高中数学-抽象函数的周期与对称轴

合集下载

抽象函数的对称性常用结论

抽象函数的对称性常用结论

抽象函数的对称性常用结论知识与方法1.轴对称:如果函数()y f x =满足122x x a +=,就有()()12f x f x =,则()f x 的图象关于直线x a =对称.记法:自变量关于a 对称,函数值相等.例如,()()2f x f x +=-表示()f x 关于1x =对称,()()f m x f n x +=-表示()f x 关于2m n x +=对称.2.中心对称:若函数()y f x =满足122x x a +=,就有()()122f x f x b +=,则()f x 关于点(),a b 对称.记法:自变量关于a 对称,函数值关于b 对称.例如,()()112f x f x ++-=表示()f x 关于()1,1对称,()()f m x f n x a ++-=表示()f x 关于,22m n a +⎛⎫ ⎪⎝⎭对称.3.常用结论(视频中有推导这些结论):(1)如果函数()f x 有两条对称轴,则()f x 一定是周期函数,周期为对称轴距离的2倍.(2)如果函数()f x 有一条对称轴,一个对称中心,则()f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)如果函数()f x 有在同一水平线上的两个对称中心,则()f x 一定是周期函数,周期为对称中心之间距离的2倍.典型例题【例1】已知函数()y f x =满足()()20f x f x --=()x ∈R ,且在[)1,+∞上为增函数,则()A.()()()112f f f ->> B.()()()121f f f >>-C.()()()121f f f ->> D.()()()211f f f >->【解析】()()()()()202f x f x f x f x f x --=⇒=-⇒的图象关于直线1x =对称,所以()()13f f -=,因为123<<,且()f x 在[)1,+∞上为增函数,所以()()()123f f f <<,从而()()()121f f f ->>【答案】C【例2】己知函数()f x 满足()()2f x f x =-()x ∈R ,若函数()1y x f x =--共有3个不同的零点1x 、2x 、3x ,则123x x x ++=_________.【解析】()()()2f x f x f x =-⇒的图象关于1x =对称,()()101x f x x f x --=⇒-=,由于1y x =-的图象也关于1x =对称,故它们的交点关于1x =对称,设123x x x <<,则必有1312x x +=且21x =,故1233x x x ++=.【答案】3【例3】已知函数()f x 满足()()22f x f x -=-()x ∈R ,若()()104f f -+=,则()()23f f +=_______.【解析】()()()()2222f x f x f x f x -=-⇒-+=,分别取3x =和2x =得:()()()()132022f f f f ⎧-+=⎪⎨+=⎪⎩,两式相加得:()()()()13024f f f f -+++=,又()()104f f -+=,所以()()230f f +=.【答案】0【例4】偶函数()y f x =的图象关于直线2x =对称,若()33f =,则()1f -=_______.【解析】由题意,()f x 周期为4,故()()133f f -==.【答案】3【反思】对称轴+对称轴=周期,周期为对称轴之间距离的2倍.【例5】(2018·新课标Ⅱ卷)若()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()1250f f f +++ =()A.50- B.0 C.2 D.50【解析】因为()f x 是奇函数,且()()11f x f x -=+,所以()()11f x f x +=--,故()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即()f x 是以4为周期的周期函数,故()()()3112f f f =-=-=-,在()()11f x f x -=+中取1x =-知()()200f f ==,又()()400f f ==,所以()()()()()123420200f f f f +++=++-+=,故()()()1250f f f +++ ()()()()()()()()145845484950f f f f f f f f =+++++++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()()()()4950122f f f f =+=+=.【答案】C【反思】对称轴+对称中心=周期,周期为二者之间距离的4倍,熟悉这一结论,可直接得出本题()f x 的周期为4.【例6】定义在R 上的奇函数()f x 满足()()20f x f x ++-=,当[]1,0x ∈-时,()f x x =,则92f ⎛⎫ ⎪⎝⎭=_______.【解析】由题意,()f x 有对称中心()0,0和()1,0,故其周期为2,所以91112222f f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】12【反思】若()f x 有位于同一水平线上的两个对称中心,则()f x 为周期函数,周期为二者之间距离的2倍.强化训练1.已知函数()y f x =满足()()40f x f x +--=()x ∈R ,且()f x 在[)2,+∞上为减函数,则()A.()()()22log 3log 5.13f f f >> B.()()()22log 5.1log 33f f f >>C.()()()22log 5.13log 3f f f >> D.()()()22log 33log 5.1f f f >>【解析】()()()40f x f x f x +--=⇒的图象关于2x =对称,结合()f x 在[)2,+∞上为减函数知当自变量与2的距离越大时,函数值越小,如图,而22234log 32log log 43-==,225.1log 5.12log 4-=,321-=,所以225.14log log 143<<,故()()()223log 3log 5.1f f f <<.【答案】B2.函数()y f x =满足()()2f x f x =-,且当[)1,x ∈+∞时,()1122x x f x e e x --=--+,则()A.()()()121f f f <<- B.()()()211f f f <-<C.()()()121f f f -<< D.()()()112f f f -<<【解析】()()()()213f x f x f f =-⇒-=,当1x ≥时,()11220x x f x e e --'=+-≥-=,所以()f x 在[)1,+∞上单调递增,故()()()()1231f f f f <<=-.【答案】A3.已知函数()f x 满足()()20f x f x ---+=()x ∈R ,若函数()22y x x f x =+-共有3个零点1x ,2x ,3x ,则123x x x ++=________.【解析】()()()()()202f x f x f x f x f x ---+=⇒-=-+⇒的图象关于1x =-对称,()()22202x x f x x x f x +-=⇔+=,而22y x x =+的图象也关于1x =-对称,故它们的交点也关于1x =-对称,所以1233x x x ++=-.。

