碳纳米管吸波材料的研究现状与展望
碳纳米管技术的现状与应用前景

碳纳米管技术的现状与应用前景碳纳米管是由纯碳组成的一种纳米管结构,具有极高的强度、导电性和导热性,还具有独特的光电性质和分子识别能力。
因此,在众多纳米材料中,碳纳米管被认为是一种极具潜力的新型材料。
本文将介绍碳纳米管技术的现状和应用前景。
一、碳纳米管技术的现状碳纳米管的制备技术主要有两种方法:一种是化学气相沉积法(CVD),另一种是溶液法。
其中,化学气相沉积法是目前最主要的碳纳米管制备方法。
化学气相沉积法通过气氛中的化学反应将碳原子沉积在基底上,这种方法可以控制碳纳米管的直径、长度和取向。
此外,化学气相沉积法还可以控制碳纳米管的外径和内径,从而调节其电学和机械性能。
虽然化学气相沉积法具有很高的制备效率和生产能力,但同时也存在巨大的成本和环境污染问题,限制了其在工业领域的应用。
溶液法是另一种常用的碳纳米管制备方法,其主要包括化学还原剂法、水热法、电沉积法等。
溶液法制备碳纳米管的优点是方法简单、成本低、环境友好,它可以大规模生产碳纳米管,并得到高纯度和高品质的碳纳米管,但其制备效率和生产能力还需要进一步提高。
二、碳纳米管技术的应用前景碳纳米管具有极高的强度、导电性和导热性,还具有独特的光电性质和分子识别能力,因此有着广泛的应用前景。
1. 新一代电子器件碳纳米管可以制成纳米电子器件,如纳米场效应晶体管、纳米透明导电膜、纳米光电探测器、纳米场发射器等,具有非常好的性能表现。
相比传统的硅基电子器件,碳纳米管器件具有更好的尺寸一致性和热稳定性,还具有更佳的电子传导性能和灵敏性。
2. 生命科学碳纳米管在生物医学方面具有广泛应用前景,如用于药物递送、疫苗制备、生物传感等。
碳纳米管具有高度的生物相容性和分子靶向性,可以用于开发高效、低毒的靶向药物,有效减少药物的副作用和毒性。
3. 材料科学碳纳米管具有出色的机械性能和导电性能,可以应用于制备各种高性能的材料,如碳纳米管增强的复合材料、高导电性银浆、导电性弹性体等。
碳纳米管材料的研究及其应用前景

碳纳米管材料的研究及其应用前景碳纳米管(Carbon nanotubes,CNTs)是由碳原子组成的一种空心管状结构材料,具有极高的强度、导电性和导热性。
由于它独特的物理和化学特性,自其发现以来,研究人员不断探索其广泛的应用前景。
本文将介绍碳纳米管材料的基本特性、制备方法以及其在电子、能源、生物医学和环境保护等领域的应用前景。
一、碳纳米管材料的基本特性碳纳米管具有以下几种基本特性:1.直径十分微小:CNTs的直径在1~100纳米之间。
这使得CNTs具有很高的比表面积,能够增加与其他材料的接触面积。
2.极高的强度:CNTs的强度是其他材料的1~10倍,而重量却非常轻。
3.优异的导电性:CNTs的电阻率约为铜的1/10,可作为电子器件的理想材料。
4.高导热性:CNTs的导热性是铜的1.5倍。
5.化学惰性:由于碳的化学惰性,CNTs对大多数化学物质的影响较小,有利于其应用。
二、碳纳米管制备方法CNTs的制备方法种类繁多。
下面我们介绍几种典型的制备方法。
1.化学气相沉积法(CVD法)CVD法是一种通过气相物质反应制备CNTs的方法。
其基本原理是将碳源物质在高温下分解,使碳原子与金属催化剂相互作用生成碳纳米管。
CVD法是制备CNTs最优秀、最经济、最可定向的方法之一。
2.电弧放电法电弧放电法是一种利用碳棒电弧在惰性气氛中蒸发和冷凝的方法。
利用惰性气氛,如氦、氩、氮和氩氮混合气体等,在自由场内放电形成高温、高压电弧,产生不同形态(单壁、多壁)的CNTs。
3.化学还原法化学还原法通常使用碳酸钠和其他金属盐作为原料。
其基本原理是将金属离子还原为纳米金属,并使金属与碳源分解并生成CNTs。
化学还原法通常需要很长的反应时间,往往需要在高温条件下完成。
三、碳纳米管的应用前景1.电子学领域CNTs的高导电性和微小的直径使之成为微处理器中理想的电路元件。
CNTs的高速传输和强度也为光电晶体管、电晕放电、场发射和纳米电子器件提供了非常好的材料基础。
碳系吸波材料研究现状及在建材中的应用展望

进行 了展望 ,提 出开发室 内建 筑吸波材料及墙 体结构式 防护措施 。
谭 丹君
关 键 词 :电磁辐射 ;建 筑材料 ;碳 系吸波材料 ;墙 体结构 ;防护措施
中图分类号 : T B 3 4
文 献 标 识 码 :A
文 章 编 号 :1 6 7 4 — 3 9 6 2 ( 2 0 1 7 ) 0 7 — 0 5 8 3 — 0 5
whi c h ma k e s hu ma n b e i n g s i n d i f f e r e n t d e g r e e s o f e l e c t r o ma g n e t i c r a di a t i o n e nv i r o nme nt , wi l l c a u s e s o me da ma g e t o
中 ,对人体组 织 、器官 和系统等会造 成 一定破 坏 ,其 对环 境 的污染 和人体 的危 害越 来越 受到 人们
