(完整版)高中直线方程知识点总结

合集下载

高中数学直线方程知识点

高中数学直线方程知识点

高中数学直线方程知识点
高中数学直线与方程知识点总结
1.直线的倾斜角
(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.
(2)范围:直线l倾斜角的范围是[0°,180°).
2.斜率公式
(1)若直线l的倾斜角α≠90°,则斜率k=tan_α.
(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率k=(y2-y1)/(x2-x1).
3.直线方程的五种形式
题组一思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)根据直线的倾斜角的大小不能确定直线的位置.(√)
(2)坐标平面内的任何一条直线均有倾斜角与斜率.(×)
(3)直线的倾斜角越大,其斜率就越大.(×)
(4)若直线的斜率为tanα,则其倾斜角为α.(×)
(5)斜率相等的两直线的倾斜角不一定相等.(×)
(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(√)
2.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )
A.1 B.4
C.1或3 D.1或4
综上可知,直线m的方程为x-2y+2=0或x=2.
(2)直线l过点P(1,0),且与以A(2,1),B(0,√3)为端点的线段有公共点,则直线l斜率的取值范围为___________________.答案(-∞,-]∪[1,+∞)
解析如图
直线方程的综合应用
课时作业:。

数学必修二直线方程知识点

数学必修二直线方程知识点

数学必修二直线方程知识点
1. 直线的一般方程:一般地,直线的一般方程可表示为Ax + By + C = 0,其中A、B
和C为实数且A和B不同时为0。

2. 斜率截距方程:斜率截距方程是直线的另一种常用表示方法,可表示为y = mx + b,其中m为直线的斜率,b为直线与y轴的截距。

3. 斜率公式:直线的斜率可通过两点的坐标(x1, y1)和(x2, y2)计算,斜率m = (y2 - y1)/(x2 - x1)。

4. 点斜式方程:点斜式方程是直线的一种特殊表示方法,可表示为y - y1 = m(x - x1),其中(x1, y1)为直线上的一点,m为直线的斜率。

5. 两直线的关系:两条直线可以相交、平行或重合。

两条直线平行的条件是它们的斜
率相等,两条直线重合的条件是它们的斜率相等且有一个公共点。

6. 垂直平分线:两条直线相互垂直的条件是它们的斜率的乘积为-1。

7. 两点间的距离公式:可以使用两点的坐标(x1, y1)和(x2, y2)来计算两点间的距离d = √((x2 - x1)^2 + (y2 - y1)^2)。

8. 角的平分线:直线和另一条直线的夹角的平分线将夹角分成两个相等的角。

9. 线段的中点:直线的中点是指直线上且离两个端点等距离的点。

10. 线段的延长线:直线上的延长线是指直线上的一条线段,其中一端点在直线上,另一端点在直线的外部。

这些是数学必修二中关于直线方程的一些重要知识点。

直线与方程知识点总结

直线与方程知识点总结

直线与方程知识点总结一、直线的表示1、比例表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线上任意的一点P(x,y)都满足比例关系:$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$2、斜截式:也叫斜率表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线可用如下斜率表达式:$$y-y_1=k(x-x_1)$$其中,k为斜率,可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$k=\frac{y_2-y_1}{x_2-x_1}$$3、标准方程:直线可以用标准方程表达:$$Ax+By+C=0$$其中,A、B、C可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$A=y_2-y_1,B=x_1-x_2,C=x_2y_1-x_1y_2$$二、方程的表示1、一元一次方程:一元一次方程可以按如下形式表示:$$Ax+B=0$$其中,A、B为常数,A≠0,解析解可以表示为:$$x=-\frac{B}{A}$$2、一元二次方程:一元二次方程可以按如下形式表示:$$Ax^2+Bx+C=0$$其中,A、B、C为常数,A≠0,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$3、二元一次方程:二元一次方程可以按如下形式表示:$$Ax+By+C=0$$其中,A、B、C为常数,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$$$y=\frac{-A\pm\sqrt{B^2-4AC}}{2B}$$4、同次及非同次线性方程组:。