抽象函数的周期性和对称性

抽象函数的周期性和对称性

抽象函数是一种数学概念,它是一种无限维的函数,用于描述某种连续变化的关系。

抽象函数可以具有周期性和对称性。

周期性是指函数在一段时间内重复出现的性质。

抽象函数可以具有周期性,这意味着在一个固定的时间段内,函数的值会重复出现。

对称性是指函数的形状是对称的。

抽象函数可以具有对称性,这意味着函数的形状具有对称性,即函数的左半部分与右半部分形状相似。

抽象函数的周期性和对称性可以帮助我们了解函数的性质,并为我们的数学建模和解决问题提供帮助。

抽象函数的周期性与对称性(精)

抽象函数的周期性与对称性(精)

抽象函数的周期性与对称性(精)抽象函数的周期性和对称性问题可以通过恒等式简单判断。

如果函数满足f(x+a)=f(-x+a),那么它是偶函数,对称轴为x=a,周期为T=2a。

如果函数满足f(x+a)=-f(-x+a),那么它是奇函数,对称中心为(a,0)。

如果函数满足f(a-x)=f(b+x),那么它的对称轴为x=(a+b)/2,周期为T=|b-a|。

如果函数满足f(x+a)=-f(x-a),那么它的对称中心为(a,0),周期为T=2a。

需要注意区分一个函数的对称性和两个函数的对称性的区别,对称轴或对称中心的位置可以通过对应法则求得。

例如,对于已知定义在实数集上的奇函数f(x),满足f(x+2)=-f(x),则f(6)的值为-1.又如,如果函数f(x)对于任意实数x都有f(1+2x)=f(1-2x),则f(2x)的图像关于x=1对称。

练1:如果函数y=f(x+1)是偶函数,则y=f(x)的图像关于x=1对称。

练2:如果函数y=f(x)满足11f(x+3)=-f(x),且f(3)=1,则f(2010)=-1/2.23、已知函数f(x)是定义在实数集上的奇函数,且当x>2时,f(x)=2x-3,则f(1)+f(2)+f(3)+f(4)+f(5)= 2f(3)+f(1)+f(5)=2(2×3-3)+2×1-3+2×5-3= 8.4、已知函数f(x)是定义在实数集上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x。

