第四章 氧化还原滴定法
氧化还原滴定

氧化还原反应的速度
1. 氧化剂或还原剂: 性质不同,机理不同,显著影响速度 1)转移电子——速度快;打开共价键——速度慢 2)元素氧化数越高,反应越慢 3)静电作用力阻碍减慢反应速度 4)分步进行,整个速度受最慢一步影响 2. 浓度:增加浓度可以加快反应速度
例:Cr2O7- + 6I- +14H+ 2Cr 3+ + 3I2 + H2O
0.68V
' 1 ' 2 ' 1.44 0.68 0.76 0.40V
反应可定量进行 1.44 0.68 lg K 12.9 6 该反应进行相当完全 0.059
以0.1000 mol· -1 Ce(SO4)2滴定0.1000 mol·L-1 L
1.离子强度(盐效应) 2.生成沉淀 3.形成配合物 副反应 4.酸效应
条件电极电势 `反映了离子强度与各种副反应的影响的总结果
9
酸效应:
a(O) [O]
H3AsO4+2H++2e= HAsO2+2H2O
a( R) [R ]
(25 C )
0.059 [O] lg n [ R]
2.滴定突跃大小的影响因素
n1=n2 =1
' ,滴定突跃 ,反应 完全,越易准确滴定
氧化剂 还原剂 1.44 1.44 1.44 1.44 0.60 0.80 1.00 1.20
'
'
突跃范围 0.48V 0.28V 0.08V 0V
n1=n2
影响突跃范围的因素:条件电极电势值的差、n。
化学计量点
(1.06V)
氧化还原滴定法的原理

氧化还原滴定法的原理氧化还原滴定法是一种常用的分析化学方法,它通过测定被测物质与氧化还原试剂之间的氧化还原反应来确定被测物质的含量。
在实际应用中,氧化还原滴定法被广泛应用于医药、环境监测、食品安全等领域,具有操作简便、准确性高的特点。
氧化还原滴定法的原理基于氧化还原反应。
在这种反应中,氧化剂与还原剂之间发生电子的转移,从而使得氧化剂自身被还原,还原剂自身被氧化。
在滴定过程中,通过加入适量的氧化还原试剂,使得被测物质与试剂发生氧化还原反应,从而确定被测物质的含量。
氧化还原滴定法的关键在于选择适当的氧化还原试剂。
常见的氧化还原试剂包括高锰酸钾、碘量法、过碘酸盐滴定法等。
这些试剂在滴定过程中能够与被测物质发生明显的氧化还原反应,从而实现对被测物质含量的准确测定。
在进行氧化还原滴定法时,需要注意滴定条件的选择。
滴定条件包括溶液的浓度、滴定剂的添加速度、滴定终点的判定等。
这些条件的选择对于滴定结果的准确性有着重要的影响。
通常情况下,滴定条件的选择需要根据被测物质的性质和滴定试剂的特点来确定。
此外,氧化还原滴定法在实际应用中还需要考虑滴定终点的判定。
滴定终点是指滴定反应达到了完全的状态,此时试剂的添加量与被测物质的摩尔量成为化学计量比。
滴定终点的判定通常通过指示剂或者仪器来实现,其中指示剂可以根据颜色的变化来判断滴定终点是否已经达到。
总之,氧化还原滴定法是一种重要的分析化学方法,它通过测定被测物质与氧化还原试剂之间的氧化还原反应来确定被测物质的含量。
在实际应用中,选择适当的氧化还原试剂、滴定条件的合理选择以及滴定终点的准确判定是保证滴定结果准确性的关键。
希望本文的介绍能够帮助读者更深入地了解氧化还原滴定法的原理和应用。
氧化还原滴定分析

目录
CONTENTS
• 氧化还原滴定分析概述 • 氧化还原滴定法的应用 • 氧化还原滴定分析的实验技术 • 氧化还原滴定分析的优缺点 • 氧化还原滴定分析的未来发展
01 氧化还原滴定分析概述
CHAPTER
定义与原理
定义
氧化还原滴定分析是一种通过滴定法 测量物质含量的化学分析方法,利用 氧化还原反应来定量测定物质浓度。
测定物质的含量
化学反应机理研究
氧化还原滴定法可用于测定物质在溶 液中的含量,如金属离子、有机物等。
利用氧化还原滴定法可以研究化学反 应的机理,如电子转移过程、反应中 间产物等。
化学反应动力学研究
通过氧化还原滴定法可以研究化学反 应的动力学性质,如反应速率常数、 活化能等。
