幂法及反幂法

合集下载

数值分析幂法和反幂法

数值分析幂法和反幂法

数值分析幂法和反幂法数值分析中的幂法和反幂法是求解矩阵最大特征值和最小特征值的常用方法。

这两种方法在许多数值计算问题中都有着广泛的应用,包括图像压缩、数据降维、谱聚类等。

幂法(Power Method)是一种迭代算法,通过不断迭代矩阵与一个向量的乘积,来逼近原矩阵的最大特征值和对应的特征向量。

其基本思想是,对于一个矩阵A和一维向量x,可以通过不断迭代计算Ax,Ax,Ax...,来使得向量x逼近最大特征值对应的特征向量。

具体的迭代过程如下:1.初始化一个向量x0(可以是单位向量或任意非零向量)2.令x1=Ax0,对向量进行归一化(即除以向量的范数)得到x13.重复步骤2,即令x2=Ax1,x3=Ax2...,直到收敛(即相邻迭代向量的差的范数小于一些阈值)为止4. 最终得到的向量xn就是A的最大特征值对应的特征向量在实际求解时,我们可以将迭代过程中的向量进行归一化,以防止数值溢出或下溢。

此外,为了提高迭代速度,我们可以选择使得xn与xn-1的内积大于0的方向作为迭代方向,这样可以使得特征值的模快速收敛到最大特征值。

幂法的收敛性是保证的,但收敛速度可能较慢,尤其是当最大特征值与其他特征值非常接近时。

此时可能需要使用一些改进的方法来加速收敛,例如Rayleigh商或位移策略。

相反,反幂法(Inverse Power Method)是求解矩阵的最小特征值和对应的特征向量的方法。

它的基本思想和幂法类似,但在每次迭代中,需要计算A和依其逆矩阵A-1的乘积。

迭代过程如下:1.初始化一个向量x0(可以是单位向量或任意非零向量)2.令x1=A-1x0,对向量进行归一化(即除以向量的范数)得到x13.重复步骤2,即令x2=A-1x1,x3=A-1x2...4. 最终得到的向量xn就是A的最小特征值对应的特征向量反幂法和幂法的区别在于迭代过程中乘以了A的逆矩阵,从而可以利用矩阵的特殊结构或性质来提高迭代速度。

同时,在实际求解时,可能需要将矩阵进行一些变换,以确保A-1存在或数值稳定性。

幂法及反幂法

幂法及反幂法

v2
Au1
A2v0 max(Av0 )
,
vk
Auk 1
maxA(Akvk01v0 )
,
v0 0
u1
u2
uk
(且1 0)
规范 化
u2
v1 Av0
max( v1 ) v2
max( v2 )
mmaaxAx((2AAv02vv00))
vk max(vk
)
Ak
nxnn) nxn 1
Ax1
2 Ax2
n
Axn
且其从1 x收中而1。当由说敛k假kl明速ki=m设2,度(,(3当由2,(1i2…k比).充k121值))时分k 0xr式,大2(vik|时| 1k1k[2121,A(,|确|v 1k有x|1定11,xnn2v(1。)k1kA,|k2n1所v即(0)k以1211xk)xkl|nk有i11m,x)n122k或|x,kkl1得imv0k1k|v,2越k1k n21ni来k(|x2越n11n11))kx接k(x1xin近n]2特,n(2征(,n.n2k4向)x.)3n )量)
结论:
定理 8 (1)设 A Rnn 有n个线性无关的特征向量; (2)设A特征值满足 | 1 || 2 | | n |, 且 Axi i xi (i 1,,n); (3){uk } 及 {vk }由改进幂法得到的规范化向量序列及迭代向量
序列((2.7)式),则有
(a)
lim
k
uk
x1 ; max( x1 )
,对应特征向量为
xi
(i
1,,
n),
xn } 线性无关。求矩阵A的主特
征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量

数值分析第四章矩阵特征值与特征向量的计算

数值分析第四章矩阵特征值与特征向量的计算

192.9996. 973
12
➢ 幂法的加速—原点移位法
应用幂法计算矩阵A的主特征值的收敛速度主要
由比值 r=|2/1|来决定, 但当r接近于1时, 收敛可能
很慢. 这时可以采用加速收敛的方法.
引进矩阵
B=A-0I
其中0为代选择参数. 设A的特征值为1, 2, …, n, 则B的特征值为1-0, 2-0, …, n-0, 而且A, B
10
2 1 0 例 用幂法求矩阵 A 0 2 1
0 1 2
的按模最大的特征值和相应的特征向量.
取 x(0)=(0, 0, 1)T, 要求误差不超过103.
解 y 0 x 0 0 ,0 ,1 T ,
x 1 A 0 0 y , 1 , 2 T , 1 m x ( 1 ) ) a 2 , x
y(1)
x(1)
1
(0,0.5,1)T
x ( 2 ) A ( 1 ) 0 . 5 y , 2 , 2 . 5 T ,2 m x ( 2 ) ) 12 1a . 5 ,
y(2)
x(2) 2
(0.2,0.8,1)T
x ( 3 ) A ( 2 ) 1 . 2 y , 2 . 6 , 2 . 8 T ,3 m x ( 3 ) ) 2 a . 8 ,
x
(
k
1
)
Ax
(k )
A k1 x (0)
在一定条件下, 当k充分大时:
1
x ( k 1) i
x
( i
k
)
相应的特征向量为: x(k1) 4
➢ 幂法的理论依据
n
对任意向量x(0), 有 x(0) tiui ,
i1
x(k1) Ax(k) Ak1x(0)

