三角形中考总复习专题训练(精华)
最新人教中考总复习知识点专题三线合一三角形证明的应用专题

专题训练(一)
类型二 证明两线垂直
3.如图1-ZT-3,在五边形ABCDE中,AB=AE,BC=ED, ∠ABC=∠AED,F是CD的中点.求证:AF⊥CD.
图1-ZT-3
专题训练(一)
证明:如图,连接AC,AD. 在△ABC和△AED中, ∵AB=AE,∠ABC=∠AED,BC=ED, ∴△ABC≌△AED(SAS), ∴AC=AD. 又∵AF是CD边上的中线, ∴AF⊥CD.
第一章 三角形的证明
专题训练(一) “三线合一”的灵活应用
第一章 三角形的证明
专题训练(一)
“三线合一”的灵活应用
专题训练(一)
等腰三角形“顶角的平分线、底边上的高线、底边上的中线”只 要知道其中“一线”,就可以说明是其他“两线”.运用等腰三 角形“三线合一”的性质证明角相等、线段相等或垂直关系,可 减少证全等的次数,简化解题过程.
类型一 证明线段相等或求线段的长
1.如图1-ZT-1,已知AD=AE,BD=CE,试探究AB和AC的 大小关系,并说明理由.
图1-ZT-1
专题训练(一)
解: AB=AC. 理由:∵AD=AE, ∴△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是 △ADE的中线,又是△ADE底边上的高,即AF⊥DE,DF=EF. 又∵BD=CE, ∴BD+DF=CE+EF,即BF=CF, ∴AF是线段BC的垂直平分线,根据线段垂直平分线的性质可得 AB=AC.
谢 谢 观 看!
专题训练(一)
类型三 证明角度之间的关系
4.已知:如图 1-ZT-4,AB=AC,BD⊥AC 于点 D.求证:∠DBC =12∠B过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC, ∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC, ∴∠CAF+∠C=∠DBC+∠C=90°, ∴∠DBC=∠CAF, ∴∠DBC=12∠BAC.
中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
中考数学专卷2020届中考数学总复习(20)三角形-精练精析(1)及答案解析

图形的——三角形1一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣83.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.1558.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为_________ (只需填一个整数)11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________ 度.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________ 度.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________ °.14.如图是一副三角板叠放的示意图,则∠α= _________ .15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为_________ .16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件_________ ,使△ABC≌△DEF.17.如图,已知△ABC中, AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是_________ .(只填一个即可)三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.如图,在△ABC和△AB D中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.23.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图形的——三角形参考答案与试题解析一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B. C.D.考点:三角形三边关系.分析:根据勾股定理可知x的平方取值范围在2与3的平方和与平方差之间.解答:解:因为32﹣22=5,32+22=13,所以5<x2<13,即.故选B.点评:本题考查了锐角三角形的三边关系定理,有一定的难度.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣8考点:三角形的面积.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:阴影部分的面积=π×22÷2+π×12÷2﹣4×2÷2=;故选A.点评:此题考查了三角形的面积;解题的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.3.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.专题:常规题型.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.155考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A. 3 B.4 C.6 D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥A C于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB 的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为 4 (只需填一个整数)考点:三角形三边关系.专题:开放型.分析:根据三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得x的取值范围.解答:解:根据三角形的三边关系可得:3﹣2<x<3+2,即:1<x<5,所以x可取整数4.故答案为:4.点评:此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75 度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.点评:考查三角形内角之和等于180°.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 70 度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.(2014•佛山)如图是一副三角板叠放的示意图,则∠α= 75°.考点:三角形的外角性质.分析:首先根据三角板度数可得:∠ACB=90°,∠1=45°,再根据角的和差关系可得∠2的度数,然后再根据三角形内角与外角的关系可得答案.解答:解:∵∠ACB=90°,∠1=45°,∴∠2=90°﹣45°=45°,∴∠α=45°+30°=75°,故答案为:75°.点评:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.解答:解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.点评:本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF 或AB∥DE),使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.17.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)考点:全等三角形的判定.专题:开放型.分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.