确定空调温度传感器阻值的方法
空调温度传感器障检修方法分享

空调温度传感器障检修方法分享实修中发现,因温度传感器变值或性能不良而产生的故障较为常见,以下是温度传感器异常后的故障现象与检修方法,供参考。
一、主要参数1.CPU检温引脚电压CPU检测室温、室内管温、室外管温脚的电压值,正常时一般为1.6V~3.6V.如电压过低或过高,应检查该脚所接的传感器是否变值,以及串接的+5V或+3.3V分压电阻、电容是否击穿漏电,感温线是否断路或接插不良。
2.负温度系数的传感器在25℃时,传感器阻值一般为5kΩ、l5kΩ、20kΩ、50kΩ。
同一机型的室内外传感器参数一般相同,如传感器变值,可参照本机其他传感器,也可检测与传感器串联的分压电阻的阻值得出其近似阻值。
传感器的检测:传!器的标称阻值是以25℃为准,具体阻值与温度有关,温度升高,阻值变小,温度降低,阻值增大。
检测传感器感温性能通常是将其放入开水中.用万用表Rx1k拌测阻值变化是否灵敏。
另外,变值后的传感器,如敲击后恢复正常值可视为性能不位,应予以更换。
检修中应常备各种型号的传感器,以方便检则参照。
二、常见故障现象故障现象1:制热模式下吹冷风,室外机不启动,或启动一下即停。
多为室内管温传感;{变值,如果阻值变小,在温度尚未达到要求的情况下,CPU误认为蒸发器已升至30℃,随即开始送风,即吹冷风;如阻值变大,则会造成室内机长时间不送风。
故障现象2:制热模式下,室内机风速很低,,室内管根变值或感源性能不良均会引发上述现象。
当管温阻值变大时.压缩机工作不久就停机。
在蒸发器温度未达到30℃时,室内风机就以微风挡工作;当温度达到30℃时,室内风机以设定风速正常工作。
故障现象3:制冷模式下,开始制冷正常,过一会室外机停止工作,随后,频繁启动。
此现象多为室温传感器阻值变大,或室内管温传感器性能不良,导致CPU误发出防冻结过冷保护。
故障现象4:整机不启动,遥控开机无反应。
管温传感器阻值减小,CPU输入的电压升高;管温阻值为无穷大,CPU输入的电压过低,空调整机保护。
温度传感器校准方法

温度传感器校准方法
温度传感器校准方法有以下几种:
1. 比较法校准:将传感器与标准温度比较,通过将传感器测量的温度值与标准温度值进行比较,确定传感器的偏差,并进行相应的校准。
2. 水浴法校准:使用一个已经校准好的温度计测量水浴中的温度,然后将传感器放入水浴中,将传感器测量的温度与已知的温度进行比较,确定传感器的偏差,并进行相应的校准。
3. 内部参照法校准:传感器内部已经集成了一个温度参照源,通过参照源测量的温度与传感器测量的温度进行比较,确定传感器的偏差,并进行相应的校准。
4. 线性回归法校准:将传感器在不同温度下的输出与标准温度进行比较,建立传感器输出与温度之间的线性回归方程,通过该方程来计算传感器的实际温度,并进行相应的校准。
校准方法的选择要根据具体的传感器型号、使用环境和要求来确定,以确保校准的准确性和可靠性。
中央空调温度传感器阻值判断技巧。

中央空调温度传感器阻值判断技巧。
在中央空调维修工作中,如何确定中央空调温度传感器正常阻值,有一种方法特别简单:
选一只50kΩ电位器和一个热敏电阻通用插头.为了方便,之间用导线连接好,拔下怀疑有故障的中央空调温度传感器,插上通用插头,给空调上电,用万用表5V挡测试电位器两端子的电压,慢慢转动电位器手柄,当电压为2.5V时,停止转动,此时电位器的阻值就是中央空调温度传感器当时的阻值。
参考当时的环境温度.例如:环境温度30℃左右,实测阻值为8kΩ,参考温度曲线,那么该温度传感器阻值为10kΩ。
如果是中央空调排气温度传感器.电压应为1.25V时动作.把电位器换为470kΩ即可.方法相同。
在维修中手头上住住只有常用的5kΩ和10kΩ的热敏电阻,对于15kQ、20kΩ和50kΩ的代换,那只能暂作变通代换,其方法有二。
1、可靠、对运行参数影响不大,即准备几只5kΩ和10kΩ的固定电阻,将中央空调温度传感器和下偏置电阻一起换。