的重 视 。 目前 已有 很 多 关 于 吸 波 材 料 电磁 波 吸 收 性 能 的 研 究 ,但 很 多 是 针 对 军 事 方 面 的 雷 达 吸 波 ,
而关 于其在 民用 方面 的应用 研究较 少 ,特 别是 在室 内吸 波材料 及墙 体整 体结 构式 防护方 面几 乎没 有 ,因此 ,开展 吸波材料在建 筑材料 方面应 用显 得 尤为迫 切 。碳 系 吸波材 料在 建材 中的推 广应 用
碳纳米管技术的应用发展现状与未来趋势

碳纳米管技术的应用发展现状与未来趋势碳纳米管是一种具有优异物理和化学性质的纳米材料,因其极高的强度、导电性和导热性而备受关注。
在过去几十年里,碳纳米管技术在各个领域都有着广泛的应用,同时也展现了巨大的潜力。
本文将探讨碳纳米管技术的应用发展现状与未来趋势。
碳纳米管技术在材料科学领域的应用已经取得了令人瞩目的成就。
首先,碳纳米管的强度远远超过钢铁,使其成为制造高强度材料的理想选择。
例如,在航空航天领域,碳纳米管可以用于制造轻质且坚固的飞机结构,以减少燃料消耗和碳排放。
此外,碳纳米管还可以应用于电子器件和传感器中,因为它的高导电性和导热性。
这种特性使得碳纳米管可以用于制造更小、更快和更节能的电子设备,如智能手机和电脑。
在医药领域,碳纳米管技术也有着广阔的前景。
研究表明,碳纳米管可以用作药物输送系统,将药物精确地投递到体内特定的位置。
这种精准的药物输送可以减少药物的副作用,并提高治疗的有效性。
此外,碳纳米管还可以用于肿瘤治疗。
通过将药物或光热剂引导到肿瘤细胞中,碳纳米管可以实现针对性治疗,并对肿瘤进行消融。
这一技术被认为是未来肿瘤治疗的重要方向之一。
除了材料科学和医药领域,碳纳米管技术还在能源和环境领域发挥着重要作用。
碳纳米管可以用于制造高效的太阳能电池和锂离子电池,以提高能源转化和存储的效率。
此外,碳纳米管还可以用于水处理和空气净化。
通过利用碳纳米管的高比表面积和吸附性能,有毒物质和污染物可以被高效吸附和去除,从而改善环境质量。
未来,随着对碳纳米管技术的深入研究和发展,它的应用前景将进一步拓展。
一方面,研究人员可以通过改变碳纳米管的结构和功能化修饰来优化其性能。
例如,通过对碳纳米管表面进行修饰,可以增强其与其他物质之间的相互作用,从而实现更多样化的应用。
另一方面,研究人员还可以通过改变碳纳米管的形式和组合,探索更多新兴领域的应用。
例如,碳纳米管可以与其他纳米材料结合使用,形成复合材料,以实现更高级的性能和功能。
碳纳米管的研究及展望

碳纳米管的研究及展望 (1)碳纳米管的研究及展望碳纳米管(CNTS)[1]作为一种一维纳米材料,重量较轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能[2]。
近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。
碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约0.34纳米,直径一般为2~20纳米。
并根据碳六边形沿轴向的不同取向可以将其分为锯齿形、扶手椅型和螺旋型三种。
其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。
碳纳米管可以看做是石墨烯片层卷曲而成,因此如果按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管)和多壁碳纳米管(或多层碳纳米管),多壁管在形成的时候,层与层之间易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷[3]。
与多壁管相比,单壁管直径大小的分布范围小,缺陷少,具有更高的均匀一致性。
单壁管典型直径在0.6-2纳米,多壁管最内层可达0.4纳米,最粗可达数百纳米,但典型管径为2-100纳米[4]。
一碳纳米管的性能碳纳米管因其小尺寸效应和独特的分子结构,具有优异的物理化学性能。
一维分子材料和六边形完美连接结构使碳纳米管具有质量轻、强度高的特点;较大长径比及sp2、sp3杂化几率不同使碳纳米管具有优良的弹性;直径、螺旋角以及层间作用力等存在的差异使碳纳米管兼具导体和半导体的特性;独特的螺旋状分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高得多的吸收率。
此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性[5]。
碳纳米管的物理性质1、高的机械强度和弹性。
2、强度≥100倍的钢,密度≤1/6倍的钢3、优良的导体和半导体特性(量子限域所致)4、高的比表面积5、强的吸附性能6、优良的光学特性7、发光强度随发射电流的增大而增强。
碳纳米管的研究现状

碳纳米管的研究现状1991年,日本电子显微镜专家S. Iijima将他在高分辨电镜下发现的这种由直径为4-30nm,长度在微米级的多个同心管构成的中空针状物命名为碳纳米管[1],这是最早的多壁碳纳米管,后来到1993年报道发现了只有一层碳原子的圆管,即单壁碳纳米管[2]。