考点:全等三角形的判定.专题:证明题.分析:根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.解答:证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).点评:本题主要考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)考点:全等三角形的判定.专题:开放型.分析:先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.解答:AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.解答:证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.点评:本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.22.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.如图,在R t△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.专题:几何综合题.分析:(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.解答:(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.2点评:本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.3。
2020年中考数学总复习专题演练《三角形综合》(含解析)

中考数学复习专题训练:《三角形综合》1.在△ABC与△ABD中,∠DBA=∠CAB,AC与BD交于点F(1)如图1,若∠DAF=∠CBF,求证:AD=BC;(2)如图2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的长.(3)如图3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接写出DB的长.2.如图,已知CD是△ABC的高,AD=1,BD=4,CD=2.直角∠AEF的顶点E是射线CB上一动点,AE交直线CD于点G,EF所在直线交直线AB于点F.(1)判断△ABC的形状,并说明理由;(2)若G为AE的中点,求tan∠EAF的值;(3)在点E的运动过程中,若,求的值.3.如图,在平面直角坐标中,点O为坐标原点,△ABC的三个顶点坐标分别为A(0,m),B(﹣m,0),C(n,0),AC=5且∠OBA=∠OAB,其中m,n满足.(1)求点A,C的坐标;(2)点P从点A出发,以每秒1个单位长度的速度沿y轴负方向运动,设点P的运动时间为t秒.连接BP、CP,用含有t的式子表示△BPC的面积为S(直接写出t的取值范围);(3)在(2)的条件下,是否存在t的值,使得S△PAB =S△POC,若存在,请求出t的值,并直接写出BP中点Q的坐标;若不存在,请说明理由.4.一副三角板直角顶点重合于点B,∠A=∠C=45°,∠D=60°,∠E=30°.(1)如图(1),若∠AFE=75°,求证:AB∥DE;(2)如图(2),若∠AFE=α,∠BGD=β,则α+β=度.(3)如图(3),在(1)的条件下,DE与AC相交于点H,连接CE,BH,若DG=2CG=2GH ,BC =10,S △CEH =S △BEH ,求△BDH 的面积.5.在△ABC 中,∠BAC =120°,AB =AC ,PC =PA ,设∠APB =α,∠BPC =β.(1)如图1,当点P 在△ABC 内, ①若β=153°,求α的度数;小明同学通过分析已知条件发现:△ABC 是顶角为120°的等腰三角形,且PC =PA ,从而容易联想到构造一个顶角为120°的等腰三角形.于是,他过点A 作∠DAP =120°,且AD =AP ,连接DP ,DB ,发现两个不同的三角形全等: ≌ 再利用全等三角形及等腰三角形的相关知识可求出α的度数.请利用小王同学分析的思路,通过计算求得α的度数为;②小王在①的基础上进一步进行探索,发现α、β之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.(2)如图2,点P在△ABC外,那么a、β之间的数量关系是否改变?若改变,请直接写出它们的数量关系;若不变,请说明理由.6.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG 交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上7.如图1,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,AC>CD,∠ACB=∠DCE =α,且点A、D、E在同一直线上,连结BE(1)求证:AD=BE.(2)如图2,若α=90°,CM⊥AE于E.若CM=7,BE=10,试求AB的长.(3)如图3,若α=120°,CM⊥AE于E,BN⊥AE于N,BN=a,CM=b,直接写出AE 的值(用a,b的代数式表示).8.已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x 轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC=,且A,B,C在同一条直线上,求t的值;(2)如图2,当t=1,∠ACO+∠ACB=180°时,求BC+OC﹣OB的值;(3)如图3,点H(m,n)是AB上一点,∠A=∠OHA=90°,若OB=OC,求m+n的值.9.在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2﹣2ab+b2+(b﹣4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=,b=;(2)如图1,P为OC上一点,连接PA,PB,若PA=BO,∠BPC=30°,求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示)10.如图,在Rt△ABC中,∠ACB=90°,AC=16,BC=12,点D、E分别为边AB、BC中点,点P从点A出发,沿射线AB方向以每秒5个单位长度的速度向点B运动,到点B 停止.当点P不与点A重合时,过点P作PQ∥AC,且点Q在直线AB左侧,AP=PQ,过点Q作QM⊥AB交射线AB于点M.设点P运动的时间为t(秒)(1)用含t的代数式表示线段DM的长度;(2)求当点Q落在BC边上时t的值;(3)设△PQM与△DEB重叠部分图形的面积为S(平方单位),当△PQM与△DEB有重叠且重叠部分图形是三角形时,求S与t的函数关系式;(4)当经过点C和△PQM中一个顶点的直线平分△PQM的内角时,直接写出此时t的值.11.如图,平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,点B 在x 轴的正半轴上,以AB 为斜边向上作等腰直角△ABC ,BC 交y 轴于点D ,C (﹣2,4). (1)如图1,求点B 的坐标;(2)如图2,动点E 从点O 出发以每秒1个单位长度的速度沿y 轴的正半轴运动,设运动时间为t 秒,连接CE ,设△ECD 的面积为S ,请用含t 的式子来表示S ;(3)如图3,在(2)的条件下,当点E 在OD 的延长线上时,点F 在直线CE 的下方,且CF ⊥CE ,CF =CE .连接AD ,取AD 的中点M ,连接FM 并延长交AO 于点N ,连接FO ,当S △NFO =10S △AMN 时,求S 的值.12.如图,在平面直角坐标系中,O为坐标原点,△ABC的顶点A(﹣2,0),点B,C分别在x轴和y轴的正半轴上,∠ACB=90°,∠BAC=60°(1)求点B的坐标;(2)点P为AC延长线上一点,过P作PQ∥x轴交BC的延长线于点Q,若点P的横坐标为t,线段PQ的长为d,请用含t的式子表示d;(3)在(2)的条件下,点E是线段CQ上一点,连接OE、BP,若OE=PB,∠APB﹣∠OEB=30°,求PQ的长.13.