例如一台麦克维尔MAC230BR中央空调。
判断为冷冻出水温度传感器特性曲线不良,压机工作几分钟停机.经确定其阻值为10kΩ,因手头只有5kΩ配件,用5kΩ热敏电阻代换原10kΩ热敏电阻,将下偏置10kΩ碳膜电阻换为5kΩ固定电阻后整机工作即为正常。
此方法需要维修人员懂电路知识,方可采用。
2、将热敏电阻和固定电阻串联代换.但电气参数略有出入,只可作应急代换。
•常见空调温度传感器阻值常识。
•空调温度传感器原理知识与使用代换。
•空调温度传感器温度、阻值测量方法表。
•空调温度传感器损坏后阻值的确定和变通代换。
•空调温度控制(传感器)与微处理器(CPU)控制电路工作原理。
温度传感器电阻计算公式

温度传感器电阻计算公式温度传感器在我们的日常生活和工业生产中可是有着大作用呢!比如说,它能帮助我们精确地测量环境温度,让空调更好地调节室内温度,让冰箱保持食物的新鲜度。
而要搞清楚温度传感器的工作原理,那就不得不提到电阻啦,这就引出了温度传感器电阻计算公式。
咱们先来说说温度传感器电阻计算公式到底是啥。
一般来说,常见的温度传感器电阻计算公式是Rt = R0 * (1 + α * (T - T0)) 。
这里的 Rt 表示在温度 T 时的电阻值,R0 是在参考温度 T0 时的电阻值,α 呢,则是电阻的温度系数。
我记得有一次,在学校的实验室里,我们做了一个关于温度传感器的实验。
当时,老师给我们每个小组都发了一个温度传感器和相关的测量仪器,让我们通过改变温度,测量电阻值,然后验证这个公式。
那场面,可热闹了!大家都小心翼翼地操作着仪器,眼睛紧紧盯着数据的变化。
我和我的小伙伴一开始还有点手忙脚乱,不是温度控制得不太准,就是电阻测量出了点小差错。
但是我们没有放弃,一次次地调整,一次次地重新测量。
当我们终于得到一组比较准确的数据,然后代入公式计算,发现结果和我们测量的电阻值非常接近的时候,那种兴奋和成就感简直无法形容!咱们再回到这个公式,要想准确地运用它,就得先搞清楚每个参数的含义和取值。
比如说,R0 的取值就得看你所使用的温度传感器的规格和说明书,α 这个温度系数也是特定材料所决定的。
在实际应用中,这个公式可帮了大忙啦!比如在工业生产中,要确保某个设备在特定的温度范围内正常运行,就可以通过这个公式来计算出对应的电阻值,从而监测温度的变化。
还有啊,在一些智能家居系统中,温度传感器也能通过这个公式计算出电阻值,然后把温度信息传递给控制系统,实现智能化的温度调节。
总之,温度传感器电阻计算公式虽然看起来有点复杂,但只要我们搞清楚了其中的原理和参数,它就能为我们的生活和工作带来很多便利。
就像那次实验室的经历,让我深刻地体会到了知识的力量和探索的乐趣。
空调温度传感器阻值对照表

空调温度传感器阻值对照表是用于比较和参考传感器在特定温度下的阻值,从而进行相应的调整和校准。
一般来说,空调温度传感器分为室内环温传感器和室内盘管传感器两种。
室内环温传感器的阻值在25℃时为10KΩ±2.5%,而室内盘管传感器的阻值在25℃时为10KΩ±3%。
感温头的型号值就是它在25℃时的电阻值,通常是5K、10K、15K、20K、50K这几种,一般都是负温度系数的,即温度越高,电阻值反而越小。
此外,美的空调传感器温度与阻值也有相应的对照表,但需要注意的是,不同类型感温头的阻值不同,而且在实际应用中,还需要考虑感温头的插脚长度的不同,以获得更准确的测量结果。
总的来说,空调温度传感器阻值对照表是一种重要的工具,可以帮助工程师快速准确地调整和校准传感器,从而确保空调的正常运行和舒适度。
在实际应用中,还需要结合具体的情况进行相应的调整和改进。
空调温度传感器损坏后阻值的确定和变通代换

空调温度传感器损坏后阻值的确定和变通代换作者:未知来源:网络转载查看:121空调温度传感器损坏后阻值的确定和变通代换市上常见的空调,温度控制都是由微处理器(CPU)控制的,其感温元件温度传感器的损坏率,在控制电路中是较高的,一但出现开路、短路或特性曲线不良等故障,空调将不能正常工作,显示不正常的代码。