要求求出f(7.5)的值。

由奇函数的定义可知,f(5.5)=f(-5.5),即f(7.5)=f(-7.5)。

又因为f(x+4)=-f(x+2)=-(-f(x))=f(x),所以f(x+4k)=f(x),其中k为整数。

故f(-7.5)=f(-7.5+4×2)=f(0)=-f(0),即f(0)=0.又f(1)+f(-1)=0,所以f(1)=-f(-1)。

抽象函数的周期与对称轴-推荐下载

抽象函数的周期与对称轴-推荐下载

[例 3] 设 f (x) 是定义在 R 上的函数, x R 均有 f (x) f (x 2) 0 当 1 x 1 时 f (x) 2x 1,求当1 x 3 时, f (x) 的解析式。
解:由 x R 有 f (x) f (x 2) 得T 4
学习改变命运 学乐助你成功
由①②得: f [x (a b)] f [x (b a)]
∴ f [x (a b)] f [x (b a)] ∴ T 2 b a
4. 若 f (a x) f (b x) 则 f (x) 图象的对称轴为 x a b 2
f ( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

最全最详细抽象函数的对称性、奇偶性与周期性常用结论

最全最详细抽象函数的对称性、奇偶性与周期性常用结论

最全最详细抽象函数的对称性、奇偶性与周期性常用结论直线Ax By ^0成轴对称;2Ax By C =0成轴对称。

9, y_2B(A X + B 罗C))= o 关于直线③ F (x, y) = 0与F (x _经A 二二2 A 2 B 2Ax ? By ? C =0成轴对称。

、函数对称性的几个重要结论(一)函数y = f(x)图象本身的对称性(自身对称)若f(x a^_f(x b),则f(x)具有周期性;若f (a ?x)=:「f(b -x),则f (x)具有对称性:“内同表示周期性,内反表示对称性”。

1、f(a+x) = f(b —x) u y = f(x)图象关于直线 x =l a Z x LL (b _x) =a £b 对称2 2推论1: f (a ? x) = f (a - x) = y = f (x)的图象关于直线 x = a 对称推论2、f (x) = f (2a - x) = y = f (x)的图象关于直线 x = a 对称推论3、f(-x)二f (2a ? x) := y = f (x)的图象关于直线 x = a 对称2、 f(a+x) + f (b —x) =2c 二y=f(x)的图象关于点(兰匕c)对称2推论 1、f (a ? x) ? f (a -x) = 2b := y = f (x)的图象关于点(a,b)对称推论2、f (x) ? f (2a - x) = 2b := y = f (x)的图象关于点(a,b)对称推论3、f (-x) ? f(2a ? x) =2b = y = f(x)的图象关于点(a,b)对称(二)两个函数的图象对称性(相互对称) (利用解析几何中的对称曲线轨迹方程理解)1、偶函数y =f(x)与y = f(-x)图象关于Y 轴对称2、奇函数y =f(x)与y 二-f(-x)图象关于原点对称函数3、函数y = f (x)与y - - f (x)图象关于X 轴对称4、互为反函数y 二f (x)与函数y 二f'(x)图象关于直线y =x 对称② 函数…(x)与一2驚¥。

抽象函数的对称性与周期性

抽象函数的对称性与周期性

抽象函数的对称性、奇偶性与周期性常用结论抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较 困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力。

一、函数)(x f y =图象本身的对称性(自身对称)1、函数的轴对称:推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称特殊地,函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称。

2、 函数的点对称:推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称特殊地,若()x f y =满足()()0=-++x a f x a f ,则()x f y =的图象关于点()0,a 对称。

特殊地,若()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称。

二、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

抽象函数周期性对称性相关定理全总结

抽象函数周期性对称性相关定理全总结

抽象函数周期与对称轴的相关结论抽象函数的周期与对称轴重点:抽象函数周期与对称轴的相关结论。

难点:结论的推导证明,利用结论解决问题f (x) f (x b a)b a令 x x 代入 f (a x) f (b2a ba b 、x)则 f(x) f(x)22令 x b —a x 代入 f (a x) f (b x) 2则 f (a b2【几个重要的结论】三、具体内容 1.若 f(x) f(x T)则f(x)的周期为T 。

2.若f(xa)f (x b)则f (x)的周期为T3.若 f(x a) f(xb)则 f(x)的周期T 2b a 。

证:f(x) f(x b a) 4.右证: f(xa b) f(x) 由①②得:x (a b) f x (ba)x (ab)(b a)2bf (a x) f (bx)则f (x)图象的对称轴为a b要证原结论成立只需证 f(a b x) 2a b。