碳纳米管被发现后,立即就以其独特的物理和化学特征引起研究者的广泛关注,使其成为近年来物理和化学研究的一大热点。
碳纳米管是一种一维中空的纳米材料,管径为纳米级,而长度可以达到微米甚至毫米级,所以其长径比可控范围较大,而且其表面化学性质特殊(电子缺陷等),具有很高的比表面积、机械强度(杨氏模量比较大[3])、热导率(是目前认为导热性能最好的金刚石的2倍)和导电能力(是铜线的1000倍[4],同时还具有半导体的性质[5]),而且还具有很强的耐酸碱的能力,这些优良的性能使碳纳米管在很多方面都有潜在的应用前景,例如在场发射电极、微电子器件、吸波材料、电池、储氢材料和其他新材料等领域都有很广泛的应用。
目前科学家正在挖掘碳纳米管更多的新的独特性质和形貌,而且逐渐拓宽碳纳米管在其他更多领域的应用。
基于碳材料目前取得的伟大成就和进展,碳纳米管必将在纳米科技的新时代取得更加巨大的进步,作出更大的贡献。
1.1.1 碳纳米管的制备制备出高质量的碳纳米管为其更广泛的理论研究和工业应用提供了前提,因此近年人们在开拓碳纳米管的应用前景的同时,也在逐渐改善碳纳米管的制备方法,向管径均匀、缺陷和杂质少、产量高、成本低以及操作简单等方向努力。
最早用于制备碳纳米管的方法是电弧放电法[1],后来也被人们进行了各种优化工艺,使其现在仍然是广泛应用的一种方法,但是此方法虽然速度快操作简单,但是产量低、所得碳纳米管缺陷和杂质多,很难分离提纯,不适用于工业化生产。
化学气相沉积法(CVD)即催化热解法,主要是通过将烃类(如CH4和C2H2等)或者其他含碳化合物(乙醇等)在催化剂的作用下裂解沉积得到碳纳米管。
碳纳米管的研究及其应用前景

碳纳米管的研究及其应用前景碳纳米管是一种由碳原子旋转而成的纳米管,具有很高的机械强度、导电性和导热性,因此在众多领域中有着广泛的应用前景。
本文介绍碳纳米管的研究进展、特性及其应用前景。
一、碳纳米管的研究进展碳纳米管最早于1991年被日本学者发现,随后引起了国际科研工作者的极大兴趣,致力于对其结构、物理化学性质以及制备和应用等方面的研究。
目前,制备碳纳米管的方法主要有化学气相沉积法、电弧放电法、化学氧化还原法、模板法等。
其中,化学气相沉积法是迄今为止制备碳纳米管最常用的方法之一。
其基本原理是利用气相生长过程,在高温下使碳源分解产生碳原子并在催化剂的作用下聚集形成碳纳米管。
同时,随着对碳纳米管结构和性质方面研究的深入,科学家们也逐渐认识到碳纳米管的一些重要优点,如其高比表面积、导电性能稳定、机械强度高、化学惰性强等等,这些特性使得碳纳米管有着广泛的应用前景。
二、碳纳米管的物理性质碳纳米管是目前已知最好的纳米导体,其电阻率比铜高约10倍,导电性能稳定性高且电阻率稳定。
此外,碳纳米管的力学性质也十分卓越。
由于其单壁管结构的特殊性,碳纳米管具有极高的机械强度,在弯曲时也不会出现扭曲或弯曲。
碳纳米管还具有极强的导热性能,其蒸发冷却能力甚至可以超过铜。
此外,与金属导体相比,碳纳米管的热容量更小,这使得其在热管理领域中有着广泛的应用前景。
三、碳纳米管的应用前景由于碳纳米管具有多种独特的物理特性,因此有着广泛的应用前景。
1.电子领域由于其极好的导电性能,碳纳米管被广泛应用于电子领域。
例如,它在晶体管、电极和其他电子设备制造中的重要作用,以及在集成电路与纳米电子学领域的应用。
2.能源领域碳纳米管在能源领域中也有着广泛的应用前景。
例如,碳纳米管的高效导电性能使其成为良好的电池材料,而其高导热性使其的应用范围扩展至太阳能电池和热电转换器等方面。
3.材料学领域碳纳米管的极好的力学性能,使其成为了高强性材料的潜在替代品。
由于其良好的机械强度和高导电性能,在复合材料领域中有着广泛的应用前景。
碳纳米管复合吸波材料研究进展

碳纳米管复合吸波材料研究进展电磁波吸收材料在国防民生等领域有重要的应用,早期的吸波材料主要采用的是铁氧体、磁性金属微粉等,这些材料具有高密度,窄吸收频带等缺点,极大地限制了其实际应用。
为实现对电磁波“薄轻宽强”的吸收效果,研发新型高效吸波材料意义重大。
文章对近年来碳纳米管复合吸波材料的发展状况作了简要的介绍,并对未来碳纳米管基复合吸波材料的发展趋势进行了展望。