幂的运算所有法则和逆运算法则

幂的运算所有法则和逆运算法则

幂的运算所有法则和逆运算法则幂的运算法则包括乘法法则、除法法则和幂的指数法则。

逆运算法则包括开平方运算和对数运算。

下面将详细介绍这些法则。

一、幂的乘法法则:对于任意实数a和正整数n,有:a^n*a^m=a^(n+m)这条乘法法则表明,当两个幂具有相同的底数时,可以将底数保持不变,指数相加得到新的指数。

二、幂的除法法则:对于任意实数a和正整数n,有:a^n/a^m=a^(n-m)这条除法法则表明,当两个幂具有相同的底数时,可以将底数保持不变,指数相减得到新的指数。

三、幂的指数法则:1.幂的幂法则:对于任意实数a和正整数n、m,有:(a^n)^m=a^(n*m)这条指数法则表明,当一个幂的指数再次被指数化时,可以将指数相乘得到新的指数。

2.幂的乘法法则的推广:对于任意实数a和正整数n_1,n_2,...,n_k,有:a^(n_1)*a^(n_2)*...*a^(n_k)=a^(n_1+n_2+...+n_k)这条指数法则表示,当一个底数出现多次相乘时,可以将所有指数相加得到新的指数。

3.幂的除法法则的推广:对于任意实数a和正整数n_1,n_2,...,n_k,有:a^(n_1)/a^(n_2)/.../a^(n_k)=a^(n_1-n_2-...-n_k)这条指数法则表示,当一个底数出现多次相除时,可以将所有指数相减得到新的指数。

四、逆运算法则:1.幂的开平方运算:对于任意非负实数a和正整数n(a^(1/n))^n=a这条逆运算法则表示,当一个数的n次幂再开n次方时,可以得到该数本身。

2.幂的对数运算:对于任意正实数a、b和正整数n,有:log(base a)(a^n) = n这条逆运算法则表示,当一个数的n次幂再以底数a进行对数运算时,可以得到n。

总结:幂的运算法则包括乘法法则、除法法则和幂的指数法则。

乘法法则指出当两个幂具有相同底数时,可以将指数相加;除法法则指出当两个幂具有相同底数时,可以将指数相减;指数法则包括幂的幂法则和幂的乘法法则的推广,指数可以相乘得到新的指数。

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量幂法和反幂法是求解矩阵最大最小特征值及其对应特征向量的常用方法。

在本文中,我们将详细介绍这两种方法的原理和具体实现。

一、幂法(Power Method)幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。

其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。

幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A和向量b1的乘积Ab1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A和向量b的乘积Ab,得到新的向量b;7.特征值的近似值λ=,Ab,/,b。

具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=A*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,A*bn,/,bn;4. 特征向量的近似值vbn=bn。

幂法的优点是计算简单、迭代次数少,但对于含有多个特征值接近的矩阵,可能会收敛到次大特征值。

二、反幂法(Inverse Power Method)反幂法是幂法的拓展,用于求解矩阵的最小特征值及其对应的特征向量。

其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。

反幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A的逆矩阵Ai和向量b1的乘积Ai*b1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A的逆矩阵Ai和向量b的乘积Ai*b,得到新的向量b;7.特征值的近似值λ=,Ai*b,/,b。

具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=inv(A)*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,inv(A)*bn,/,bn;4. 特征向量的近似值vbn=bn。

《幂法和反幂法》课件

《幂法和反幂法》课件

应用范围比较
总结词
幂法适用于求解特征值和特征向量,而反幂法适用于求解线性方程组和最小二 乘问题。
详细描述
幂法主要用于求解特征值和特征向量,在物理、工程和科学计算等领域有广泛 应用。反幂法适用于求解线性方程组和最小二乘问题,在统计学、机器学习和 数据分析等领域有广泛应用。
优缺点比较
总结词
幂法的优点在于能够求解特征值和特征向量,但缺点是计算复杂度高;反幂法的优点在于计算复杂度低,但缺点 是可能存在数值不稳定性。
幂法的性质
01
02
03
幂法具有高效性
相对于直接计算矩阵的幂 ,幂法可以大大减少计算 量和存储空间。
幂法具有收敛性
在适当的条件下,幂法能 够收敛到正确的矩阵幂的 结果。
幂法具有稳定性
在计算过程中,幂法能够 保持数值的稳定性,避免 误差的累积。
幂法的应用场景
数值分析
用于求解线性方程组、特 征值问题等数值计算问题 。
详细描述
幂法的优点在于能够精确求解特征值和特征向量,适用于需要高精度计算的情况。然而,由于其计算复杂度高, 对于大规模数据集可能效率较低。反幂法的优点在于计算复杂度相对较低,适用于处理大规模数据集。然而,反 幂法可能存在数值不稳定性,对于某些问题可能需要额外的数值稳定化技术。
04
幂法和反幂法的实现
05
幂法和反幂法的应用实 例
幂法在密码学中的应用
加密算法
幂法常被用于构造加密算法,如RSA算法。通过使用幂法,可以 快速地计算大数的幂次,从而实现高效的加密和解密过程。
密钥交换
在Diffie-Hellman密钥交换协议中,幂法被用于生成共享密钥,确 保通信双方安全地交换密钥。
数字签名