《直线的方程》全章知识点总结及典型例题

《直线的方程》全章知识点总结及典型例题

、考点、热点回顾已知条件图示方程形式适用条件 局限 点斜式点 P (x 0, y 0)和斜不能表示斜率不y -y 0=k (x -x )斜率存在存在的直线率k斜率 k 和直线在不能表示斜率不斜截式y = kx +b斜率存在y 轴上的截距 b存在的直线x 1≠x 2 ,y 1≠y 2 即P 1(x 1,y 1),P (x ,y - y 1 x - x 1斜率存在且两点式能表示与坐标轴y 2),其中 x 1y 2- y 1 x 2- x 1不为 0平行的直线y 1≠y 2在 x ,y 轴上的截斜率存在且不能表示与坐标截距式距分别为 a , bx+y =1不为 0,不过原轴平行及过原点ab的直线且 a ≠0,b ≠0点一般形式Ax + By +C = 0A ,B 不同时为 0无知识点二、线段的中点坐标公式若点 P 1, P 2的坐标分别为 (x 1,y 1),(x 2,y 2),设 P (x ,y )是线段 P 1P 2 的中点,则知识点三、直线的一般式求直线平行或垂直设直线 l 1与 l 2的方程分别为 A 1x +B 1y +C 1=0(A 1,B 1 不同时为 0),A 2x +B 2y +C 2=0(A 2,B 2不同时为0),A1B2- A2B1= 0,A1 B1 C1 则 l 1∥l 2?或 A1 B1 C1(A 、B 、C 均不为零 )B 1C 2-B 2C 1≠0或A 1C 2- A 2C 1≠ 0. A 2B 2C 2直线的方程x =x 1+ x 2 y 1+y 2l1⊥ l2? A1A2+B1B2= 0.二、典型例题考点一、直线的点斜式方程例 1、写出下列直线的点斜式方程.(1)经过点 A(2,5),且与直线 y=2x+ 7 平行;(2)经过点 C(-1,- 1),且与 x轴平行;(3)经过点 D(1,2),且与 x 轴垂直.变式训练 1、(1)经过点 (-3,1)且平行于 y 轴的直线方程是__ .(2) ________________________________________________________________________ 直线 y=2x +1绕着其上一点 P(1,3)逆时针旋转 90°后得到直线 l,则直线 l 的点斜式方程是_________________ .(3) ______________________________________________________________________________ 一直线 l1过点 A(-1,-2),其倾斜角等于直线 l2:y=33x的倾斜角的 2 倍,则 l1的点斜式方程为_________ .考点二、直线的斜截式方程例 2、 (1) 倾斜角为 60°,与 y 轴的交点到坐标原点的距离为 3 的直线的斜截式方程是 ___ __.(2)已知直线 l1的方程为 y=- 2x+ 3, l 2的方程为 y=4x-2,直线 l与 l 1平行且与 l2在y轴上的截距相同,求直线 l 的方程.变式训练 2、已知直线 l 的斜率为1,且和两坐标轴围成面积为 3 的三角形,求 l 的斜截式方程.6考点三、直线过定点问题例 3、求证:不论 m 为何值时,直线 l:y=(m-1)x+2m+1 总过第二象限 .变式训练 3、已知直线 l:5ax-5y- a+ 3= 0.求证:不论 a 为何值,直线 l 总经过第一象限考点四、直线的两点式方程例4、已知 A(-3,2),B(5,-4),C(0,-2),在△ABC 中,(1)求 BC 边的方程;(2)求 BC 边上的中线所在直线的方程.变式训练 4、若点 P(3,m)在过点 A(2,- 1),B(- 3,4)的直线上,则 m=_考点五、直线的截距式方程6 的直线方程是 ( )例 5、过点 P(1,3) ,且与 x 轴、 y 轴的正半轴围成的三角形的面积等于A.3x+y-6=0 B.x+ 3y- 10= 0C.3x- y=0 D.x-3y+8= 0变式训练 5、直线 l 过点 P(34, 2),且与两坐标正半轴围成的三角形周长为 12,求直线 l 的方程.3A.2 条 B.3 条 C.4 条 D .无数多条变式训练 6、过点 P(2,3)且在两坐标轴上的截距相等的直线有 ( )A.1 条 B.2 条 C.3条 D.无数多条考点六、直线的一般式方程(1)斜率是 3,且经过点 A(5,3) ;(2)斜率为 4,在 y 轴上的截距为- 2;(3)经过点 A(- 1,5),B(2,- 1)两点;(4)在 x轴,y 轴上的截距分别为- 3,-1.