由于温度传感器上没有标明参数和阻值,往往在维修中难以确定,就是同一品牌,不同型号,其阻值不一定相同。
CPU控温接口电路和控温的原理(示意图如图1所示)。
温度传感器采用的是负温度系数热敏电阻,即在温度升高时阻值减小。
相反温度降低时阻值增大。
CPU内部与温度传感器接口是一个运放比较器,例如空调室温、管温传感器比较器的负端取样电压为CPU电源电压的1/2,也就是2.5V。
外围电路由 RT1和RT2、R1和R2构成分压电路,且以常温25℃为基准,也就是25℃时,RT1=R1、RT2=R2,A、B点电压为2.5V。
有些电路设有 R3、R4主要起缓冲作用。
当环境温度升高时RT1阻值减小,A点电压上升,比较器输出一差压,经CPU内部一系列处理,去控制内外机运行状态。
还有部分大型空调、变频空调外机控制板,温度传感器(如压缩机排放传感热敏电阻和化霜传感热敏电阻)接口的取样电压不是2.5V,而是1/4电源电压(也就是1.25V),必须使温度传感器的阻值是下偏置电阻的3倍,才符合电路设计要求。
这样,A、B两点电压在常温25℃时,RT1阻值为250k(排气热敏电阻要大),下偏置电阻R1定为82k,同理:化霜热敏电阻RT2为10k,下偏置电阻R2为3.3k。
有人认为“看下偏置电阻确定热敏电阻的阻值”,对于图1电路是可行的,但当分压比不同时,就不成立了。
其实确定热敏电阻阻值有一种方法特别简单,选一只50k电位器和一个热敏电阻通用插头,为了方便,之间用一米多长导线连接好,拔下有故障的热敏电阻,插上通用插头,给空调上电,用万用表5V挡测试电位器两端子的电压,慢慢转动电位器手柄,当电压为2.5V时,停止转动,此时电位器的阻值就是热敏电阻当时的阻值。
空调温度传感器分类、作用与阻值

空调温度传感器分类、作用与阻值空调温度传感器,是指利用物质各种物理性质随温度变化的规律机械性能把空调各处温度转换为电量的传感器。
这些呈现规律性变化的物理性质主要有体。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和接触式两大类,按照感测材料及电子元件特性分为热电阻和热电偶两类。
那么空调温度传感器一般都用来检测空调哪几处的温度?1、室内环境温度传感器:室内环境温度传感器通常安装在室内机热交换器的出风口处,它的作用多半有三个:第一:是在制冷或制热期间检测户外室内的温度,控制压缩机运转的时间;第二:是在自动运行模式下控制工作状态;第三:是控制顶楼风扇的转速。
2、室内盘管温度传感器:室内盘管温度传感器采用金属外壳,安装在顶楼热交换器的表面上,它的主要作用有四个:第一:是制冷期间防过冷保护;第二:是制热期间防过热保护;第三:是控制室内风扇电机的户外转速;第四:是制热期间用于辅助室外除霜。
3、室外环境温度传感器:室外环境温度传感器通过塑料架安装在不锈钢室外热交换器上,它的主要作用有七个:第一:是在制冷或制热期间相对湿度检测室外的环境温度;第二:是用直于控制室外风机转速。
4、室外盘管温度传感器:室外盘管温度传感器采用金属外壳,室外安装在在室外热交换器的表面上所,它的主要包括作用有三个:第一:是制冷期间防过热保护;第二:是制热期间防盗冻结保护;第三:是除霜期间控制热交换器的温度。
5、压缩机排气指示器:压缩机排气指示器也采用金属外壳,它咱装在泵排气管上,它的主要作用有两个:第一:通过检测轴承排气管温度,控制膨胀阀的开启度的压制压缩机转速;第二:是用于描述排气管过热保护。
提示,通常厂家根据空调室内机微型电脑控制主板的参数来确定温度传感器的阻值是,一般当阻值随相对湿度升高而降低,随温度减低而增大。
《空调管温传感器(10K)温度-电阻对照表》单位:温度℃/电阻K。
下图做参考:。
PT100温度传感器检测方法

P T100温度传感器检
测方法
-CAL-FENGHAI.-(YICAI)-Company One1
PT100温度传感器,实际上是热电阻,一般分为两线式、三线式和四线式三种形式。