在平面直角坐标系中,点A(0,m),C(n,0).(1)若m,n满足.①直接写出m=,n=;②如图1,D为点A上方一点,连接CD,在y轴右侧作等腰Rt△BDC,∠BDC=90°,连接BA并延长交x轴于点E,当点A上方运动时,求△ACE的面积;(2)如图2,若m=n,点D在边OA上,且AD=11,G为OC上一点,且OG=8,连接CD,过点G作CD的垂线交CD于点F,交AC于点FH.连接DH,当∠ADH=∠ODC,求点D的坐标.14.如图,平面直角坐标系中,A(a,0),B(0,b)分别为x、y轴正半轴上一点,其中a、b满足:b﹣8=+,C为AB的中点.(1)求A、B两点坐标;(2)E为OB上一点,连CE交x轴于D,若BE=AD,如图1,求D点坐标;(3)F为x轴上的点,连FC,在(2)的条件下,若∠ACF=45°,求F点坐标.15.如图所示,M为等腰三角形ABD的底边AB的中点,过D作DC∥AB,连接BC,AB =6cm,DM=3cm,DC=3﹣cm.动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S.(1)当点P在线段AM上运动时,PM=.(用t的代数式表示)(2)求BC的长度;(3)当点P在MB上运动时,求S与t之间的函数关系式.16.如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.17.阅读下面材料,完成(1)﹣(3)题.数学课上,老师出示了这样一道题:如图1,点E是正△ABC边AC上一点以BE为边做正△BDE,连接CD.探究线段AE 与CD的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠ABE与∠DBC相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段BC平分∠ACD.”…老师:“保留原题条件,连接AD,F是AB的延长线上一点,AD=DF(如图2),如果BD=BF,可以求出CE、CB、EB三条线段之间的数量关系.”(1)求证:∠ABE=∠DBC;(2)求证:线段BC平分∠ACD;(3)探究CE、CB、EB三条线段之间的数量关系,并加以证明.18.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.19.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.20.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CE;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD 于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.参考答案1.(1)证明:∵∠DFA=∠CFB,∠DAF=∠CBF,∴∠D=∠C,在△DAB和△CBA中,,∴△DAB≌△CBA(AAS),∴AD=BC;(2)解:在FC上取一点E,使得∠FBE=∠DAF,如图2所示:由(1)知,△DAB≌△EBA(AAS),∴BE=AD=2,DB=EA,∠BDA=∠AEB=135°,∴∠BEC=45°,∵∠C=45°,∴∠BEC=∠C,∴BC=BE=2,∠EBC=90°,∴EC=BE=2,∵AC=4,∴AE=AC﹣EC=4﹣2,∴BD=AE=4﹣2.(3)解:在FC上取一点E,使得∠FBE=∠DAF,如图3所示:由(1)知△DAB≌△EBA(AAS),∴BE=AD=1,DB=AE,∠BEA=∠BDA=108°,∠DBA=∠EAB=18°,∴∠BEC=72°=∠C,∠EFB=∠DBA+∠EAB=36°,∴BC=BE=1,∠EBC=36°,∴∠C=∠BEA﹣∠EBC=72°,∴∠FBC=72°,∴∠C=∠FBC,∠EFB=∠EBF=36°,∴EF=EB=1,FB=FC,∴AF=FB=FC=1+EC,∵∠EBC=∠EFB,∠∠C=∠C,∴△CBE~△CFB,∴,∴BC2=CE•CF,∴CE•CF=1,∴CE(CE+1)=1,即CE2+CE﹣1=0,解得:(负值已舍去),∴,∴,∴.2.解:(1)结论:△ABC是直角三角形.理由:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵AD=1,CD=2,BD=4,∴CD2=AD•BD,∴=,∴△ADC∽△CDB,∴∠ACD=∠B,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形.(2)如图1中,作EH⊥AB于H.∵AD⊥AB,EH⊥AB,∴DG∥HE,∵AG=GE,∵AD=DH=1,∵DB=4,∴BH=DB﹣DH=3,∵EH∥CD,∴=,∴=,∴EH=,∴tan∠EAF===.(3)如图2中,作EH⊥AB于H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∴===,∵CD=2,BD=4,∴EH=,BH=,∴AH=AB﹣BH=5﹣=,DH=AH﹣AD=,在Rt△AEH中,AE===,∵DG∥EH,∴=,∴=,∴EG=,∵AE⊥EF,EH⊥AF,∴△AEH∽△EFH,∴=,∴=,∴EF=∴==.3.解:(1)由,解得,∴A(0,4),C(3,0).(2)如图1中,当0<t<4时,S=•BC•OP=×5×(4﹣t)=﹣t+10.如图2中,当t>4时,S=•BC•OP=×5×(t﹣4)=t﹣10.综上所述,S=.(3)当0<t<4时,由题意,×t×4=××(4﹣t)×3,解得t=.此时,OP=4﹣=,∴P(0,),∵B(﹣4,0),∴BQ的中点Q的坐标为(﹣2,)当t>4时,由题意,×t×4=××(t﹣4)×3,解得t=36,此时OP =36﹣4=32,∴P (0,﹣32),∵B (﹣4,0),∴BP 的中点Q 的坐标为(﹣2,﹣16).综上所述,满足条件的t 的值为或36.点Q 的坐标为(﹣2,)或(﹣2,﹣16). 4.(1)证明:如图(1),∵∠AFE =75°,∠A =45°,∴∠ABE =75°﹣45°=30°,∵∠E =30°,∴∠E =∠ABE ,∴AB ∥DE ;(2)解:如图(2),△ABF 中,∠AFE =∠A +∠ABE =α①,△BGE 中,∠BGD =∠E +∠CBF =β②,①+②得:α+β=∠A +∠E +∠CBF +∠ABE =45°+30°+90°=165°;故答案为:165;(3)解:∵DE ∥AB ,∴∠CGH =∠ABC =90°,∵S △CEH =S △BEH ,∴,∴CG=BG,∵BC=10,∴CG=2,BG=8,∵DG=2CG=2GH,∴DG=4,GH=2,∴△BDH的面积===24.5.解:(1)①如图1,过点A作AH⊥DP于H,∵∠DAP=∠BAC=120°,∴∠DAB=∠PAC,且AD=AP,AB=AC,∴△ADB≌△APC(SAS)∴BD=PC=PA,∠ADB=∠APC,∵∠DAP=120°,AD=AP,AH⊥DP,∴∠ADP=∠APD=30°,DH=PH,∴AP=2AH,HP=AH,∴DP=AP,∴DB=DP,∴∠DBP=∠DPB=∠APB﹣∠APD=α﹣30°,∴∠BDP=180°﹣2(α﹣30°)=240°﹣2α,∴∠ADB=∠BDP+∠ADP=270°﹣2α=∠APC,∵∠APB+∠APC+∠BPC=360°,∴270°﹣2α+α+β=360°,∴β﹣α=90°,当β=153°时,α=63°,故答案为:△ADB,△APC,63°;②β﹣α=90°,理由如上;(2)α+β=90°,理由如下:如图2,作∠PAN=120°,且PA=NA,连接PN,BN,∵∠PAN=∠BAC=120°,∴∠BAN=∠PAC,且AB=AC,AP=AN,∴△ABN≌△ACP(SAS)∴∠BNA=∠APC,PC=BN=AP,∵∠PAN=120°,PA=NA,∴∠APN=∠ANP=30°,∴PN=AP=BN,∴∠BPN=∠PBN=α+30°,∵∠BPN+∠PBN+∠BNP=180°,∴2(α+30°)+β﹣α+30°=180°,∴α+β=90°.6.(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.7.