变式训练 7、根据条件写出下列直线的一般式方程:1(1)斜率是-21,且经过点 A(8,- 6)的直线方程为 ____________ ;(2)经过点 B(4,2),且平行于 x 轴的直线方程为 ______________ ;3(3) __________________________________________________ 在 x轴和 y轴上的截距分别是2和-3 的直线方程为 ________________________________________________________________(4) ____________________________________________ 经过点 P1(3,- 2),P2(5,- 4)的直线方程为 _____________________________________________________________________ .例 8、设直线 l 的方程为(m2- 2m- 3)x-(2m2+m- 1)y+ 6-2m= 0.(1)若直线 l 在 x 轴上的截距为- 3,则 m=;(2)若直线 l 的斜率为 1,则 m= __ .变式训练 8、若方程(a2+5a+6)x+(a2+2a)y+ 1=0 表示一条直线,则实数 a 满足.考点七、由直线的一般式研究直线的平行与垂直命题角度 1 利用两直线的位置关系求参数例 9、(1)已知直线 l 1: 2x+(m+ 1)y+4= 0与直线 l2:mx+3y-2=0 平行,求 m的值;(2)当 a 为何值时,直线 l1:(a+2)x+(1-a)y-1=0 与直线 l2:(a-1)x+(2a+3)y+2=0互相垂直?变式训练 9、已知直线 l1:ax+2y-3=0,l2:3x+(a+1)y-a=0,求满足下列条件的 a 的值.(1)l1∥ l2;(2)l1⊥l2.例 10、已知直线 l 的方程为 3x+ 4y-12= 0,求满足下列条件的直线 l′的方程:(1)过点(-1,3),且与 l 平行;(2)过点(-1,3),且与 l 垂直.变式训练 10、已知点 A(2,2)和直线 l:3x+ 4y-20=0. 求:(1)过点 A 和直线 l 平行的直线方程;(2)过点 A 和直线 l 垂直的直线方程.三、课后练习一、选择题(每小题只有一个正确答案)1.不论 m为何值,直线(m- 1)x+(2m- 1)y= m- 5 恒过定点()1A. 1,B. (- 2,0)C. (2,3)D. (9 ,- 4)范围为()A. B. C. D.3.若直线 l1:x+ay+6=0与 l2:(a-2)x+3y+2a=0平行,则 l1与 l2之间的距离为()A. B. C. D.4.若点A 1,1 关于直线y kx b 的对称点是B 3,3 ,则直线y kx b 在y 轴上的截距是()A. 1B. 2C. 3D. 4 5.已知直线l1 :x y 1 0,动直线l2 : k 1 x ky k 0 k R ,则下列结论错误..的是()A. 存在k,l1使得l2的倾斜角为 90° B. 对任意的k,l1与l2都有公共点C. 对任意的k,l1与l2都不.重合D. 对任意的k,l1与l2都不.垂.直.6.设点A 2, 3 ,B 3, 2 ,直线 l 过点P 1,1 ,且与线段AB 相交,则 l 的斜率k 的取值范围()33A. k 或k 4B. 4 k 44C. 3k 4D. 以上都不对47.图中的直线l1,l2,l3的斜率分别是k1,k2,k3 ,则有()A. k1 k2 k3 B. k3k1k2 C. k3k2k1 D. k2k3k18.直线x 3y1 0 的倾斜角为().A. B. C. D.9.直线的斜率和在轴上的截距分别是()A. B. C. D.10 .过点,且平行于向量的直线方程为()2.已知不等式组表示的平面区域为18.已知 的三个顶点坐标分别为 , , .11.过点 A (3,3) 且垂直于直线 的直线方程为二、填空题13.已知 a,b, c 为直角三角形的三边长, c 为斜边长,若点 M m,n 在直线 l :ax by 2c 0上,则 m 2 n 2的 最小值为 __________ .14.m R ,动直线 l 1:x my 1 0过定点 A ,动直线 l 2:mx y 2m 3 0过定点 B ,若直线 l 与l 2相交于 点 P (异于点 A,B ),则 PAB 周长的最大值为 ________15.过点 (2,- 3)且在两坐标轴上的截距互为相反数的直线方程为 _________ .16.定义点 到直线 的有向距离为 .已知点 到直线 的有向距离分别是 ,给出以下命题: ① 若 ,则直线 与直线 平行; ② 若 ,则直线 与直线 平行; ③若,则直线与直线 垂直;④若 ,则直线 与直线 相交;其中正确命题的序号是 _______________ . 三、解答题17.求符合下列条件的直线方程: ( 1)过点 ,且与直线 平行; ( 2)过点 ,且与直线垂直;( 3)过点, 且在两坐标轴上的截距相等.1)求边 上的高所在直线的一般式方程;A. B. C. D.12.在平面直角坐标系中,已知 A 1,2, 3,0 ,那么线段 AB 中点的坐标为().A. 2, 1B. 2,1C. 4,D.1,22)求边上的中线所在直线的一般式方程19.已知直线l :3x y 2 2 x 4y 2 0( 1)求证:直线 l 过定点。