在环境监测中的应用
水中重金属离子检测
某些反应速度慢
某些氧化还原反应速度较慢,需 要较长的滴定时间,这可能会影 响测定结果的准确性。
改进方向
01
加强干扰因素的控制
为了减小干扰因素的影响,可以采取一些措施,如过滤、萃取、蒸馏等,
以去除干扰物质。
02
提高反应速度
可以通过改变反应条件来提高反应速度,如提高温度、调节酸度等,以
缩短滴定时间。
03
原理
通过加入已知浓度的氧化剂或还原剂 ,与被测物质发生氧化还原反应,利 用指示剂或电化学方法确定反应终点 ,从而计算被测物质的浓度。
氧化还原反应
氧化反应
物质失去电子的反应,通常表现为化合价升高的过程。
还原反应
物质得到电子的反应,通常表现为化合价降低的过程。
共轭反应
氧化反应和还原反应总是相互依存,形成一个氧化还 原对。
操作简便
氧化还原滴定

(2) 特殊指示剂 例:淀粉 + I2 (1 ×10-5mol·L-1) 生成深蓝色吸附化合物,
5
(3)氧化还原指示剂
指示剂
[H+ ] = 1molL-1
颜色变化 还原形 氧化形
次甲基蓝
0.52
二苯胺磺酸钠 0.85
邻苯氨基苯甲酸 0.89
+ 4H2O
1.7
Mn(H2P2O7)33- + e = Mn2+ + 3H2P2O72- 1.15
测定:Mn2+(如钢样中), 电位法确定终点。
11
(3). 弱酸性、中性、弱碱性
MnO4- + 2H2O + 3e = MnO2 +4OH- 0.59
测定:S2-,SO32-, S2O32-及某些有机物。
c(Red1) c(Ox1)
2
109
'
=
1
'-
2
'
=
0.059 2
lg109
=
0.27V
(3) n1=n2=2
K' = c(Ox2 ) c(Red1) 106 c(Red2 ) c(Ox1)
= 1
-
2
=
0.059 lg106 2
=
0.18V
△ >0.4V 反应就能定量进行
4
三、氧化还原滴定中的指示剂
环境水(地表水、引用水、生活污水) COD测定(高锰酸盐指数):
水样+ KMnO4(过) H2SO4, △ KMnO4(剩)
KMnO4
Na2C2O4(过) H2C2O4(剩)
19[1].4氧化还原滴定法
![19[1].4氧化还原滴定法](https://img.taocdn.com/s3/m/2e3b850c52ea551810a6872d.png)
③掩蔽Fe3+的黄色。
b. 土壤中腐殖质含量的测定
腐殖质是土壤中复杂的有机物质, 其含量大小反映土壤的肥力。
土壤+浓硫酸 +定量且过量 K2Cr2O7 C被氧化 Fe2+标准 滴定剩余 K2Cr2O7
Fe2O3 FeO
SnCl2 浓HCl
Fe2+ +
Sn2+
磷硫混酸
(过量)
Fe2+ Cr2O72-
HgCl2
Hg2Cl2↓ 除去过量Sn2+
无汞定铁
Fe2O3 滴加SnCl2 Fe2+ + Fe3+(少量) 滴加TiCl3 Fe2++Ti3+(少量) 热浓HCl Na2WO4 FeO 钨蓝W(V)
条件电极电势
对于可逆氧化还原电对,可用 Nernst公式计算电位: O + ne– = R
0.0592V n
lg
aO aR
式中:aO和aR分别为氧化态和还原态的活 度; 为电对的标准电极电势,仅随温 度变化。
实际上,通常知道的是溶液中氧化态或 还原态的浓度,而不是活度,但用浓度代替 活度会引起较大误差。此外副反应,如酸度 影响,沉淀与络合物的影响等都对电极电势 有影响。 考虑离子强度影响,引入活度系数γO, γR。考虑副反应影响,引入副反应系数αO, αR。此时
5O 2 8H 2 O
2) 间接滴定法测定Ca2+:
Ca
2
CaC 2 O 4 2H H 2 C 2 O 4 Ca
氧化还原滴定法

8
一定条件下,参加氧化还原反应的两电对, 条件电极电势差值越大,反应的条件平衡常数越大。 一般讲,若‘大于0.4V,反应完全程度可满足 滴定反应的要求。
9