(1)证明:∵∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)解:设AE交BC于点H,如图2所示:由(1)得:△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE=10,∵∠AHC=∠BHE,∴∠AEB=∠ACH=90°,∵∠ACB=∠DCE=α=90°,CD=CE,∴△CDE是等腰直角三角形,∵CM⊥DE,∴CM=DM=ME=7,∴DE=2CM=14,∵AE=AD+DE=10+14=24,∠AEB=90°,∴AB===26;(3)解:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2×=2b.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE===a.∵AD=BE,AE=AD+DE,∴AE=BE+DE=a+2b.8.解:(1)过点A作AD⊥x轴于D,如图1所示:∵点A(t,1),∴AD=1,OD=t,∵A,B,C在同一条直线上,∴∠OCB=∠DCA,∵tan∠OCB===,∴tan∠OCB=tan∠DCA==,即=,解得:CD=,∴t=OD=OC+CD=+=3;(2)作AD⊥y轴于D,AM⊥x轴于M,AN⊥BC于N,如图2所示:则∠ADB=∠ANB=90°,∵t=1,∴点A(1,1),∴AD=AM=OM=1,∵∠ACO+∠ACB=180°,∠ACN+∠ACB=180°,∴∠ACO=∠ACN,∵AM⊥x轴于M,AN⊥BC于N,∴AN=AM=AD=1,在Rt△ABD和Rt△ABN中,,∴Rt△ABD≌Rt△ABN(HL),∴BN=BD=OB+1,同理:Rt△ACM≌Rt△ACN(HL),∴CM=CN,∵BC=BN﹣CN,OC=OM+CM=1+CM,∴BC+OC﹣OB=BN﹣CN+1+CM﹣OB=OB+1﹣CN+1+CM﹣OB=2;(3)作HG⊥OC于G,如图3所示:∵OB=OC,∠BOC=90°,∴△BOC是等腰直角三角形,∠OCB=45°,∵∠OHA=90°,∴OH⊥AB,∴△OCH是等腰直角三角形,∵HG⊥OC,∴△OGH是等腰直角三角形,∴OG=GH,即m=﹣n,∴m+n=0.9.解:(1)∵a2﹣2ab+b2+(b﹣4)2=0,∴(a﹣b)2+(b﹣4)2=0,∵(a﹣b)2≥0,(b﹣4)2≥0,∴a=b.b﹣4=0,∴a=4,b=4,故答案为4,4.(2)如图1中,分别过A,B作OC的垂线,垂足分别为D,E.∵∠BEO=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠AOD=∠OBE,∵BO=AO,∴△ADO≌△OEB(AAS),∴OD=BE,∵∠BPC=30°,∴PB=2BE=2OD,∵AP=BO=AO,AD⊥OP,∴OD=DP,∴PB=PO,过P作PF⊥OB,∴OF=OB=2,即点P的纵坐标的为2.(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作OH⊥OC交CA的延长线于H,连接NH.GH.由(2)可知∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵OC⊥OH,∴OH⊥NG,∵∠OHC=30°=∠AGO,∴点G在以G为圆心GO为半径的⊙G上,∴GO=GA,∴NH垂直平分线段OH,∴O,H关于GN对称,∴ON+NC=NH+NC≥CH,∵CH=2OC=2t,∴ON+NC≥2t,∴ON+CN的最小值为2t.10.解:(1)如图1中,在RtABC中,∵AC=16,BC=12,∠C=90°,∴AB===20,∵PQ∥AC,∴∠A=∠QPM,∵∠C=∠PMQ=90°,∴△ACB∽△PMQ,∴==,∴==,∴PM=4t,MQ=3t,当0<t≤时,DM=AD﹣AM=10﹣5t﹣4t=﹣9t+10.当<t≤4时,DM=AM﹣AD=9t﹣10.(2)如图2中,当点Q落在BC上时,∵PQ∥AC,∴=,∴=,解得t=,∴当点Q落在BC边上时t的值为s.(3)如图3﹣1中,当<t≤时,重叠部分是△DMK,S=×DM×MK=×(9t﹣10)×(9t﹣10)=t2﹣t+.如图3﹣2中,当≤t≤4时,重叠部分是△PBK,S=•PK•BK=×(20﹣5t)•(20﹣5t)=6t2﹣48t+96.(4)如图4﹣1中,当直线CQ平分∠PQM时,设直线CQ交AB于G,作GK⊥PQ于K.∵∠QKG=∠QMG=90°,∠GQK=∠GQM,QG=QG,∴△QGK≌△QGM(AAS),∴QK=QM=3t,PK=PQ﹣QK=5t﹣3t=2t,∴PG=PK=t,∵PQ∥AC,∴=,∴=,∴t=.如图4﹣2中,当CM平分∠QMP时,作CG⊥AB于G.∵•AC•BC=•AB•CG,∴CG===,AG===,∵∠CMG=∠GCM=45°,∴CG=GM=,∴AM=9t=+,解得t=,综上所述,满足条件的t的值为s或s.11.解:(1)如图1中,作CH⊥AB于H.∵C(﹣2,4),∴CH=4,OH=2,∵AC﹣BC,∠ACB=90°,∴AH=CH=BH=4,∴OB=OH=2,∵OD∥CH,∴CD=DB,∴OD=CH=2,∴D(0,2),B(2,0).(2)由(1)可知D(0,2),所以当0≤t<2时,当t>2时,,综上所述,S=.(3)如图3中,延长AC交y轴于H,连接FD,AF.FO.∵C(﹣2,4),△ABC是等腰直角三角形,∴AB=8,由(1)知B(2,0),∴OB=2,OA=6,∵△ABC是等腰直角三角形,∴∠ACB=90°,∴∠CAB=45°,∵∠AOH=90°,∴∠CHE=∠CAB=45°,∴OH=OA=6,∵∠ACB=90°,∴∠DCH=90°,∵∠CHE=45°,∴∠CDH=∠CHE=45°,∴CH=CD,∵CF⊥CE,∴∠DCF+∠ECD=90°,∵∠ACB=90°,∴∠HCE+∠ECD=90°,∴∠HCE=∠DCF,又∵CF=CE,∴△HCE≌△DCF(SAS),∴HE=FD=6﹣t,∠CDF=∠CHE=45°,∵∠CBA=45°,∴∠CDF=∠CBA,∴FD∥AB,∴∠FDM=∠NAM,∵M是AD中点,∴DM=AM,又∵∠FMD=∠NMA,∴△DMF≌AMN(ASA),∴AN=FD=6﹣t,∵DM =AM ,∴S △DMF =S △AMF∵△DMF ≌△AMN ,∴S △DMF =S △AMN ,∴S △NFA =2S △AMN∵S △NFO =10S △AMN∴S △NFO =5S △NFA ,∴5AN =ON ,∵OA =6,∴AN =1,∴AN =6﹣t =1,∴t =5,∴S =t ﹣2=5﹣2=3.12.解:(1)在Rt △AOC 中,A (﹣2,0),∠A =60°,∴OA =2,∠ACO =∠ABC =30°∴AC =2OA =4,在Rt △ABC 中,∠ABC =30°,∴AB =2AC =8,即OB =AB ﹣OA =8﹣2=6,则B (6,0);(2)如图1所示,在Rt △MCP 中,MP =t ,∠MCP =30°,∴CP =2MP =2t ,在Rt △CQP 中,∠CQP =30°,CP =2t ,∴PQ =4t ,即d =4t ;(3)如图2所示,过P 作PM ∥y 轴,交BC 于M ,∴∠APM=∠DCP=∠ACO=30°,∵∠APB﹣∠OEB=30°,∴∠APB﹣30°=∠OEB=∠BPM,∵∠BMP=180°﹣60°=120°=∠OCE,∵OE=PB,∴△OCE≌△BMP(AAS),∴OC=BM=2,∵BC=4,∴CM=4﹣2=2,Rt△PCM中,∠CPM=30°,CP=2t,∴PM=4,∴PC2+CM2=PM2,∴,4t2+12=48,t=3或﹣3(舍),∴PQ=4t=12.13.解:(1)①由,解得,故答案为4,4.②如图1中,∵A(0,4),C(4,0),∴OA=OC=4,∴△AOC是等腰直角三角形,∴AC=OC,∠ACO=45°,∵△DCB是等腰直角三角形,∴BC=CD,∠DCB=45°,∴∠OCD=∠ACB,==,∴∠OCD∽△ACB,∴∠BAC=∠DOC=90°,∴∠AEC=∠ACE=45°,∴AE=AC,∵AO⊥EC,∴EO=OC=AO=4,=•EC•AO=×8×4=16.∴S△ACE(2)如图2中,作CP∥OA交DH的延长线于P,作DK⊥CP于K.