2 fU x) 2 5.若f (a x) f(b x)则 f(x)的图象,b,0为对称中心。

证:a方法一:要证原结论成立只需证 f(-x)x)方法二:设f (x)它的图象为P(x °, y o ) 则P 关于点 -—,0的对称点2P (a b x °, y o )f (a b X 。

) a (b X 。

) f b (b X 。

)f(x 。

)••• f(x 。

) y o••• f (a b X 。

)y o一、 教学内容 二、 教学重、难证:x) f 号 x)(一)函数图象本身的对称性( 自身对称)1、函数y f(x)满足f(T x) f(T x) (T为常数)的充要条件是y f (x)的图象关于直线x T对称。

2、函数y f(x)满足f(x) f(2T x)(T为常数)的充要条件是y f (x)的图象关于直线x T对称。

3、函数y f (x)满足f (a x) f (b x)的充要条件是y f (x)图象关于直线x - b对称。

高中数学 抽象函数的周期与对称轴

高中数学 抽象函数的周期与对称轴

智愛高中數學 抽象函数的周期与对称轴一. 内容:抽象函数的周期与对称轴二. 重点:抽象函数周期与对称轴的相关结论。

难点:结论的推导证明,利用结论解决问题。

三. 具体内容1. 若)()(T x f x f +=则)(x f 的周期为T 。

2. 若)()(x b f a x f +=+则)(x f 的周期为a b T -= 证:令a x x -= ∴ )()(a b x f x f -+=3. )()(b x f a x f +-=+则)(x f 的周期a b T -=2 证:令a x x -= ∴ )()(a b x f x f -+-= ①令b x x -= ∴ )()(x f b a x f -=-+ ②由①②得:)]([)]([a b x f b a x f -+-=-+-∴ )]([)]([a b x f b a x f -+=-+ ∴a b T -=2 4. 若)()(x b f x a f -=+则)(x f 图象的对称轴为2ba x +=证:要证原结论成立,只需证)2()2(x b a f x b a f -+=++ 令x a b x +-=2代入)()(x b f x a f -=+ 则 )2()2(x b a f x b a f -+=++ 5. 若)()(x b f x a f --=+则)(x f 的图象,以)0,2(b a +为对称中心。

证:方法一:要证原结论成立只需证)2()2(x b a f x b a f -+-=++ 令2a b x x -+=代入)()(x b f x a f --=+ 则)2()2(x b a f x b a f -+-=++ 方法二:设)(x f y =它的图象为CC y x P ∈∀),(00则P 关于点)0,2(b a +的对称点),(00y x b a P --+')()]([)]([)(0000x f x b b f x b a f x b a f -=---=-+=-+ ∵ 00)(y x f = ∴ 00)(y x b a f -=-+ ∴ C P ∈'【典型例题】[例1] 对于)(x f y =,R x ∈有下列命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象函数的周期与对称轴一. 内容:抽象函数的周期与对称轴二. 重点:抽象函数周期与对称轴的相关结论。

难点:结论的推导证明,利用结论解决问题。

三. 具体内容1. 若)()(T x f x f +=则)(x f 的周期为T 。

2. 若)()(x b f a x f +=+则)(x f 的周期为a b T -= 证:令a x x -= ∴ )()(a b x f x f -+=3. )()(b x f a x f +-=+则)(x f 的周期a b T -=2 证:令a x x -= ∴ )()(a b x f x f -+-= ①令b x x -= ∴ )()(x f b a x f -=-+ ②由①②得:)]([)]([a b x f b a x f -+-=-+-∴ )]([)]([a b x f b a x f -+=-+ ∴a b T -=2 4. 若)()(x b f x a f -=+则)(x f 图象的对称轴为2ba x +=证:要证原结论成立,只需证)2()2(x b a f x b a f -+=++ 令x a b x +-=2代入)()(x b f x a f -=+ 则 )2()2(x b a f x b a f -+=++ 5. 若)()(x b f x a f --=+则)(x f 的图象,以)0,2(b a +为对称中心。