+ = 3 2.303 RT [Fe ] lg 2 nF [Fe ]
3 3 3 ( Fe ) 2.303 RT c ( Fe )/ ( Fe ) lg 2 2 2 nF c(Fe )/ (Fe ) (Fe )
氧化还原滴定法
1
氧化还原反应的特点
• 机理复杂,分步进行; • 反应速率一般较慢。 反应复杂,很多氧化还原反应无确定的化学计量 关系 氧化还原反应方向、完全程度及速率受酸度、沉 淀反应、配位反应等影响十分明显 必须严格控制滴定反应条件,保证主反应的完全 程度(化学热力学)和快速完成(化学动力学)
2
3 2 3 2.303 RT (Fe ) ( Fe ) 2 . 303 RT c ( Fe ) lg lg 2 3 nF (Fe ) (Fe ) nF c(Fe2 )
3+ Fe
e
2+ Fe
10
3+ Fe
+
e
=
2+ Fe
3 2
'
2.303 RT (Fe ) (Fe ) lg 2 3 nF (Fe ) (Fe )
一,根据电子得、失数相等规则计算: 1mol KMnO4 Mn2+ :得到5mol电子 1mol Na2S2O3 S4O62-:失去1mol电子 1mol HCOOH CO2: 失去2mol电子 II2 I-
32
二,等物质的量规则
基本单元:
1 KMnO 4 5 1 HCOOH 2 Na 2S2 O 3
氧化还原滴定

K2Cr2O7易于提纯,可以直接准确称取一定重量干燥纯 净的K2Cr2O7,准确配制成一定浓度的标准溶液; K2Cr2O7溶液相当稳定,只要保存在密闭容器中,浓度 可长期保持不变; 不受Cl-还原作用的影响,可在盐酸溶液中进行滴定。
重铬酸钾法有直接法和间接法。 应用K2Cr2O7标准溶液进行滴定时,常用氧化还原指示 剂,例如二苯胺磺酸钠或邻苯氨基苯甲酸等。
3 . 专属指示剂
专属指示剂:有些物质本身并不具有氧化还原性,但 它能与滴定剂或被测物产生特殊的颜色,因而可指示 滴定终点。 例如,可溶性淀粉与I2生成深蓝色吸附配合物,反应 特效而灵敏,蓝色的出现与消失可指示终点。又如以 Fe3+滴定Sn2+时,可用 KSCN 为指示剂,当溶液出现 红色,即生成Fe(Ⅲ)的硫氰酸配合物时,即为终点。
高锰酸钾法的指示剂:自身指示剂 KMnO4 。 高锰酸钾法的优点:KMnO4氧化能力强,应用广泛。但 滴定时要严格控制条件。 KMnO4标准溶液的配制与标定:间接配制法,可用还原 剂作基准物来标定,H2C2O4· H2O、Na2C2O4、 Fe(SO4)2(NH4)· 6H2O等都可用作基准物。其中草酸钠不含结晶 水,容易提纯,是最常用的基准物质。 在H2SO4溶液中,MnO4-与C2O42-的反应为:
在不同酸性溶液中电极电势不同 在c(HClO)=1.0mol/L的高氯酸溶液中 ’(Cr2O72-/Cr3+)=1.025V 在c(HCl)=1.0mol/L的盐酸溶液中 ’(Cr2O72-/Cr3+)=1.00V 因此重铬酸钾法需在强酸条件下使用能测定许多无机物 和有机物。此法具有一系列优点:
8.4.2 高锰酸钾法
1. 概述
高锰酸钾是强氧化剂。 在强酸性溶液中,KMnO4还原为 Mn2+: MnO4- + 8H+ + 5e Mn2+ + 4H2O =1.507 在中性或碱性溶液中,还原为MnO2: MnO2 + 4OH- =0.595V MnO4- + 2 H2O + 3e 在NaOH浓度大于2mol · L-1的碱性溶液中,被还原为MnO42MnO42 =0.57V MnO4- + e 所以高锰酸钾法一般都在强酸条件下使用。
氧化还原滴定法的原理

氧化还原滴定法的原理氧化还原滴定法是一种常用的分析化学方法,它通过观察物质的氧化还原反应来确定物质的含量。
在这种方法中,通常会使用一种已知浓度的氧化剂或还原剂溶液,通过滴定的方式逐渐加入到待测物质溶液中,直到达到化学计量的终点。
在这个过程中,我们可以根据滴定液的消耗量来确定待测物质的含量。
氧化还原滴定法的原理基于氧化还原反应。
