或与过P (4,2)和Q (0,-4)的直线平行.当所求直线经过P (4,2)和Q (0,-4)的中点(2,-1)时,所求直线方程为x =2;当所求直线与过P (4,2)和Q (0,-4)的直线平行时,由k PQ =-4-20-4=32,得直线l 的方程为y -1=32(x -2),即3x -2y -4=0,故选B. 10.2解析:由题意得A (0,1),由点A (0,1)到直线x +y -3=0的距离为|1-3|12+12= 2. 11.2或-1解析:因为两直线平行,所以有a (a -1)-2=0,且1a =a -12≠a 2-1-6,即a 2-a -2=0,且a 2+3a -4≠0,解得a =2或a =-1.12.2解析:由题意可知,k AB =b -a 5-4=b -a =1, 故|AB |=(5-4)2+(b -a )2= 2.直线的倾斜角与斜率、直线的方程命题范围:直线的倾斜角和斜率、直线方程的点斜式和一般式.[基础强化]一、选择题1.直线经过点(0,2)和点(3,0),则它的斜率k 为( )A.23B.32C .-23D .-322.直线x +3y +1=0的倾斜角是( )A.π6B.π3C.23π D .56π 3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=04.已知直线l 的倾斜角为α、斜率为k ,那么“α>π3”是“k >3”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0 D.3x +y +3=06.经过点P (1,2)且在x 轴、y 轴上的截距相等的直线方程为( )A .2x -y =0B .x +y -3=0C .x -y -3=0或2x -y =0D .x +y -3=0或2x -y =07.[2021·衡阳一中高三测试]直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <08.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π)B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 9.已知点A (2,3),B (-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A.⎣⎡⎦⎤34,2B.⎝⎛⎦⎤-∞,34∪[2,+∞) C .(-∞,1]∪[2,+∞)D .[1,2]二、填空题10.若A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.11.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.12.过点M (-2,m ),N (m,4)的直线的斜率为1,则m =________.直线的倾斜角与斜率、直线的方程参考答案1.C k =0-23-0=-23. 2.D 由x +3y +1=0,得y =-33x -33, ∴直线的斜率k =-33,其倾斜角为56π. 3.A 由点斜式得y -5=-34(x +2),即:3x +4y -14=0. 4.B ∵当π2<α<π时,k <0,∴α>π3D ⇒/k >3; 当k >3时,π3<α<π2,∴k >3⇒π3<α<π2, ∴α>π3是k >3的必要不充分条件. 5.D 由点斜式可知y =-3(x +1),即:3x +y +3=0.6.D 若直线过原点,则直线方程为y =2x ,若直线不过原点,设所求的直线方程为x +y =m ,又P (1,2)在直线上, ∴1+2=m ,∴m =3,即:x +y =3.7.A ax +by +c =0可化为y =-a b x -c b,又直线过一、二、四象限, ∴-a b <0且-c b>0,即ab >0,bc <0. 8.B 设直线的倾斜角为θ,0≤θ<π,由题意得tan θ=-sin α∈[-1,1],∴θ∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 9.B 直线kx -y +1-k =0恒过P (1,1),k P A =2,k PB =34,∴k 的取值范围是⎝⎛⎦⎤-∞,34∪[2,+∞).10.4解析:由题意得k AC =k BC ,∴5-36-4=5-a 6-5,得a =4. 11.45°解析:y ′=3x 2-2,当x =1时,y ′=3-2=1,∴k =1,其倾斜角为45°. 12.1解析:由题意得,4-m m +2=1,得m =1.。
高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。
2025届高三数学专题复习:直线方程重难点专题(解析版)

直线的方程重难点专题常考结论及公式结论一:两直线平行与垂直的充要条件若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2;①l 1∥l 2⇒k 1=k 2⇒≠b 2;②l 1⊥l 2⇔k 1k 2=-1.若l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,且A 1、A 2、B 1、B 2都不为零.①l 1∥l 2⇒A 1A 2=B 1B 2≠C 1C 2;l 1与l 2重合⇒A 1A 2=B 1B 2=C1C 2;②l 1⊥l 2⇔A 1A 2+B 1B 2=0.结论二:到角公式和夹角公式(1)l 1到l 2的角公式①tan α=k 2-k 11+k 2k 1.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)(2)夹角公式①tan α=k 2-k 11+k 1k 2.