高中数学选修一第1章-直线方程-知识点

高中数学选修一第1章-直线方程-知识点

1高中数学选修一第1章-直线方程-知识点1、倾斜角:直线在x 轴上方的部分,与x 轴正半轴的夹角,范围是[0,π)。

倾斜角θ= 0 时,表示与x 轴平行或重合的直线;θ= 90°时,表示与x 轴垂直的直线。

2、直线的斜率K= tan θ ,当θ=0时,斜率k= 0 ;当θ∈(0,π/2)时,斜率k >0,且k 随θ的增大而增大 (从 0+逐渐增大到 +∞);当θ=π/2时,斜率不存在;当θ∈(π/2,π),斜率k <0,且k 随θ的增大而 增大 (从 -∞ 逐渐增大到 0- )。

特殊地,k=1时,θ=45°,k=-1时,θ=135°,k=3时,θ=60°,k=3-时,θ=120°,k=33时,θ=30°,k=33-时,θ=150°。

若已知直线上不同的两点A(x 1,y 1)、A(x 2,y 2),则斜率k= 2121x x y y -- 。

3、熟记常见的直线方程注意:①截距是坐标值,可正,可负,也可以是0,与距离有区别。

②待定系数 求直线方程时,若选用 点斜式/斜截式 时,需要补充 斜率 不存在的情况;若选用 两点式 ,需要补充θ= 0 和= π/2 的情况;若选用 截距式 ,需要补充θ= 0 和=π/2 以及直线 过原点 的情况。