在这种反应中,氧化剂会接受电子,而还原剂会释放电子。
当氧化剂和还原剂发生反应时,电子的转移会导致氧化还原指示剂的颜色发生变化,从而可以确定化学计量的终点。
通过观察滴定过程中指示剂颜色的变化,我们可以准确地确定待测物质的含量。
氧化还原滴定法广泛应用于各种化学分析中。
例如,在生活中,我们可以利用氧化还原滴定法来确定水中氯离子的含量,从而判断水的卫生状况。
在工业生产中,氧化还原滴定法也被用来确定金属离子的含量,以保证产品质量。
此外,氧化还原滴定法还可以用于医学、环境监测等领域。
在进行氧化还原滴定法分析时,我们需要注意一些关键的因素。
首先,选择合适的氧化剂或还原剂溶液非常重要,它们的浓度和滴定过程中的稳定性会直接影响到分析结果的准确性。
其次,选择合适的指示剂也是至关重要的,它应当能够在化学计量终点时准确地显示颜色变化。
此外,滴定过程中的操作技巧和仪器精度也会对结果产生影响,因此需要严格控制实验条件。
总的来说,氧化还原滴定法是一种简单而有效的分析方法,它通过观察氧化还原反应的化学计量终点来确定待测物质的含量。
在实际应用中,我们需要选择合适的试剂和指示剂,并严格控制实验条件,以确保分析结果的准确性和可靠性。
通过对氧化还原滴定法原理的深入理解和实践操作,我们可以更好地应用这种方法进行化学分析,并取得准确的分析结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 氧化还原滴定法一、填空题1.下列现象各属什么反应(填 A , B , C , D )(1)用KMnO 4滴定Fe 2+ 时 Cl -的氧化反应速率被加速 。
(2) 用KMnO 4滴定C 2O 42- 时,红色的消失由慢到快 。
(3) Ag + 存在时,Mn 2+ 被 S 2O 82- 氧化为MnO -- _____ _______。
A 催化反应B 自动催化反应C 副反应D 诱导反应 。
2. 若两对电子转移数均为1,为使反应完全程度达到99.9%,则两电对的条件电位差至少应大于 。
若两对电子转移数均为2,则该数值应为 。
3. 0.1978 g 基准As 2O 3 在酸性溶液中恰好与 40.00mLKMnO 4溶液反应完全,该KMnO 4溶液的浓度为 。
[Mr (As 2O 3)=197.8]4. 已知在 1 mol ·L - 1 HCl 介质中 E Θ'Fe 3+/ Fe 2 + = 0.68V ; E Θ'Sn 4+/Sn 2+= 0.14V ,则下列滴定反应; 2 Fe 3+ + Sn 2+ == 2 Fe 2+ + Sn 4+平衡常 ;化学计量点电位为 ;反应进行的完全程度c ( Fe 2+ ) / c ( Fe 3+ ) 为。
5. 氧化还原滴定计量点附近的电位突跃的长短和氧化剂与还原剂两电对的 标准电极电势有关,它们相差愈 ,电位突跃愈 ;若两电对转移的电子数相等,计量点正好在突跃的 ;若转移的电子数不等,则计量点应偏向 。
6.常用的氧化还原方法有 、 和 。
7. 用KMnO 4法间接测定钙或直接滴定Fe 2+时,若滴定反应中用HCl 调节酸度,测定结果会 ;这主要是由于 ,反应为 。
8. 如果溶液中同时存在HgCl 2和Cl 2,加入还原剂SnCl 2时, 先被还原。
(已知V 14.024/=Θ++SnSnϕ,V 62.0222/=Θ+Cl Hg Hg ϕ,V 36.1/2=Θ-Cl Clϕ)二、选择题1. 已知在1 mol · L - 1 HCl 介质中, E Θ’Cr 2O 72-/Cr 3+ = 1.00 V; E Θ’Fe 3+/ Fe 2 += 0.68V ;以K 2Cr 2O 7滴定Fe 2+时,选择下列指示剂中的哪一种最合适?( )A. 二苯胺(E Θ’In = 0.76V );B.二甲基邻二氮菲- Fe 3+ (E Θ’In = 0.97V);C. 次甲基蓝 (E Θ’In = 0.53V );D.中性红(E Θ’In = 0.24V )。