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2.(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)直线l 1⊥l 2时,直线l 1与l 2的夹角是π2.结论三:四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A 、B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为l 1:(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.结论四:与对称有关的一些结论(1)点P (u ,v )关于点Q (s ,t )的对称点的坐标为:(2s -u ,2t -v ),特别地,点P (u ,v )关于原点的对称点的坐标为:(2×0-u ,2×0-v ),即(-u ,-v ).(2)直线Ax +By +C =0关于点P (-u ,-v )对称的直线的方程为:(2u -x )+B (2v -y )+C =0.(3)直线Ax +By +C =0关于原点、x 轴、y 轴对称的直线的方程分别为:A (-x )+B (-y )+C =0,Ax +B (-y )+C =0,A (-x )+By +C =0.(4)直线Ax +By +C =0关于直线x =u ,y =v 对称的直线的方程分为:A (2u -x )+By +C =0,Ax +B (2v -y )+C =0.(5)曲线f (x ,y )=0关于点P (u ,v )对称的直线的方程为:f (2u -x ,2v -y )=0.(6)点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:s -2A ∙As +Bt +C A 2+B 2,t -2B ∙As +Bt +CA 2+B2.特别地,当A =B ≠0时,点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:-Bt +C A,-As +CB .点P (s ,t )关于x 轴、y 轴,直线x =u ,直线y =v 的对称点的坐标分别为(s ,-t ),(-s ,t ),(2u -s ),(s ,2v -t ).题型一直线的倾斜角与斜率关系问题例1.直线x cos θ+y sin θ=0,θ∈0,5π6的斜率的取值范围为()A.-∞,3B.2,+∞C.-∞,0 ∪0,3D.-∞,2【答案】A【分析】求出直线的斜率的表达式,通过角的范围求解斜率的范围即可.【详解】由x cos θ+y sin θ=0,θ∈0,5π6 可得直线的斜率为:k =-cos θsin θ=-1tan θ.因为θ∈0,5π6 ,所以tan θ∈-∞,-33 ∪0,+∞ ,所以k =-1tan θ∈-∞,0 ∪0,3 当θ=π2时,易得k =0。
(天津专用)2020版高考数学大一轮复习9.1直线方程与圆的方程精练

9.1 直线方程与圆的方程【真题典例】挖命题【考情探究】分析解读从高考试题来看,本节主要考查基础知识和基本方法,一是考查直线的倾斜角与斜率的关系、斜率公式以及直线方程的求解;二是圆的标准方程和一般方程的互化以及利用待定系数法、数形结合法求圆的方程,考查形式以选择题和填空题为主.同时圆的方程作为由直线方程向曲线方程的过渡,蕴含着解析法的解题思路和解题方法,是解析法的基础,因此,以圆为载体考查解析法的基本思想和方法是历年高考考查的重点.破考点【考点集训】考点一直线的倾斜角、斜率与方程1.已知直线l过定点(0,1),则“直线l与圆(x-2)2+y2=4相切”是“直线l的斜率为”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B2.过点M(1,2)的直线l将圆(x-2)2+y2=9分成两段弧,当其中的劣弧最短时,直线l的方程是.答案x-2y+3=0考点二直线与直线的位置关系3.已知圆的方程为(x+1)2+y2=2,则圆心到直线y=x+3的距离为( )A.1B.C.2D.2答案 B4.已知直线3x+(1-a)y+1=0与直线x-y+2=0平行,则a的值为( )A.4B.-4C.2D.-2答案 A5.已知a∈R,则“直线y=ax-1与y=-4ax+2垂直”是“a=”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B考点三圆的方程6.若直线x+y+a=0是圆x2+y2-2y=0的一条对称轴,则a的值为( )A.1B.-1C.2D.-2答案 B7.(2015课标Ⅰ, ,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案-+y2= 5炼技法【方法集训】方法1 直线方程的求法1.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是( )A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案 D方法2 两直线平行与垂直问题的解决策略2.已知直线3x+4y+3=0与直线6x+my-14=0平行,则它们之间的距离是( )D.A.2B.8C.5答案 A3.已知直线l1:ax+y-1=0,直线l2:x-y-3=0,若直线l1的倾斜角为,则a= ;若l1⊥l2,则a= ;若l1∥l2,则两平行直线间的距离为.答案-1;1;2方法3 关于对称问题的求解策略4.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为( )A.