③已知一般式ax+by+c=0,则斜率为 ba - ,法向量为 ),b a n (=,方向向量为 )-a b d ,(= 或 )-a b ,( 。

4、直线系方程:①已知直线ax+by+c=0,平行直线可设ax+by+m=0 ;垂直直线可设5、找含参数直线方程的必过点。

例:直线2x-my-4+3m=0,必过定点(2,3)。

方法是:将方程中含参数m的项合并,不含参数的项合并,令它们分别等于0 即可求得。

6、关于直线与一次函数:一次函数的图像是直线,但直线不一定表示一次函数。

当斜率k=0时,直线方程表示为y=c ,是常值函数;当斜率不存在时,直线方程表示为x=m ,此时不是函数,当k存在且≠0时,此时表示一次函数。

直线方程知识点归纳总结

直线方程知识点归纳总结

直线方程知识点归纳总结一、直线的倾斜角与斜率。

1. 倾斜角。

- 定义:直线l向上的方向与x轴正方向所成的最小正角α,叫做直线l的倾斜角。

- 范围:0^∘≤slantα < 180^∘。

2. 斜率。

- 定义:直线的倾斜角α≠90^∘时,k = tanα叫做直线的斜率。

- 经过两点P_1(x_1,y_1),P_2(x_2,y_2)(x_1≠ x_2)的直线的斜率k=(y_2 -y_1)/(x_2 - x_1)。

二、直线方程的几种形式。

1. 点斜式。

- 方程:y - y_0=k(x - x_0),其中(x_0,y_0)是直线上一点,k是直线的斜率。

- 适用范围:斜率存在的直线。

2. 斜截式。

- 方程:y = kx + b,其中k是斜率,b是直线在y轴上的截距。

- 适用范围:斜率存在的直线。

3. 两点式。

- 方程:(y - y_1)/(y_2 - y_1)=(x - x_1)/(x_2 - x_1)(x_1≠ x_2,y_1≠ y_2),其中(x_1,y_1),(x_2,y_2)是直线上两点。

- 适用范围:不垂直于坐标轴的直线。

4. 截距式。

- 方程:(x)/(a)+(y)/(b)=1(a≠0,b≠0),其中a是直线在x轴上的截距,b是直线在y轴上的截距。

- 适用范围:不垂直于坐标轴且不过原点的直线。

5. 一般式。

- 方程:Ax + By+C = 0(A,B不同时为0)。

- 可以表示平面内任意一条直线。

三、直线的平行与垂直。

1. 平行。

- 设直线l_1:y = k_1x + b_1,l_2:y = k_2x + b_2。

- 当k_1 = k_2且b_1≠ b_2时,l_1∥ l_2;对于直线l_1:A_1x + B_1y + C_1 = 0,l_2:A_2x + B_2y + C_2 = 0,当(A_1)/(A_2)=(B_1)/(B_2)≠(C_1)/(C_2)时,l_1∥l_2。

2. 垂直。

- 设直线l_1:y = k_1x + b_1,l_2:y = k_2x + b_2。

直线方程知识点归纳总结高中

直线方程知识点归纳总结高中直线方程是高中数学学科中重要的知识点之一,它在解析几何和代数中起着重要的作用。

本文将对高中直线方程的相关内容进行归纳总结,包括直线的一般方程、点斜式方程、两点式方程和截距式方程等几种常见形式。

同时,还将对直线的斜率和截距的概念进行解释,并提供相关的例题进行说明。

一、直线的一般方程直线的一般方程形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

这种形式的直线方程比较通用,可以表示任意一条直线。

在求解问题时,可以通过已知条件将直线方程转化为一般方程的形式,然后进一步进行计算。

例如,已知直线过点P(2, 3)且斜率为2,我们可以先利用斜率公式求得直线的斜率k=2。

然后,代入点斜式方程y - y₁ = k(x - x₁)中的点P的坐标,得到直线的点斜式方程为y - 3 = 2(x - 2)。

最后,将该点斜式方程转化为一般方程的形式,得到2x - y - 1 = 0。

二、直线的点斜式方程点斜式方程形式为y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上一点的坐标,k为直线的斜率。

点斜式方程主要用于确定直线上一点和直线的斜率,通过已知条件和该点斜率可以确定直线方程。

例如,已知直线过点A(-1, 4)且斜率为-3,我们可以直接利用点斜式方程得到直线的方程为y - 4 = -3(x - (-1)),简化后为y = -3x + 1。