使用万用表的电阻档,测试其引线之间的电阻,可以大致判断其好坏。
下面给出的数值是在常温下的数值。
1、对于两线式:没什么好说的了,就两根引线,直接测量就是了,其阻值在110欧姆左右。
2、对于三线式:其引线分别为1、2、3。
其中:1和2之间、1和3之间,其阻值约为110欧姆;2和3之间的电阻为0。
3、对于四线式:其引线分别为1、2、3、4。
其中:1和2之间、1和4之间、3和2之间、3和4之间,其阻值为110欧姆左右;1和3之间、2和4之间,其阻值为0。
2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定空调温度传感器阻值的方法
(摘自《家电维修》杂志2008年第2期)
采用CPU电路控制的空调中,温度传感器是必备元件,也是易损元件。
其损坏或性能不良,空调轻则工作状态失常,重则根本不能开机。
由于各品牌空调所使用的传感器阻值不同,甚至同一品牌不同型号的空调所使用的也不一样,这就给维修人员检修造成一定难度,不能准确地判断传感器是否正常,或不知道到底该使用多大阻值的传感器。
下面通过对温度传感器电路结构的分析,结合多年的维修经验,向大家介绍一种快速判断其阻值的方法。
温度传感器的基本电路如图1所示,从图中可以看出,三路传感器都是分别和一个电阻串联后,对+5V(部分空调使用的是+3.3V)电压进行分压,分压后的电压送入CPU内部。
由于空调温度传感器采用的都是负温度系数热敏电阻,即在温度升高时其阻值减小,温度降低时阻值增大。
所以CPU的输入电压规律就是:温度升高时,CPU 的输入电压升高,温度降低时,CPU的输入电压随之降低。
这一变化的电压进入CPU内部电路进行分析处理,来判断当前的管温或室温,并通过内部程序和人为设定,来控制空调的运行状态。
由于送到CPU的采样电压会随温度高低变化而在较大范围内变化,所以厂家在设计时,一般都以25℃为准,将该采样电压设计成电源电压的一半,以便给温度变化导致的电压变化留出充分的余地。
如果采样电压设计得过高或过低,都将不能正常反映出当前的温度变化。
由于R1、R2、R3三个电阻的阻值是恒定的,如果不考虑CPU接口的内部电路阻值(事实上该接口的内部阻值比较大,可以不予考虑),那么要保证其A、B、C三点的电压为2.5V左右(在25℃状态下),RT1、RT2、RT3就只能尽量使用和R1、R2、R3同阻值的传感器,否则该点电压压降偏离较多。
据上述分析可以推断,在检修空调时,完全可以通过与传感器串联的电阻阻值来判断传感器是否正常,但要注意温度对传感器阻值的影响。
当需要更换某个传感器时,只要测量与之串联电阻的阻值,然后选用和它阻值接近的传感器即可。
表1
常见空调传感器阻值、品牌对照表
传感器阻
值封装形式
使用部
位
适用品牌
5 kΩ环氧树脂封装室温春兰、格力、东宝、三菱、海尔、日立、志高、
5 kΩ铜管封装管温科龙、TCL、乐声、东芝、大金、星星、海信、波尔卡、长虹、松下等
10 kΩ环氧树脂封装室温华宝、美的、海尔、新科、华凌、长虹、三星、
新飞、日立、飞歌、松下等
10 kΩ环氧树脂封装室温
15 kΩ铜管封装管温
松下、格力大柜机等
50 kΩ铜管封装管温
50 kΩ铜管封装管温
海尔、飞歌、华宝大柜机等
20 kΩ铜管封装管温
50 kΩ铜管封装管温飞歌、长虹、格力等
注:表中传感器阻值是在环境温度为标准25℃时的数据,其他温度和该阻值不同,规律
是温度高于25℃则阻值比上述阻值小,温度低于25℃则阻值比上述阻值大
1、空调温度传感器工作原理
空调温度传感器为负温度系数的热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。
25℃时的阻值为标称值。
空调温度传感器都是和一个电阻串联以后,对5V(部分空调使用的+3.3V)电压进行分压,分压后的电压送入CPU内部。
由于空调温度传感器采用的都是负温度系数热敏电阻,即在温度升高时其阻值减小,温度降低时其阻值增大。