(x-1)2+y2=1B.x2+(y+1)2=1C.x2+(y-1)2=1D.(x+1)2+y2=1答案 C方法4 圆的方程的求法5.(2018天津文,12,5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.答案x2+y2-2x=06.(2016江苏改编,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.解析圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为--=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=5=5.因为BC=OA==25,而MC2=d2+,所以25= 55+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.评析本题主要考查直线方程、圆的方程、直线与直线、直线与圆的位置关系,考查分析问题、解决问题的能力及运算求解能力.过专题【五年高考】A组自主命题·天津卷题组1.(2013天津文,5,5分)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=( )A.-B.1C.2D.答案 C2.(2016天津文,12,5分)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到,则圆C的方程为.直线2x-y=0的距离为55答案(x-2)2+y2=9B组统一命题、省(区、市)卷题组1.(2016课标Ⅱ, ,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-B.-C.D.2答案 A2.(2015课标Ⅱ, ,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.10答案 C3.(2014广东,10,5分)曲线y=e-5x+2在点(0,3)处的切线方程为.答案5x+y-3=04.(2014江苏,11,5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.答案-35.(2018课标Ⅱ, 9, 分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C 交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解析(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),设A(x1,y1),B(x2,y2).由- ,得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),或k=1,因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5. 设所求圆的圆心坐标为(x0,y0),则-5,-解得,或,-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.方法总结有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.6.(2017课标Ⅲ, , 分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解析(1)设A(x1,y1),B(x2,y2),l:x=my+2.由 ,可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·=-=-1,所以OA⊥OB故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为9,-,圆M的半径为 5,圆M的方程为-9+= 5.解后反思解直线与圆锥曲线相交问题时,常联立方程,消元得到一个一元二次方程,然后利用根与系数的关系处理.以某线段为直径的圆的方程,也可以用该线段的两端点坐标(x1,y1)、(x2,y2)表示:(x-x1)(x-x2)+(y-y1)(y-y2)=0.疑难突破将直径所对的圆周角为9 °转化为两向量数量积等于0,进而由根与系数的关系进行整体运算求解.7.(2015课标Ⅰ, , 分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N 两点.(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.解析(1)由题设可得M(2,a),N(-2,a)或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(5分)(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=-+-= a-=.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.(12分)C组教师专用题组1.(2016四川,8,5分)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M 是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )A. B. C. D.1答案 C2.(2015北京,2,5分)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案 D3.