标签:电磁波吸收;碳纳米管基;复合材料Abstract:Electromagnetic wave absorbing materials have important applications in the fields of national defense and people’s livelihood. The early absorbing materials mainly used ferrite,magnetic metal powder and so on. These materials have the shortcomings of high density,narrow absorption frequency band and so on. It greatly limits its practical application. In order to realize the absorbing effect of electromagnetic wave “thin,light,wide and strong”,it is of great significance to develop a new type of high efficient absorbing material. In this paper,the development of carbon nanotube composite absorbing materials in recent years is briefly introduced,and the development trend of carbon nanotube based composite absorbing materials in the future is prospected.Keywords:electromagnetic wave absorption;carbon nanotube matrix;composite materials引言电子信息技术的迅猛发展使电磁环境的改善和兼容问题变得日益重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com碳纳米管吸波材料的研究现状与展望3王生浩,文 峰,李 志,郝万军,曹 阳(热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如吸波材料,但目前国内关于此类研究的报道还不多。
较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。
关键词 碳纳米管 吸波材料 吸波性能 复合The R esearch Status and Prospect of Electromagnetic W ave 2absorbing C arbon N anotubesWAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang(Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science ,School of Science and Engineering ,Hainan University ,Haikou 570228)Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemicalproperties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM.K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagneticwave absorbing properties ,composite0 引言随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。
电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。
军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。
解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。
作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。
吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。
纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。
自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。
近年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。
有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。
本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。
1 碳纳米管的吸波机理碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。
纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。
随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。