证:方法一:要证原结论成立只需证)2()2(x b a f x b a f -+-=++ 令2a b x x -+=代入)()(x b f x a f --=+ 则)2()2(x b a f x b a f -+-=++ 方法二:设)(x f y =它的图象为CC y x P ∈∀),(00则P 关于点)0,2(b a +的对称点),(00y x b a P --+' )()]([)]([)(0000x f x b b f x b a f x b a f -=---=-+=-+∵ 00)(y x f = ∴ 00)(y x b a f -=-+ ∴ C P ∈'【典型例题】[例1] 对于)(x f y =,R x ∈有下列命题。

(1)在同一坐标系下,函数)1(x f y +=与)1(x f y -=的图象关于直线1=x 对称。

(2)若)1()1(x f x f -=+且)2()2(x f x f +=-均成立,则)(x f 为偶函数。

(3)若)1()1(+=-x f x f 恒成立,则)(x f y =为周期函数。

(4)若)(x f 为单调增函数,则)(x a f y =(0>a 且1≠a )也为单调增函数,其中正确的为?解:(2)(3)[例2] 若函数3)()(a x x f +=R x ∈∀有)1()1(x f x f --=+求)2()2(-+f f 。

解:R x ∈∀,)1()1(x f x f --=+知)(x f 的图象关于)0,1(对称而3)()(a x x f +=的对称中心)0,(a P - ∴ 1-=a∴ 3)1()(-=x x f 则26)3(1)2()2(3-=--=-+f f [例3] 设)(x f 是定义在R 上的函数,R x ∈∀均有0)2()(=++x f x f 当11≤<-x 时12)(-=x x f ,求当31≤<x 时,)(x f 的解析式。

解:由R x ∈∀有)2()(+-=x f x f 得4=T设]3,1(∈x 则]1,1()2(-∈-x)()2()42()2(x f x f x f x f -=+=+-=-∴ 52]1)2(2[)2()(+-=---=--=x x x f x f∴ 31≤<x 时52)(+-=x x f[例4] 已知)(x f 是定义在R 上的函数且满足1)1()(=-+x f x f ,当]1,0[∈x 时有2)(x x f =则(1))(x f 是周期函数且周期为2(2)当]2,1[∈x 时,22)(x x x f -= (3)43)5,2004(=-f 其中正确的是?解:(1)(2)(3)[例5] 已知)(x f 满足)2()2(-=+x f x f ,)4()4(x f x f -=+,当26-≤≤-x 时,c bx x x f ++=2)(且13)4(-=-f , 若)3(b f m =,)2(c f n =,)11(f p =求m 、n 、p 的大小关系?解:由已知得4=T ,对称轴4=x ∴ 4-=x 也为一条对称轴∴ 42-=-b ∴8=b由13)4(-=-f ∴134644-=-c ∴ 3=c ∴)38(f m =,)23(f n =,)3()11(f f p == ∴ p m n >> [例6] 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=求)35(πf 的值。

解:233sin )3()3()32()32()35(===-==+=πππππππf f f f f [例7] 设)(x f y =定义在R 上,R n m ∈∀,有)()()(n f m f n m f ⋅=+且当0>x 时,1)(0<<x f(1)求证:1)0(=f 且当0<x 时,1)(>x f(2)求证:)(x f 在R 上递减。