所以CPU的输入电压规律就是;温度升高时,CPU的输入电压升高,温度降低时,CPU的输入电压随之降低。
这一变化的电压进入CPU内部分析处理,来判断当前的管温或室温,并通过内部程序和人为设定,来控制空调的运行状态。
由于送到CPU的采样电压会随温度高低变化而较大范围内变化,所以厂家在设计时,一般都以25度为准,将该采样电压设计成电源电压的一半,以便给温度变化导致的电压变化孵出充分的余地。
如果采样电压设计得过高或过低,都将不能正常反映出当前的温度变化。
由于R1、R2、R3各串联电阻的阻值是恒定的,如果不考虑CPU接口的内阻电路阻值(事实上该接口的内部阻值比较大,可以不考虑),那么要保证其A、B、C三个CP U输入点电压为2.5V左右(在25度下),RT1、RT2、RT3三个传感器就只能昼使用和三
个串联电阻(R1、R2、R3)同阻值的传感器,否则该点电压压降偏离较多。
这就是空调温度传感器的工作原理!
2、空调温度传感器的构成
空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。
NTC在电路中,温度变化使N TC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。
3、空调温度传感器的常见故障
NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。
下面首先分析室内环温空调温度传感器、室内盘管NTC、室外盘管NTC、排气NTC和吸气NTC的作用,根据这些作用和原理分析出空调温度传感器常见的故障!
1)各种类型NTC的作用
(1)室内环温NTC作用
室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。
定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。
值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。
变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。
(2)室内盘管NTC作用
室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。
空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。
若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷) 制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。
(3)室外盘管NTC作用
制热化霜温度检测,制冷冷凝温度检测。
制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。
制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。
外环温NTC 控制室外风机的转速、冬季预热压缩机等。
(4)排气NTC作用
使变频压缩机降频,避免外机过热,缺氟检测等。
(5)吸气NTC作用
控制制冷剂流量,有步进电机控制节流阀实现。
2)故障分析
室内外盘管NTC损坏率最高,故障现象也各种各样。
室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。
主要表现在:
(1)电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。
化霜故障可代换室外盘管NTC或室外化霜板。
(2)在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。
因室内环温NT C若出现故障会使得CPU错误地判断室内环温而引起误动作。
室内环温NTC损坏率不是很高。