∵PC∥OA,∴∠P=∠ADH,∠DCP=∠ODC,∵∠ADH=∠ODC,∴∠P=∠PCD,∴DP=DC,∴△DPC是等腰三角形,∵∠DKC=∠KCO=∠DOC=90°,∴四边形ODKC是矩形,∴OD=CK,∵DK⊥PC,∴PK=CK=OD,设OD=x,则PK=CK=x,PC=2x,∵OA=OC,AD=11,OG=8,∴CG=OC﹣OG=x+3,∵GH⊥DC,∴∠CFG=∠COD=90°,∴∠ODC+∠OCD=90°,∠CGF+∠FCG=90°,∴∠ODC=∠CGF,∴∠CGH=∠P,∵CH=CH,∠HCG=∠HCP=45°,∴△HCG≌△HCP(AAS),∴CG=CP,∴x+3=2x,∴x=3,∴D(0,3)14.解:(1)根据题意得:,解得:a=4,∴b=8,∴A(4,0),B(0,8);(2)∵C为AB的中点,∴C(2,4),设OE=b,∵BE=AD,∴AD=8﹣b,∵OA=4,∴OD=4﹣b,设直线CD的解析式为:y=kx+b,把C(2,4)代入得:2k+b=4,∴k=,∴直线CD的解析式为:y=x+b,∵D(b﹣4,0),则﹣+b=0,解得:b=2或8(舍),∴D(﹣2,0);(3)由(2)知:直线CD的解析式为:y=x+2分两种情况:①当F在点A的左侧时,如图2,过F作FG⊥AB于G,∵∠BAO=∠FAG,∴tan∠BAO=tan∠FAG===2,设AG=x,则FG=2x,∵∠ACF=45°,∠CGF=90°,∴CG=FG=2x,∵AC=AB==2,∴AG=2﹣2x=x,x=,∴AF=x=,∴OF=4﹣=,∴F(,0);②当点F在点A的右侧时,如图3,过C作CP⊥CF,交x轴于点P,CH⊥x轴于H,过A作AG⊥CF于G,∵∠ACF=45°,∴△ACG是等腰直角三角形,∵AC=2,∴CG=AG=,由(2)知:AP=,∵AH=2,∴PH=﹣2=,∵CH=OB=4,∴PC==,∵AG∥PC,∴,即=,∴AF=10,∴F(14,0),综上,点F的坐标为(,0)或(14,0).15.解:(1)如图1中,PM=3﹣t.故答案为3﹣t.(2)过点C作CE⊥AB,垂足为E,如图2,∵DA=DB,AM=BM,∴DM⊥AB.∵CE⊥AB,∴∠CEB=∠DMB=90°.∴CE∥DM.∵DC∥ME,CE∥DM,∠DME=90°,∴四边形DCEM是矩形.∴CE=DM=3,ME=DC=.∵AM=BM,AB=6,∴AM=BM=3.∴BE=BM﹣ME=.∵∠CEB=90°,CE=3,BE=,∴CB===2.(3)①当3<t≤时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,∵QF⊥AB,CE⊥AB,∴∠QFB=∠CEB=90°.∴QF∥CE.∵BQ=t,∴QF=∵PM=AP﹣AM=t﹣3,∴S=PM•QF=(t﹣3)•=;②当<t≤时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,此时QF=DM=3.∵PM=AP﹣AM=t﹣3,∴S=PM•QF=(t﹣3)×3=.综上所述:当3<t≤时,S=;当<t≤时,S=.16.解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,∴CD=4t.∴AD===5t,当点C在点B右侧时,CB=3t﹣5,∴CF=CB.∴DF=4t﹣(3t﹣5)=t+5.(2)当0<t<时,S=•(5﹣3t)•4t=﹣6t2+10t.当t>时,S=•(3t﹣5)•4t=6t2﹣10t.(3)①如图1中,当DF=AD时,△ADF是轴对称图形.则有5﹣3t﹣4t=5t,解得t=,②如图2中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.③如图3中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.综上所述,满足条件的t的值为或或.17.(1)证明:∵△ABC,△DEB都是等边三角形,∴∠ABC=∠EBD=60°,∴∠ABE+∠EBC=∠EBC+∠CBD,∴∠ABE=∠CBD.(2)证明:∵△ABC,△DEB都是等边三角形,∴BA=BC,BE=BD,∠BAC=∠ACB=60°,∵∠ABE=∠CBD,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠ACB=∠BCD=60°,∴CB平分∠ACD.(3)解:结论:EC+BE=BC.理由:∵DA=DF,∴可以将△DBF绕点D顺时针旋转,使得DF与DA重合,得到△DMA,连接AM.∵DA=DF,BD=BF,∴∠DAF=∠F=∠BDF,∵∠BCD=∠ABC=60°,∴CD∥AB,∴∠CDF=∠DAF,∵∠MDA=∠BDF=∠F=∠DAB,∴∠MDA=∠CDA,∴D,C,M共线,∵∠AMD=∠DBF=∠CDB,∠ACM=∠BCD=60°,AM=DM=BD=BF,∴△AMC≌△BDC(AAS),∴CM=DC=BD=BE,∵△ABE≌△CBD,∴AE=CD,∴BC=AC=EC+AE=CE+CD=CE+BE,∴EC+BE=BC.18.(1)解:如图1中,在CA上取一点H,使得CH=CG.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵AE⊥CR,CE=ER,∴AC=AR,∴∠CAG=∠GAB=22.5°∵CG=CH=1,∴GH===,∠CHG=45°,∵∠CHG=∠HAG+∠HGA,∴∠HAG=∠HGA=22.5°,∴HA=HG=,∵CB=CA,CG=CH,∴BG=AH=.(2)解:如图2中,连接CD,DE.∵CF⊥AG,BC⊥CF,∴∠BCF=∠CAE=90°﹣∠ACE在△AEC和△CFB,,∴△AEC≌△CFB(AAS),∴AE=CF,CE=BF,∵等腰Rt△ABC中,∠ACB=90°,AC=BC,∴CD=BD,∠CDB=90°,∵∠CDB=∠CFB=90°,∴∠FBD=∠DCE,在△BFD与△CED中,,∴△BFD≌△CED(SAS),∴DF=DE,∠FDB=∠EDC,∴∠EDC+∠EDB=∠BDF+∠BDE=90°,∴△DEF是等腰直角三角形,∴EF=DF.(3)如图3中,结论:=.理由:连接AF,在EC上取一点H,使得CH=AH,连接AH.∵AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=60°,AB=AC=BC,∵∠BAG=15°,∴∠CAE=75°,∵CE⊥AG,∴∠CEA=90°,∴∠ACE=15°,∴∠BCF=∠ACB﹣∠ACE=45°,∵BF⊥CE,∴∠FCB=∠FBC=45°,∴FB=FC,∵AB=AC,∴AF垂直平分线段BC,∴AF平分∠CAB,∴∠FAB=∠CAB=30°,∴∠EAF=∠EFA=45°,∴EF=AE,设EF=AE=m,∵HC=HA,∴∠HCA=∠HAC=15°,∴∠EHA=∠HCA+∠HAC=30°,∴AH=2AE=2m,EH=m,∴EC=2m+m,∴AC===(+)m,∵BD=AB=AC=m,∴=.19.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.20.(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.。
2020届中考数学总复习(20)三角形-精练精析(2)及答案解析