三、直线的两点式方程两点式方程形式为(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上的两个点的坐标。

两点式方程可以直接得到直线的方程,适用于已知直线上两个点的坐标的情况。

例如,已知直线上两点A(-2, 1)和B(3, 4),我们可以通过两点式方程求得直线的方程为(y - 1)/(x - (-2)) = (4 - 1)/(3 - (-2)),简化后为3x - y+ 5 = 0。

直线方程相关知识点总结

直线方程相关知识点总结一、直线的定义直线是平面上的一个几何图形,它由无数个点组成,这些点都在同一条直线上。

直线是最简单的平面几何图形,也是最基本的图形之一。

在数学中,直线可以用数学语言和符号来描述。

在笛卡尔坐标系中,直线可以表示为一元一次方程。

一元一次方程实际上描述了坐标系中的一条直线,因此,直线方程和一元一次方程是密切相关的。

二、直线的方程在笛卡尔坐标系中,一条直线可以用一元一次方程来表示。

一元一次方程的一般形式为y = kx + b,其中k和b是常数,k称为直线的斜率,b称为直线的截距。

斜率k表示直线的倾斜程度,截距b则表示直线与y轴的交点。

因此,一元一次方程y = kx + b就是一条直线的方程。

1. 斜率斜率是直线的一个重要属性,它描述了直线的倾斜程度。

在数学中,直线的斜率可以用两点的坐标来表示。

设直线上有两点A(x1, y1)和B(x2, y2),则直线的斜率k可以表示为:\[k = \frac{y2 - y1}{x2 - x1}\]也可以表示为:\[k = \frac{\Delta y}{\Delta x}\]其中,Δy表示y2 - y1,Δx表示x2 - x1。

斜率k的正负决定了直线的倾斜方向,如果k > 0,则直线向右上倾斜;如果k < 0,则直线向左下倾斜;如果k = 0,则直线平行于x轴;如果k不存在,则直线垂直于x轴。