解: (1)在)()()(n f m f n m f ⋅=+中,令1=m ,0=n 得)0()1()1(f f f = ∵ 1)1(0<<f ∴ 1)0(=f设0<x ,则0>-x 令x m =,x n -=代入条件式 有)()()0(x f x f f -=而1)0(=f ∴ 1)(1)(>-=x f x f(2)设21x x <则012>-x x ∴ 1)(012<-<x x f令1x m =,2x n m =+则12x x n -=代入条件式得)()()(1212x x f x f x f -=即1)()(012<<x f x f ∴ )()(12x f x f < ∴ )(x f 在R 上递减【模拟试题】一. 选择1. 已知)(x f 满足)()3(x f x f =+,R x ∈且)(x f 是奇函数,若2)1(=f 则=)2000(f ( B ) A. 2 B. 2- C. 23+ D. 23-2. 已知)(x f 是定义在R 上的偶函数,且)()4(x f x f =+对任何实数均成立,当20≤≤x 时,x x f =)(,当400398≤≤x 时,=)(x f ( C )A. 400-xB. 398-xC. x -400D. x -3983. 若函数)sin(3)(ϕω+=x x f ,R x ∈∀都有)6()6(x f x f -=+ππ则)6(πf 等于( D )A. 0B. 3C. 3-D. 3或3-4. 函数)223cos(x y -=π是( C )A. 周期为π2的奇函数B. 周期为π的偶函数C. 周期为π的奇函数D. 周期为π4的奇函数5. )2sin(2)(θ+=x x f 的图象关于y 轴对称的充要条件是( C ) A. 22ππθ+=k B. ππθ+=k 2 C. 2ππθ+=k D. ππθ+=k6. 如果)()(x f x f -=+π且)()(x f x f -=则)(x f 可以是( D ) A. x 2sin B. x cos C.x sin D. x sin 7. )cos(3)sin(θθ-++=x x y 为偶函数的充要条件是( B )A. 32ππθ-=kB. 6ππθ-=kC. 62ππθ±=kD. 6ππθ+=k8. 设)(x f 是R 上的奇函数,)()2(x f x f -=+当10≤≤x 时,x x f =)(,则=)5.7(f ( B ) A. 0.5 B. 5.0- C. 1.5 D. 5.1-9. 设c bx x x f ++=2)(,t x ∈∀有)2()2(t f t f -=+那么( A ) A. )4()1()2(f f f << B. )4()2()1(f f f << C. )1()4()2(f f f <<D. )1()2()4(f f f <<10. )(x f y =定义在R 上,则)1(-=x f y 与)1(x f y -=的图象关于(D )A. 0=y 对称B. 0=x 对称C. 1=y 对称D. 1=x 对称二. 填空1. )(x f 是R 上的奇函数,且)()2(x f x f =+π,则)3()2()(πππf f f ++)2003(πf ++ = 0 。

2. 函数)32sin(π+=x y 的图象的对称轴中最靠近y 轴的是 。

12π=x3. )(x f 为奇函数,且当0>x 时,2)(-=x x x f 则当0<x 时=)(x f 。

2+x x4. 偶函数)(x f 的定义域为R ,且在)0,(-∞上是增函数,则(1))1()43(2+->-a a f f (2))1()43(2+-≥-a a f f(3))1()43(2+-<-a a f f (4))1()43(2+-≤-a a f f中正确的是 (2) 。

三. 解答题1. 设)(x f 是定义在R 上的偶函数,图象关于1=x 对称,1x ∀、]21,0[2∈x 都有)()()(2121x f x f x x f =+且0)1(>=a f(1)求)21(f 、)41(f (2)证明:)(x f 是周期函数 解:(1)∵ ]21,0[,21∈∀x x 都有)()()(2121x f x f x x f ⋅=+ ∴ 0)2()2()(≥⋅=x f x f x f ]1,0[∈x ∵ 2)]21([)21()21()2121()1(f f f f f =⋅=+=∵ 21)21(a f =,2)]41([)4141()21(f f f =+=∴ 41)41(a f = (2)由已知)(x f 关于1=x 对称 ∴ )11()(x f x f -+=即)2()(x f x f -=,R x ∈ 又由)(x f 是偶函数知)()(x f x f =-,R x ∈ ∴ )2()(x f x f -=-,R x ∈将上式中x -以x 代换得)2()(+=x f x f ∴ )(x f 是R 上的周期函数,且2是它的一个周期2. 如果函数)(x f y =的图象关于a x =和)(b a b x <=都对称,证明这个函数满足)(])(2[x f x b a f =+-证:∵ )(x f 关于a x =和b x =对称∴ )2()(x a f x f -=,)2()(x b f x f -=∴ )2()2(x b f x a f -=-令A x b =-2,则A b a x a +-=-)(22 ∴ )(])(2[A f A b a f =+-即)(])(2[x f x b a f =+-3. 已知c bx x x f ++=2)(对任意实数t 都有)1()1(t f t f -=+,比较)21(f 与)2(f 的大小。

相关文档
最新文档