(2017江苏,13,5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若·≤ ,则点P的横坐标的取值范围是.答案[-5,1]4.(2015湖北文,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.答案(1)(x-1)2+(y-)2=2 (2)--1【三年模拟】一、选择题(每小题5分,共10分)1.(2018天津河西三模,4)设a∈R,则“a= ”是“直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 C2.(2018天津十二区县二模,4)已知m为实数,直线l1:mx+y-1=0,l2:(3m-2)x+my-2=0,则“m= ”是“l1∥l2”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A二、填空题(每小题5分,共20分)3.(2017天津和平四模,12)经过圆x2+2x+y2=0的圆心,且与直线x+y-2=0垂直的直线方程是.答案x-y+1=04.(2017天津耀华中学二模,10)已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为.答案205.(2017天津一中3月月考,12)圆心在直线x-2y+7=0上的圆C与x轴交于A(-2,0)、B(-4,0)两点,则圆C的方程为.答案(x+3)2+(y-2)2=56.(2018天津河东一模,12)已知A(0,),B(1,0),点P为圆x2+y2+2x=0上的任意一点,则△PAB面积的最大值为.答案。
高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。
②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 解析几何 直线的方程一、选择题1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m (m +1)+2m +2=0,∴m =-1或-2,考查知识点l 1:A 1x+B 1y=C 1,l 2:A 2x+B 2y=C 2:。
当l 1∥l 2时,A 1B 2=A 2B 1,且B 1C 2≠B 2C 1,当l 1⊥l 2,A 1A 2+B 2B 1=0.故选A.2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0[答案] A[解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0.解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,考查知识点l 1:A 1x+B 1y=C 1,l 2:A 2x+B 2y=C 2:。
当l 1∥l 2时,A 1B 2=A 2B 1,且B 1C 2≠B 2C 1,当l 1⊥l 2,A 1A 2+B 2B 1=0.故选A.(理)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12D .-1[答案] A[解析] y ′=2ax ,在(1,a )处切线的斜率为k =2a ,因为与直线2x -y -6=0平行,所以2a =2,解得a =1.考查知识点:切线的意义,切线在某点的导数即切线的斜率。
故选A3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2)D .(2,-2)[答案] D[解析] 一般解法:设对称点为(x ,y ),则 ⎩⎪⎨⎪⎧x -12-y +12-1=0y -1x +1=-1,解之得⎩⎪⎨⎪⎧x =2y =-2, 知识点:A 点和B 点关于直线l 对称,则○1AB 的中点在直线l 上,○2直线AB 的斜率与直线l 的斜率乘积等于-1特殊解法:当直线l :Ax +By +C =0的系数满足|A |=|B |=1时,点A (x 0,y 0)关于l 的对称点B (x ,y )的坐标,x =-By 0-C A ,y =-Ax 0-CB.4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O (0,0),A (2,0),C (0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( )A .[0,1]B .[0,2]C .[-1,0]D .[-2,0][答案] D[解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题,∵k OD ≥k OB =12,∴k =-1k OD ≥-2,且k <0,又当折叠后O 与C 重合时,k =0,∴-2≤k ≤0.5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞)C.⎝⎛⎭⎫-∞,43∪(10,+∞) D.⎝⎛⎭⎫43,10 [答案] D[解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43<a <10,故选D. (理)如果点(5,a )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则整数a 的值为( )A .5B .-5C .4D .-4[答案] C[解析] 由题意知(30-8a +1)(15-4a +5)<0,∴318<a <5,又a 为整数,∴a =4. 6.