图形的性质——三角形2一.选择题(共9小题)1.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°2.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°3.已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC有()A.5个B.4个C.3个D.2个4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°5.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm6.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或107.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.188.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.69.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30°B.AD=BD C.BD=2CD D.CD=ED二.填空题(共7小题)10.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= _________ .11如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为_________ .12.等腰三角形的两边长分别为1和2,其周长为_________ .13.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为_________ .14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为_________ cm.15.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=_________ .16.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为_________ (度).三.解答题(共8小题)17.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.18.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.19.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.20.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.21.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.22.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.23.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.24.如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.图形的性质——三角形2参考答案与试题解析一.选择题(共9小题)1.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30°B.45°C.60°D.90°考点:等腰三角形的性质.专题:计算题.分析:根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.解答:解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣30°)=75°,∵以B为圆心,BC的长为半径圆弧,交AC于点D,∴BC=BD,∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.故选:B.点评:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.2.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°考点:等腰三角形的性质.分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.3.已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC有()A.5个B.4个C.3个D.2个考点:等腰三角形的性质;三角形三边关系.分析:由已知条件,根据三角形三边的关系,任意两边之和大于第三边,任意两边之差小于第三边,结合边长是整数进行分析.解答:解:周长为13,边长为整数的等腰三角形的边长只能为:3,5,5;或4,4,5;或6,6,1,共3个.故选:C.点评:本题考查了等腰三角形的判定;所构成的等腰三角形的三边必须满足任意两边之和大于第三边,任意两边之差小于第三边.解答本题时要进行多次的尝试验证.4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°考点:等腰三角形的性质.分析:求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,解答:解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.点评:本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.5.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D. 4cm<AB<10cm考点:等腰三角形的性质;解一元一次不等式组;三角形三边关系.分析:设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.解答:解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选:B.点评:本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.6.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.18考点:等腰三角形的性质.分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.解答:解:8+8+5=16+5=21.故这个三角形的周长为21.故选:A.点评:考查了等腰三角形两腰相等的性质,以及三角形周长的定义.8.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A. 3 B.4 C.5 D.6考点:含30度角的直角三角形;等腰三角形的性质.专题:计算题.分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD ﹣MD即可求出OM的长.解答:解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.9.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30°B.AD=BD C.BD=2CD D.C D=ED考点:含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.专题:几何图形问题.分析:根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.解答:解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.点评:本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.二.填空题(共7小题)10.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.11.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为m+n .考点:线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.分析:根据线段垂直平分线性质得出AD=BD,推出∠A=∠ABD=40°,求出∠ABC=∠C,推出AC=AB=m,求出△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC,代入求出即可.