2. 截距截距是直线与y轴的交点,它描述了直线在y轴上的位置。

在一元一次方程y = kx + b中,b就是直线的截距。

当x = 0时,y = b,所以截距b就是直线与y轴的交点的纵坐标。

3. 点斜式除了一般形式的直线方程y = kx + b外,直线方程还可以用点斜式表示。

点斜式表示法是指直线上的一个点A(x1, y1)以及直线的斜率k,通过这两个条件就可以确定一条直线的方程。

点斜式的一般形式为:\[y - y1 = k(x - x1)\]其中,k是直线的斜率,(x1, y1)是直线上的一个点。

直线方程知识点总结

直线与方程知识点总结一、直线基本知识 1、直线的倾斜角与斜率 1直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围000180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α 2直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在; ②经过两点),(),,(222111y x P y x P 21x x ≠的直线的斜率公式是1212x x y y k --=21x x ≠ ③每条直线都有倾斜角,但并不是每条直线都有斜率; 2、两条直线平行与垂直的判定 1两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=; 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行; 2两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1;如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直;二、直线的方程 1、直线方程的几种形式注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示 不一定;1若2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =; (2)若2121y y x x =≠且,直线垂直于y 轴,方程为1y y =; (3)3若2121y y x x ≠≠且,直线方程可用两点式表示 2、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 3. 过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-;②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λλ为参数,其中直线l 2不在直线系中.三、直线的交点坐标与距离公式 1.两条直线的交点设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立; 2.几种距离 1两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P -+-=特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP += 2点到直线的距离点),(00y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=3两条平行线间的距离两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212BA C C d +-=注意:① 求点到直线的距离时,直线方程要化为一般式;② 求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算;补充:1、直线的倾斜角与斜率 1直线的倾斜角(2).已知斜率k 的范围,求倾斜角α的范围时,若k 为正数,则α的范围为(0,)2π的子集,且k=tan α为增函数;若k 为负数,则α的范围为(,)2ππ的子集,且k=tan α为增函数;若k 的范围有正有负,则可所范围按大于等于0或小于0分为两部分,针对每一部分再根据斜率的增减性求倾斜角范围;2、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线; 注:斜率变化分成两段,090是分界线,遇到斜率要谨记,存在与否需讨论; 3. 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,则:(1)0212121=+⇔⊥B B A A l l2;0,0-//1221122121≠-=⇔C A C A B A B A l l3;0,0-1221122121=-=⇔C A C A B A B A l l 重合与41l 与2l 相交01221≠-⇔B A B A如果2220A B C ≠时,则:11221121-=•⇔⊥B A B A l l 2⇔21//l l )不为0,,(222212121C B A C CB B A A ≠=;31l 与2l 重合⇔)不为0,,(222212121C B A C CB B A A ==41l 与2l 相交⇔)不为0,(222121B A B BA A ≠4. 有关对称问题 常见的对称问题: 1中心对称①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨⎧-=-=1122y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21//l l ,由点斜式得到所求直线方程;2轴对称①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组⎪⎪⎩⎪⎪⎨⎧-=-•--=++++1)(0)2()2(12122121B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x 可得到点1P 关于l 对称的点2P 的坐标),(22y x 其中21,0x x A ≠≠②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行;注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线0),(=y x f 关于直线2-=x y 对称曲线方程是0)2,2(=-+x y f②曲线0),(:=y x f C 关于点),(b a 的对称曲线方程是0)2,2(=--y b x a f 5. 两条直线的交角①直线1l 到2l 的角方向角;直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ②两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.6. 直线l 上一动点P 到两个定点A 、B 的距离“最值问题”: (1) 在直线l 上求一点P,使PB PA +取得最小值,① 若点B A 、位于直线l 的同侧时,作点A 或点B 关于l 的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A② 若点B A 、位于直线的异侧时,连接AB 交于l 点P ,则P 为所求点;可简记为“同侧对称异侧连”.即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可.(2)在直线l 上求一点P 使PB PA -取得最大值,方法与1恰好相反,即“异侧对称同侧连”① 若点B A 、位于直线l 的同侧时,连接AB 交于l 点P ,则P 为所求点;② 若点B A 、位于直线的异侧时,作点A 或点B 关于l 的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A3 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”;7. 直线过定点问题:① 含有一个未知参数,12)1(-+-=a x a y 1)2(+-+=⇒x x a y 1 令202-=⇒=+x x ,将3)1(2=-=y x 式,得代入,从而该直线过定点)3,2(-② 含有两个未知参数0)2()3(=-++-n y n m x n m 0)12()3(=-+-++⇒y x n y x m令⎩⎨⎧-+-=+1203y x y x ⎪⎪⎩⎪⎪⎨⎧=-=⇒7371y x从而该直线必过定点)73,71(-8. 点到几种特殊直线的距离1点00(,)P x y 到x 轴的距离0||d y =; 2点00(,)P x y 到y 轴的距离0||d x =.3点00(,)P x y 到与x 轴平行的直线y=a 的距离0||d y a =-; 4点00(,)P x y 到与y 轴平行的直线x=b 的距离0||d x a =-. 9. 与已知直线平行的直线系有:1平行于直线)(00//C C C By Ax C By Ax ≠=++=++的直线可表示为2平行于直线)(//b b b kx y b kx y ≠+=+=的所有直线为10. 易错辨析:1 讨论斜率的存在性:解题过程中用到斜率,一定要分类讨论:① 斜率不存在时,是否满足题意;② 斜率存在时,斜率会有怎样关系;2注意“截距”可正可负,不能“错认为”截距就是距离,会丢解; 求解直线与坐标轴围成面积时,较为常见; 3 直线到两定点距离相等,有两种情况:① 直线与两定点所在直线平行; ② 直线过两定点的中点;求解过某一定点的直线方程时,较为常见; 4过点),(00y x A ,平行于x 轴的直线方程为0y y = 过点),(00y x A ,平行于y 轴的直线方程为0x x =。