(2010·南充市)在直角坐标平面上,向量OA →=(1,3)、OB →=(-3,1)(O 为原点)在直线l 上的射影长度相等,且直线l 的倾斜角为锐角,则l 的斜率等于( )A .1 B.32 C.12D.33[答案] C[解析] 过原点作与直线l 平行的直线l ′,则OA →、OB →在l ′上的射影也相等,故A 、B 到直线l ′的距离相等,设l ′:y =kx ,则|k -3|1+k 2=|-3k -1|1+k2,∴k =-2或12, ∵l 的倾斜角为锐角,∴k =12.[点评] 设直线l 的斜率为k ,则直线l 的一个方向向量为a =(1,k ),由OA →,OB →在a 上射影的长度相等可得|a ·OA →||a |=|a ·OB →||a |,可解出k .7.设A (0,0),B (2,2),C (8,4),若直线AD 是△ABC 外接圆的直径,则点D 的坐标是( ) A .(16,-12) B .(8,-6) C .(4,-3)D .(-4,3)[答案] A[解析] 线段AB 的垂直平分线x +y -2=0与线段AC 的垂直平分线2x +y -10=0的交点即圆心(8,-6),而圆心为AD 的中点,所以得点D 的坐标为(16,-12).8.(文)(2010·福建莆田市质检)经过圆x 2+y 2+2x =0的圆心,且与直线x +y =0垂直的直线l 的方程是( )A .x +y +1=0B .x -y +1=0C .x +y -1=0D .x -y -1=0[答案] B[解析] 设与直线x +y =0垂直的直线方程为x -y +b =0, ∵过圆心(-1,0),∴b =1,故选B.(理)(2010·山东潍坊)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2010x 1+log 2010x 2+…+log 2010x 2009的值为( )A .-log 20102009B .-1C .log 20102009-1D .1[答案] B[解析] 由y =x n+1得y ′=(n +1)x n ,则在点(1,1)处切线的斜率k =y ′|x =1=n +1,切线方程为y -1=(n +1)(x -1),令y =0得,x n =nn +1,∴log 2010x 1+log 2010x 2+…+log 2010x 2009 =log 2010(x 1·x 2·…·x 2009)=log 2010⎝⎛⎭⎫12×23×34×…×20092010=log 201012010=-1,故选B. 9.(文)直线l 过点(-2,0),当l 与圆x 2+y 2=2x 有两个交点时,直线l 的斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 [答案] C[解析] 由题意得,圆的方程为(x -1)2+y 2=1,所以圆心为(1,0),半径为 1.当过点(-2,0)的直线l 与圆相切时,可求得直线l 的斜率k =±24.所以直线l 的斜率k 的取值范围是⎝⎛⎭⎫-24,24.故选C. (理)(2010·汕头模拟)平行四边形ABCD 的一条对角线固定在A (3,-1),C (2,-3)两点,D 点在直线3x -y +1=0上移动,则B 点轨迹的方程为( )A .3x -y -20=0(x ≠13)B .3x -y -10=0(x ≠13)C .3x -y -9=0(x ≠-8)D .3x -y -12=0(x ≠-8)[答案] A[解析] 线段AC 的中点M ⎝⎛⎭⎫52,-2,设B (x ,y ),则B 关于点M 的对称点(5-x ,-4-y )在直线3x -y +1=0上,∴3(5-x )-(-4-y )+1=0,即3x -y -20=0.∵A 、B 、C 、D 不能共线,∴不能为它与直线AC 的交点,即x ≠13.10.已知一动直线l 与两坐标轴的正半轴围成的三角形的面积为p ,直线l 在两坐标轴上的截距之和为q ,且p 比q 大1,则这个三角形面积的最小值为( )A .4B .2+ 6C .4+3 3D .5+2 6 [答案] D[解析] 设直线l 的方程为x a +y b =1(a >0,b >0),则12ab =a +b +1,∵a +b ≥2ab ,∴12ab ≥2ab +1,即(ab )2-4ab -2≥0,解得ab ≥2+6,∴12ab ≥12×(2+6)2=5+26,当a =b =2+6时,三角形面积的最小值为5+2 6.二、填空题11.(2010·深圳中学)已知向量a =(6,2),b =⎝⎛⎭⎫-4,12,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的一般方程为________.[答案] 2x -3y -9=0[解析] a +2b =(-2,3),设l 上任一点P (x ,y ),则AP →=(x -3,y +1),由条件知,(x -3,y +1)·(-2,3)=0,∴2x -3y -9=0.12.(2010·浙江临安)设D 是不等式组⎩⎪⎨⎪⎧x +2y ≤102x +y ≥30≤x ≤4y ≥1所表示的平面区域,则区域D 中的点P (x ,y )到直线x +y =10的距离的最大值是________.[答案] 4 2[解析] 画出不等式组所表示的平面区域D 如图中阴影部分所示(包括边界),显然直线y =1与2x +y =3的交点(1,1)到直线x +y =10的距离最大,根据点到直线的距离公式可以求得最大值为42.13.(2010·安徽怀宁中学月考)“直线ax +2y +1=0和直线3x +(a -1)y +1=0平行”的充要条件是“a =____”.[答案] -2[解析] 由条件知a 3=2a -1,∴a 2-a -6=0,∴a =-2或3,当a =3时,两直线重合不合题意,∴a =-2.14.(文)实数x 、y 满足3x -2y -5=0 (1≤x ≤3),则yx 的最大值、最小值分别为________.