解答:解:∵AB的垂直平分线MN交AC于点D,∠A=40°,∴AD=BD,∴∠A=∠ABD=40°,∵∠DBC=30°,∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,∴∠ABC=∠C,∴AC=AB=m,∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,故答案为:m+n.点评:本题考查了三角形内角和定理,线段垂直平分线性质,等腰三角形的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.等腰三角形的两边长分别为1和2,其周长为 5 .分析:根据题意,要分情况讨论:①1是腰;②1是底.必须符合三角形三边的关系,任意两边之和大于第三边.解答:解:①若1是腰,则另一腰也是1,底是2,但是1+1=2,故不能构成三角形,舍去.②若1是底,则腰是2,2.1,2,2能够组成三角形,符合条件.成立.故周长为:1+2+2=5.故答案为:5.点评:本题考查的是等腰三角形的性质和三边关系,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.考点:等腰三角形的性质.专题:分类讨论.分析:分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.解答:解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.点评:此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35 cm.分析:题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=18°.考点:等腰三角形的性质.专题:几何图形问题.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.16.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).考点:等腰三角形的性质.专题:几何图形问题.分析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.解答:解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.点评:本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.三.解答题(共8小题)17.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.考点:全等三角形的判定与性质;多边形内角与外角.专题:几何综合题.分析:(1)利用正五边形的性质得出AB=BC,∠ABM=∠C,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.解答:(1)证明:∵正五边形ABCDE,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)解:∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°.即∠APN的度数为108°.点评:此题主要考查了全等三角形的判定与性质以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.18.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.19.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案.解答:证明:∵正方形ABCD,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AGB=∠BAG+∠ABG=90°,∵∠ABG+∠CBF=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF.点评:本题考查了全等三角形的判定与性质,利用了正方形的性质,直角三角形的性质,余角的性质,全等三角形的判定与性质.20.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.考点:全等三角形的判定与性质.专题:证明题.分析:根据EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,从而AAS证明△FBD≌△ABC,则AB=BF.解答:证明:∵EF⊥AC,∴∠F+∠C=90°,∵∠A+∠C=90°,∴∠A=∠F,在△FBD和△ABC中,,∴△FBD≌△ABC(AAS),∴AB=BF.点评:本题考查了全等三角形的判定和性质,是基础知识要熟练掌握.21.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△A BC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.考点:全等三角形的判定与性质;正方形的性质.专题:证明题;压轴题.分析:(1)证△ADG≌△ABE,△FAE≌△FAG,根据全等三角形的性质求出即可;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE (SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.解答:(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=点评:本题主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用.23.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠C DE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,又∵∠CGB=∠MGD,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.24.如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:根据正方形的四条边都相等可得BC=CD,对角线平分一组对角可得∠BCP=∠DCP,再利用“边角边”证明△BCP和△DCP全等,根据全等三角形对应角相等可得∠PDC=∠PBC,再根据等边对等角可得∠PBC=∠PEC,从而得证.解答:证明:在正方形ABCD中,BC=CD,∠BCP=∠DCP,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴∠PDC=∠PBC,∵PB=PE,∴∠PBC=∠PEC,北京市∴∠PDC=∠PEC.点评:本题考查了全等三角形的判定与性质,正方形的性质,等边对等角的性质,熟记各性质并判断出全等三角形是解题的关键.Earlybird。
中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
中考数学解直角三角形练习

中考数学解直角三角形练习第一课时(锐角三角函数)课标要求1、 通过实例认识直角三角形的边角关系:即锐角三角函数(sinA 、cosA 、tanA 、cotA )2、 熟知300、450、600角的三角函数值3、 会用计算器求锐角的三角函数值:以及由已知的三角函数值求相应的锐角。
4、 通过特殊角三角函数值:知道互余两角的三角函数的关系。
5、 了解同角三角函数的平方关系。
sin 2α+cos 2α=1:倒数关系tan α·cot α=1.6、 熟知直角三角形中:300角的性质。
中招考点1、 锐角三角函数的概念:锐角三角函数的性质。
2、 300、450、600角的三角函数值及计算代数式的值。
3、 运用计算器求的三角函数值或由锐角三角函数值求角度。
典型例题[例题1] 选择题(四选一)1、如图19-1:在Rt △ABC 中:CD 是斜边AB 上的高:则下列线段比中不等于sinA 的是( )A. AC CDB. CB BDC.AB CBD.CBCD分析:sinA=AC CD ; sinA=sin ∠BCD=BC BD ;sinA= ABBC;从而判断D 不正确。