在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。
量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的能级,分裂的能级间隔正处于与微波对应的能量范围(10-2~10-5eV)内,从而导致新的吸波效应。
一般认为,纳米吸波材料对电磁波能量的吸收是由晶格电场热运动引起的电子散射、杂质和晶格缺陷引起的电子散射,以及电子与电子之间的相互作用等3种效应决定的。
碳纳米管具有特殊的螺旋结构和手征性,这也是碳纳米管吸收微波的重要机理。
碳纳米管具有特殊的电磁效应,表现出较强的宽带吸收性能,而且具有比重小、高温抗氧化、介电性能可调、稳定性好等优点。
2 碳纳米管吸波材料国内外研究现状近年来国内外对碳纳米管吸波性能的研究主要集中在碳纳米管薄膜和活性碳纳米管吸波材料、磁性金属(合金)/碳纳米管复合吸波材料、碳纳米管/聚合物基复合吸波材料。
2.1 碳纳米管薄膜和活性碳纳米管吸波材料纳米薄膜将纳米技术与薄膜技术结合起来,具有薄膜和纳米的双重性质,因而成为当前材料前沿最活跃的研究热点之一。
制备碳纳米管的方法较多,不同的方法制得的碳纳米管形貌是不同的,这与碳纳米管的生长机理有关,而表现出的吸波性能也有所不同,碳纳米管材料的吸波性能与其微观形貌、生长过程均有关系。
研究表明,在Si基底上定向生长的碳纳米管基本没有吸波性能,而在Cu基底上定向生长的管径30nm、长度5μm、间距150nm的碳纳米管薄膜对红光和红外激光的吸收高达98%,对10GHz的微波有50%的吸收[14]。
该材料密度小、吸收强,对微波和红外激光均能吸收,将其应用于军事上可以大幅度降低目标被微波雷达和红外激光雷达探测到的可能性,从而大大提高武器系统的灵活机动作战能力。
美国专利[15]报道了在树脂中添加质量分数为1.5%、长径比大于100的碳纳米管,这种厚度为1mm、密度为1.2~1.4g/cm3的薄膜材料对20k Hz~1.5GHz的宽频电磁波具有较好的吸收,能够吸收86%的1.5GHz的电磁波。
该材料在民用领域具有广阔的应用前景,可用于防止电子仪器造成的电磁辐射污染,从而净化电磁环境,保护人类的身体健康和保障电子仪器的正常工作。
对碳纳米管进行活化处理可以提高碳纳米管的吸波性能,用氢氧化钾对碳纳米管进行活化处理后,吸收频带展宽、吸收加强。
活化后的碳纳米管在2~18GHz频率范围具有优异的吸波性能[16],反射率R(Reflectivity)小于-5dB的带宽达12.63GHz,小于-10dB的带宽为4.4GHz,最大吸收衰减达22.58dB。
活化后碳纳米管吸波能力的明显改善是由于活化碳纳米管具有丰富的孔结构,电磁波在这些孔结构中反复地被反射、散射,从而消耗电磁波能量。
目前制备碳纳米管最主要的方法是化学气相沉积法,但是采用该法制备的碳纳米管纯度不高,存在较多的缺陷或杂质,会影响碳纳米管的性能,因此通常要将制得的碳纳米管进行纯化处理。
纯化处理后的碳纳米管的电磁参数有明显的变化,用酸(H2SO4∶HNO3∶H2O=5∶3∶2,H2SO4和HNO3的浓度分别是98%和68%,均为质量分数)纯化处理后的碳纳米管,其复介电常数实部(ε′)在2~9GHz有明显的下降,在9~18GHz基本保持不变,而复介电常数虚部(ε″)在2~18GHz均有明显的下降;复磁导率的实部(μ′)在2~18GHz频段有明显的提高,虚部(μ″)基本没有变化[17]。
吸波材料的吸收性能是由材料的复介电常数(εr=ε′-jε″)和复磁导率(μr=μ′-jμ″)共同决定的,在保持阻抗匹配的前提下,电损耗角正切(tgδE=ε″/ε′)与磁损耗角正切(tgδM=μ″/μ′))的值越大,材料的吸波性能越好。
纯化处理后碳纳米管电磁参数的变化使电损耗角正切与磁损耗角正切均减小,这对碳纳米管吸波材料的吸波性能是不利的。
2.2 磁性金属(合金)/碳纳米管复合吸波材料由于碳纳米管是具有中空结构的一维材料,利用碳纳米管的毛细现象可以将某些元素填入碳纳米管内部,制成具有特殊性能的一维量子线[18~20]。
而碳纳米管基本没有磁性,磁损耗也很小[21],经过碳管外磁性金属包覆或者管内部铁磁性材料的掺杂可形成碳管2磁性链复合物,既具有铁磁性,又具有导电性,可以实现通过磁损耗与电损耗多种机制来损耗电磁波能量,制得密度小、吸收强的吸波材料。
沈曾民等[22]研究了碳纳米管表面镀镍后与环氧树脂混合制成的0.97mm厚的吸波涂层,其吸收性能见表1。
研究表明,碳纳米管表面镀镍后,吸收峰值变小,但吸收峰有宽化的趋势,这种趋势对提高吸波性能是有利的。
表1 碳纳米管和镀镍碳纳米管复合涂层的吸波性能材料最大吸收dB对应频率GHz带宽(R<-5dB)GHz带宽(R<-10dB)GHz未镀镍碳纳米管22.8911.40 4.70 3.00镀镍碳纳米管11.8514.00 4.60 2.23在碳纳米管表面包覆Ni2P、Ni2N合金也可以改善碳纳米管的吸波性能[23],原因是改变了碳纳米管的磁性能,提高了磁损耗。