直线方程总结知识点

一、直线方程的概念直线方程是描述平面上一条直线的数学关系式。

通常情况下,直线方程可表示为y = kx + b,其中x和y分别表示直线上的点的横纵坐标,k表示直线的斜率,b表示直线的截距。

直线方程可以用于描述直线的位置、方向等性质,是解决几何和代数问题的基本工具之一。

二、直线方程的常见形式1.点斜式方程点斜式方程是一种常见的直线方程形式,它的形式为y - y1 = k(x - x1),其中(k,x1,y1)为直线上的已知点,k为直线的斜率。

点斜式方程直观地表示了直线斜率的概念,方便计算直线的位置和方向。

2.斜截式方程斜截式方程是另一种常见的直线方程形式,它的形式为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。

斜截式方程直观地表示了直线截距的概念,方便计算直线与坐标轴的交点。

3.截距式方程截距式方程是直线的截距与坐标轴的关系式,它的形式为x/a + y/b = 1,其中a和b分别表示直线在x轴和y轴上的截距。

截距式方程可以直观地表示直线截距的性质,方便计算直线的位置和方向。

三、直线方程的求解方法1.根据已知点和斜率求解如果已知直线上的一个点和斜率,可以使用点斜式方程来表示直线。

首先找到直线上的一个点(x1,y1),然后用直线的斜率k计算出直线方程y = kx + b中的截距b,最终得到直线方程。

2.根据已知点和截距求解如果已知直线上的两个点,可以使用截距式方程来表示直线。

首先根据已知的两点(x1,y1)和(x2,y2)计算出直线的斜率k,然后再计算出直线的截距a和b,最终得到直线方程。

3.根据两条直线的关系求解如果已知两条直线的关系,可以使用斜截式方程来表示直线。

首先根据两条直线的关系计算出直线的斜率k,截距b,最终得到直线方程。

1.几何问题中的应用直线方程可以用来描述几何问题中的直线性质,比如直线的位置、方向等。

例如,可以使用直线方程来描述平面上两点之间的连线,计算直线的斜率和截距等,从而解决几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线方程.
一.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0, 直线的倾斜角(0°≤<180°)、斜率:
注:①当或时,直线垂直于轴,它的斜率不存在. 二.直线方程的几种形式:
x ααtan =k 90=α12x x =l x
(三)位置关系判定方法:
当直线不平行于坐标轴时(要特别注意这个限制条件)
直线过定点 如直线(3m+4)x+(5-2m)y+7m -6=0,不论m 取何值恒过定点(-1,2) 四. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时. ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
1l 2l 1l 2l 1l 2l θ),0(π 90≠θ2
11
21tan k k k k +-=
θ1l 2l 1l 2l 1l 2l θ1l 2l ⎝⎛
⎥⎦

2,0π 90≠θ2
11
21tan k k k k +-=θ
五. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:. 特例:点P(x,y)到原点O 的距离:
2. 过两点.
当(即直线和x 轴垂直)时,没有斜率
⑵两条平行线间的距离公式:设两条平行直线
,它们之间的距离为,则有.
注;直线系方程
1. 与直线:A x +B y +C= 0平行的直线系方程是:A x +B y +m =0.( m ∊R, C ≠m ).
2. 与直线:A x +B y +C= 0垂直的直线系方程是:B x -A y +m =0.( m ∊R)
3. 过定点(x 1,y 1)的直线系方程是: A(x -x 1)+B(y -y 1)=0 (A,B 不全为0)
4. 过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ∊R ) 注:该直线系不含l 2.
六. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等. ⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
),(00y x P P C By Ax l ,0:=++l d 2
2
00B
A C By Ax d +++=
21221221)()(||y y x x P P -+-=||OP =1
21
2222111),(),,(x x y y k y x P y x P --=
的直线的斜率公式:12()x x ≠2121,y y x x ≠=)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++d 2
2
21B
A C C d +-=。

相关文档
最新文档