故应选D.。
2、在Rt △ABC 中:∠C =900:∠A =∠B :则cosA 的值是( ) A.21B. 22 C.23 D.1分析:先求出∠A 的度数:因为∠C =900:∠A =∠B :故∠A =∠B =450:再由特殊角的三角函数值可得:cosA=cos450=22故选B.。
3、在△ABC 中:∠C =900:sinA=23 ;则cosB 的值为( )A. 21B. 22C.23D.33分析:方法一:因为sinA=23;故锐角A =600。
因为∠C =900:所以∠B =300.cosB=23.故选C.方法二:因为 ∠C =900:故 ∠A 与 ∠B 互余.所以cosB=sin A =23.故选C..4、如图19-2:在△ABC 中:∠C =900:sinA=53.则BC :AC 等于( )A C图19-1A. 3:4B. 4:3C.3:5D.4:5 分析: 因为∠C =900:sinA =53 ;又sinA=AB BC .所以AB BC =53; 不妨设BC =3k ;AB=5k ;由勾股定理可得AC =22BC AB -=4k ;所以BC :AC =3k:4k=3:4故选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形》专题训练
一、选择题
1.若等腰三角形底角为72°,则顶角为()。
A.108° B.72° C.54° D.36°
2.等腰三角形的两边长分别为5和6,则这个三角形的周长是()。
A.16 B.17 C.13 D.16或17
3. 下列条件能确定△ABC是直角三角形的条件有()。
(1) ∠A+∠B=∠C; (2) ∠A:∠B:∠C=1:2:3;
1∠C
(3) ∠A=90°-∠B; (4)∠A=∠B=
2
A.1个 B.2个 C.3个 D.4个
4. 正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()
A.60° B.90° C.120° D.150°
5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()。
A.60°B.120° C.60°或150° D.60°或120°
个外角都相等的三角形;(3)一边上的高也是这边上的中线的等腰三角形;(4)有一个角为60°的等腰三角形。
其中一定是等边三角形的有( )。
A .4个
B .3个
C .2个
D .1个
7.已知△ABC ,⑴如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°2
1 ∠A ;
⑵如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A ;
⑶如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-21
∠A 。
上述说法下确的个数是( )。
A .0个 B .1个 C .2个 D .3个
8.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其
不变形,这种做法的根据是( )。
A.两点之间线段最短 B.矩形的对称性 C.矩形的四个角都是直角 D.三角形的稳定性
9.如图5,在菱形ABCD中,E、F分别是AB、CD的中点,如果EF =2,
那么菱形ABCD的周长是()。
A.4 B.8 C.12 D.16
10.如图6,平行四边形ABCD中,对角线AC和BD相交于点O,如果
AC=12 , BD=10, AB=m ,那么m的取值范围是()。
<m<12 <m<22 C.1<m<11 <m<6
图 4 图 5 图6
12.若有一条公共边的两个三角形称为一对“共边三角形”,则图7
中以BC为公共边的“共边三角形”有()。
A.2对 B.3对 C.4对 D.6
对
13.如图8,△ABC、△ADE及△EFG都是等边三角形,D和G分别为
AC和AE
的中点.若AB=4时,则图形ABCDEFG外围的周长是()。
A.12 B.15 C.18 D.21
图7 图 8
14.一个等腰三角形底边上的高是4,周长是16,则三角形的面积是
()。
A.24 B.12 C.10 D.8
二、填空题
1. 在△ABC中,若∠A:∠B:∠C=2:3:4,则∠C=_________。
2. 三角形的三边长为3,a,7,则a的取值范围是________________。
3.如图9,在△ABC中,∠AB C=90°,∠A=50°,BD∥AC,则∠C BD
的度数是_________。
4. 如图10,已知△ABC中,AB
=AC,∠BAC与∠ACB的平分线
交于D点,∠ADC=130°,那
么∠CAB的大小是_________。
图9 图10
5.如图11所示,把腰长为1的等腰直角三角形折叠两次后,得到的一
个小三角形的周长是_________。
6. 如图12,△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,
则图形中共有_________个等腰三角形。
7.如图13,在△ABC中,AB=AC,∠BAD=20,且AE=AD,则∠CDE
=_________。
图11 图12 图13
8.在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格
点三角形. 如图14,在4×4的方格纸上,以AB为边的格点三角
形ABC的面积为2个平方单位,则符合条件的C点共有_________
个。
9. 如图15是由9个等边三角形拼成的六边形,若已知中间的小等边
三角形的边长是a,则六边形的周长是_________。
10.如图16,P是正三角形 ABC 内的一点,且PA=6,PB=8,PC=
10.若将△PAC绕点A逆时针旋转后,得到△P'AB ,则点P与点
P' 之间的距离为_________,∠APB=_________。
图14 图15 图16
11. 已知:x :y=1:2,则 (x+y):y=_______ 12. 若3
2=b
a ,则
b
a a
- =__________ 13.△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC 。
若AD :AB =1:2,则S △ADE :S △ABC =_
14.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 位置,图中旋转中心是点 ,旋转角度是 度,△ADP 为 三角形.
15.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是 度. 三、解答下列各题
1. 如图,已知△ABC 中,∠ABC=∠ACB=2∠A ,且BD ⊥AC ,垂足为D ,
求∠DBC 的度数。
B
2.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
3如图,已知点B、C、D在同一条直线上,
△ABC和△CDE•都是等边三角形.BE交
AC于F,AD交CE于H,①求证:△BCE≌
△ACD;②求证:CF=CH;
③判断△CFH•的形状并说明理由.
4.已知:如图,AB∥CD,F是AC的中点,求证:F
是DE中点。
E
D
C
A
H
F
5.已知:如图,AB=AD, CB=CD,E,F分别是AB,AD
的中点.求证:CE=CF 。
6.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。
求证:(1)AD⊥EF ;(2)当有一点G从点D
向A运动时,DE⊥AB于E,DF⊥AC于F,此
时上面结论是否成立
7.两个全等的含300, 600角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,
连结ME,MC.试判断△EMC的形状,并说明理由.
8.某同学想测量旗杆的高度,他在某一时刻测得1m长的竹杆竖直放置时的影长为 1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上。
他测得落在地面上的影长为21m,留在墙上的影高为2m。
你能帮助他求出旗杆的高度吗。