2. 对于2A + + 3B 4+ = 2A 4+ + 3B 2+这个滴定反应,等量点时的电极电位是( )A.53ΘB ΘA ϕϕ+ B .623ΘB ΘA ϕϕ+ C.523ΘB ΘA ϕϕ- D .523ΘBΘA ϕϕ+3. 在1mol/L 的HCl 中,V 14.024/=Θ++Sn Sn ϕ,V 70.023/=Θ++Fe Fe ϕ,在此条件下,以Fe3+滴定Sn 2+,计量点的电位为( )。
A.0.25V B.0.23V C.0.33V D.0.52V4. 在1mol/L 的H 2SO 4溶液中,用0.1000 mol/LCe 4+滴定0.1000mol/L Fe 2+溶液,最恰当的氧化还原指示剂是( )。
A.次甲基蓝 B.邻苯氨基苯甲酸 C.邻二氮菲—亚铁 D .KSCN5 在1 mol ·L - 1 H 2SO 4溶液中,E Θ'Ce 4+/Ce 3+ = 1.44V ; E Θ'Fe 3+/ Fe 2 + = 0.68V ;以Ce 4+滴定Fe 2 +时,最适宜的指示剂为()A. 二苯胺磺酸钠(E Θ'In = 0.84V );B. 邻苯氨基本甲酸(E Θ'In = 089V );C. 邻二氮菲 — 亚铁(E Θ'In =1.06V );D.硝基邻二氮菲 — 亚铁(E Θ'In =1.25V )。
6. 用碘量法测定Cu 2+时,加入KI 是作为( )A.氧化剂 B.还原剂 C.络合剂 D.沉淀剂三、计算题1. 将等体积的0.40 mol ⋅L -1 的Fe 2+溶液和0.10 mol ⋅L -1Ce 4+溶液相混合,若溶液中H 2SO 4浓度为0.5 mol ⋅L -1,问反应达平衡后,Ce 4+的浓度是多少?2.根据Θ+Hg Hg /22ϕ和Hg 2Cl 2的K sp ,计算ΘHgCl Hg /22ϕ。
若溶液中Cl -的浓度为0.010mol/L 时,Hg 2Cl 2/Hg 电对的电极电位是多少?3.K 3Fe(CN)6在强酸溶液中能定量地氧化I -为I 2,因此可用它为基准物标定Na 2S 2O 3溶液。
试计算2 mol ⋅L -1 HCl 溶液中Fe(CN)63-/Fe(CN)64-电对的条件电位。
4..计算1mol/L 的HCl 溶液中用Fe 3+滴定Sn 2+时计量点的电位,并计算滴定至99.9%和100.1%时的电位。
说明为什么计量点前后同样变化0.1%,但电位的变化不相同。
5. 用一定体积(毫升)的KMnO 4溶液恰能氧化一定质量的KHC 2O 4·H 2C 2O 4·2H 2O ;如用0.2000mol ⋅L -1NaOH 中和同样质量的KHC 2O 4·H 2C 2O 4·2H 2O, 所需NaOH 的体积恰为KMnO 4的一半。
试计算KMnO 4溶液的浓度。
6.用碘量法测量钢中硫时,先使硫燃烧成SO2,被含有淀粉的水溶液吸收后、用标准碘溶液滴定。
若称取含硫0.051%的标准样品和待测样品各500.00mg ,滴定前者用去碘溶液11.60mL ,滴定后者则用去7.00mL ,试用滴定度来表示碘溶液的浓度,并计算待测样品中S的百分含量。
滴定反应为: +--++=++H SO I O H SO I 422242227.称取含有KI 的试样0.5000克,溶于水后先用Cl 2水氧化I-为IO -3,煮沸除去过量Cl 2;再加入过量KI 试剂, 滴定I 2时消耗了0.02082 mol ⋅L -1Na 2S 2O 321.3 0mL 。
计算试样中KI 的质量分数。
8.有一批铁矿样,含铁量约为50%,现用0.01667mol/L 的K 2Cr 2O 7溶液滴定,欲使所用的标准溶液的体积在20—30mL 之间,应称取试样质量的范围是多少?9.称取含NaIO 3和NaIO 4的混合试样1.000g ,溶解后定容于250mL 容量瓶中;准确移取试液50.00mL ,调至弱碱性,加入过量KI ,此时IO 4-被还原为IO 3-( IO 3-不氧化I -); 释放出的I 2用0.04000mol·L -1Na 2S 2O 3溶液滴定至终点时,消耗10.00mL 。