[答案] 23,-1[解析] 设k =y x ,则yx表示线段AB :3x -2y -5=0 (1≤x ≤3)上的点与原点的连线的斜率.∵A (1,-1),B (3,2).由图易知:k max =k OB =23,k min =k OA =-1.(理)(2010·河南许昌调研)如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,-3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是________.[答案] [0,π2)∪(2π3,π)[解析] 由题意f ′(x )=a (x -1)2-3,∵a >0,∴f ′(x )≥-3,因此曲线y =f (x )上任一点的切线斜率k =tan α≥-3, ∵倾斜角α∈[0,π),∴0≤α<π2或2π3<α<π.三、解答题15.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.[解析] 当0≤x ≤10时,直线过点O (0,0),A (10,20),∴k OA =2010=2,∴此时直线方程为y =2x ;当10<x ≤40时,直线过点A (10,20),B (40,30), 此进k AB =30-2040-10=13,∴此时的直线方程为y -20=13(x -10),即y =13x +503;当x >40时,由题意知,直线的斜率就是相应放水的速度,设进水的速度为v 1,放水的速度为v 2,在OA 段时是进水过程,∴v 1=2.在AB 段是既进水又放水的过程,由物理知识可知,此时的速度为v 1+v 2=13,∴2+v 2=13.∴v 2=-53.∴当x >40时,k =-53.又过点B (40,30),∴此时的直线方程为y =-53x +2903.令y =0得,x =58,此时到C (58,0)放水完毕.综上所述:y =⎩⎪⎨⎪⎧y =2x ,0≤x ≤1013x +503,10<x ≤40-53x +2903,40<x ≤58.(理)已知矩形ABCD 的两条对角线交于点M ⎝⎛⎭⎫12,0,AB 边所在直线的方程为3x -4y -4=0.点N ⎝⎛⎭⎫-1,13在AD 所在直线上. (1)求AD 所在直线的方程及矩形ABCD 的外接圆C 1的方程;(2)已知点E ⎝⎛⎭⎫-12,0,点F 是圆C 1上的动点,线段EF 的垂直平分线交FM 于点P ,求动点P 的轨迹方程.[解析] (1)∵AB 所在直线的方程为3x -4y -4=0,且AD 与AB 垂直, ∴直线AD 的斜率为-43.又点N 在直线AD 上,∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0.由⎩⎪⎨⎪⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心. 而|MA |=⎝⎛⎭⎫0-122+(-1-0)2=52,∴外接圆的方程为⎝⎛⎭⎫x -122+y 2=54. (2)由题意得,|PE |+|PM |=|PF |+|PM |=|FM |=52,又|FM |>|EM |, ∴P 的轨迹是以E 、M 为焦点,长半轴长为54的椭圆,设方程为x 2a 2+y 2b 2=1(a >b >0),∵c =12,a =54,∴b 2=a 2-c 2=516-14=116.故动点P 的轨迹方程是x 2516+y 2116=1.16.已知直线l 1过点A (-1,0),且斜率为k ,直线l 2过点B (1,0),且斜率为-2k ,其中k ≠0,又直线l 1与l 2交于点M .(1)求动点M 的轨迹方程;(2)若过点N ⎝⎛⎭⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.[解析] (1)设M (x ,y ),∵点M 为l 1与l 2的交点,∴⎩⎨⎧yx +1=k y x -1=-2k(k ≠0),消去k 得,y 2x 2-1=-2,∴点M 的轨迹方程为2x 2+y 2=2(x ≠±1). (2)由(1)知M 的轨迹方程为 2x 2+y 2=2(x ≠±1), 设C (x 1,y 1),D (x 2,y 2), 则2x 12+y 12=2① 2x 22+y 22=2②①-②得2(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0, 即y 1-y 2x 1-x 2=-2×x 1+x 2y 1+y 2, ∵N ⎝⎛⎭⎫12,1为CD 的中点, 有x 1+x 2=1,y 1+y 2=2, ∴直线l 的斜率k =-2×12=-1,∴直线l 的方程为y -1=-⎝⎛⎭⎫x -12, 整理得2x +2y -3=0.17.如图,在平面直角坐标系xOy 中,平行于x 轴且过点A (33,2)的入射光线l 1被直线l :y =33x 反射,反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1、l 2都相切,求l 2所在直线的方程和圆C 的方程.[解析] 直线l 1:y =2,设l 1交l 于点D ,则D (23,2). ∵l 的倾斜角为30°.∴l 2的倾斜角为60°.∴k 2= 3.∴反射光线l 2所在的直线方程为y -2=3(x -23),即3x -y -4=0. 已知圆C 与l 1切于点A ,设C (a ,b ). ∵⊙C 与l 1、l 2都相切,∴圆心C 在过点D 且与l 垂直的直线上, ∴b =-3a +8①圆心C 在过点A 且与l 1垂直的直线上, ∴a =33②由①②得⎩⎨⎧a =33b =-1,圆C 的半径r =3,故所求圆C 的方程为(x -33)2+(y +1)2=9.。