另移取试液20.00mL,用HCl调节溶液至酸性,加入过量的KI; 释放出的I 2用0.04000mol·L -1Na 2S 2O 3溶液滴定,消耗30.00mL 。
计算混合试样中w (NaIO 3)和w (NaIO 4)。
10.某土壤样品1.000克,用重量法获得Al 2O 3和Fe 2O 3共0.1100g ,将此混合氧化物用酸溶解并使铁还原后,以0.0100mol/L 的KMnO 4进行滴定,用去8.00mL 。
试计算土壤样品中Al 2O 3和Fe 2O 3的百分含量。
11.银还原器(金属银浸于1 mol ⋅L -1 HCl 溶液中)只能还原Fe 3+而不能还原Ti(Ⅳ),计算此条件下Ag +/Ag 电对的条件电位并加以说明。
12.准确吸取25.00mLH 2O 2样品溶液,置于250mL 容量瓶中,加入水至刻度,摇匀,再准确吸取25.00mL ,置于锥形瓶中,加H 2SO 4酸化,用0.02532mol/L 的KMnO 4标准溶液滴定,到达终点时,消耗27.68mL ,试计算样品中H 2O 2的百分含量。
13. 计算在pH3.0、c (EDTA)=0.01 mol ⋅L -1时Fe 3+/Fe 2+电对的条件电位。
14.现有As 2O 3和As 2O 5及少量杂质的混合物,溶解后,在微碱性溶液中用0.02500mol/L 碘液滴定,耗去20.00mL 。
滴定完毕后,试溶液呈强酸性,加入过量KI ,析出的碘用0.1500mol/L Na 2S 2O 3溶液30.00mL 滴定至终点,试计算试样中As 2O 3和As 2O 5各多少克。
15 称取软锰矿0.3216克,分析纯的Na 2C 2O 4 0.3685克,共置于同一烧杯中,加入H 2SO 4,并加热; 待反应完全后,用0.02400 mol ⋅L -1KMnO 4溶液滴定剩余的Na 2C 2O 4,消耗KMnO 4溶液11.26 mL 。
计算软锰矿中MnO 2的质量分数。
16. 用KIO 3标定Na 2S 2O 3的浓度,称取KIO 30.3567g ,溶于水并稀释至100.0mL ,移取所得溶液25.00mL ,加入H 2SO 4及KI 溶液,用24.98mLNa 2S 2O 3滴定折出的I 2, 求Na 2S 2O 3的浓度。
取上述Na 2S 2O 3溶液25.00mL ,用碘溶液24.83mL 滴定至终点。
求碘溶液的浓度。
17 在1 mol ⋅L -1 HCl 溶液中,用Fe 3+滴定Sn 2+,计算下列滴定百分数时的电位:9,50,91,99,99.9,100.0,100.1,101,110,200%,并绘制滴定曲线。
18..今有不纯的KI 试样0.3500g ,在H 2SO 4溶液中加人纯K 2CrO 4 0.1940g 处理,煮沸赶出生成的碘。
然后,又加入过量的KI ,使与剩余的K 2CrO 4作用,折出的I 2用0.1000mol/L ,Na 2S 2O 3标准溶液滴定,用去Na 2S 2O 3溶液10.00mL ,问试样中含KI%。
19 为测定试样中的K +, 可将其沉淀为K 2NaCo(NO 2)6, 溶解后用KMnO 4滴定(NO 2-→NO 3-, Co 3-→Co 2-), 计算K +与MnO 4-的物质的量之比, 即n (K) : n (KMnO 4)。
20. 丁基过氧化氢(C4H9OOH )的摩尔质量90.08g/moL ,它的测定是在酸性条件下使它与过量碘化钾反应,折出定量的碘,再用硫代硫酸钠标准溶液滴定;反应为:O H I OOH H C H I OOH H C 22949422++=+++----+=+264232222O S I O S I今称取含丁基过氧化氢的试样0.3150g ,滴定析出的碘时用去0.1000mol/LNa2S2O3溶液18.20mL 。