矩阵特征值快速求法

矩阵特征值快速求法

矩阵特征值快速求法矩阵特征值是矩阵分析中十分重要的概念。

它在物理、工程、数学等许多领域都有着广泛的应用。

矩阵特征值是指矩阵运动时特殊的运动状态,是一种宏观量度矩阵运动的指标。

求解矩阵特征值是一项复杂的任务,通常需要使用高级算法来完成。

本文将介绍几种常用的求解矩阵特征值的算法,其中包括幂法、反幂法、QR算法、分裂Broyden算法等。

一、幂法幂法是求解矩阵特征值的一种基础算法,其基本思想是通过迭代来逐步逼近矩阵的最大特征值。

幂法的核心公式如下:x_(k+1)=A*x_k/||A*x_k||其中,x_k表示第k次迭代中得到的特征向量,A表示原始矩阵。

幂法通过不断的迭代来逼近A的最大特征值,当迭代次数趋近于无限大时,得到的特征向量就是A的最大特征值所对应的特征向量。

幂法的运算量较小,适用于比较简单的矩阵。

反幂法与幂法类似,不同之处在于每次迭代时采用的是A的逆矩阵来进行计算。

其核心公式如下:x_(k+1)=(A-λI)^(-1)*x_k其中,λ表示要求解的特征值。

反幂法能够求解非常接近于特征值λ的特征向量,并且对于奇异矩阵同样适用。

需要注意的是,在实际计算中,如果A-λI的秩不满,那么反幂法就无法使用。

三、QR算法1. 将原矩阵A进行QR分解,得到A=Q*R。

2. 计算A的近似特征矩阵A1=R*Q。

5. 重复步骤3-4,直到A的对角线元素全部趋近于所求特征值为止。

QR算法的计算量较大,但其具有收敛速度快、精度高等优点,广泛应用于科学计算中。

四、分裂Broyden算法分裂Broyden算法是QR算法的一种改进算法,其基本思想是将矩阵分解成上下三角形式,然后再对其进行QR分解,以减少QR算法中的乘法运算量。

具体实现过程如下:2. 构造一个倒数矩阵B=U^(-1)*L^(-1)。

4. 计算A的近似特征矩阵A1=Q^(-1)*L^(-1)*A*R^(-1)*U^(-1)*Q。

分裂Broyden算法的计算量较小,能够有效地解决QR算法中的乘法运算量过大的问题。

数值分析 -第7讲_幂法和反幂法

数值分析 -第7讲_幂法和反幂法
数值分析
则存在酉矩阵U使 定理9( Schur定理) 设A ∈ R n×n, r11 r12 L r1n r22 L r2n ∆ = R, U T AU = O rnn 其中rii (i = 1,2,L, n)为A的特征值.
定理10(实Schur分解) 设A ∈ R n×n, 则存在正交矩阵Q使 R11 R12 L R1m R22 L R2m , QT AQ = O Rmm 其中当Rii (i = 1,2,L, m)为一阶时Rii是A的实特征值,当Rii为 二阶时Rii的两个特征值是A的两个共轭复特征值.
xn xn
α1 x1 α1 x1
数值分析
不同范数选取下的特征值的计算
1. 取范数为2-范数时 取范数为2
T T yk −1uk = yk −1 Ayk −1 ⇒
α1 x1T α1 x1 A = λ1 α1 x1 2 α1 x1 2
对应的迭代公式
∀ u0 ∈ R n T η k −1 = uk −1uk −1 yk −1 = uk −1 η k −1 uk = Ayk −1 T β k = yk −1uk ( k = 1, 2,...)
数值分析
实际使用的迭代公式为: 实际使用的迭代公式为:
uk −1 yk −1 = u k −1 u = Ay k −1 k
于是可得
Auk −1 A2uk −2 A k u0 uk = = = L = k −1 uk −1 Auk −2 A u0
uk Ak u0 yk = = k uk A u0
数值分析
定义3 定义3 设A = (aij ) n×n , 令 n ( )i = ∑ | aij | (2) Di = {z | | z − aii |≤ ri , z ∈ C }, (i = 1,L, n) 1 r , j≠i 称Di为复平面上以aii为圆心以ri为半径的Gerschgorin圆盘.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。

要求
1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC 文件。

3)程序清单,生成M 文件。

解答:
>> A=rand(5) %随机产生5*5矩阵 求随机矩阵 A =
0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A 矩阵和A 的转置相加,得到随机对称矩阵B B =
1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286
B=⎥⎥⎥
⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎢
⎢⎣⎡6286.13929.03467.15979.08044.03929.00944.12144.18506.13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613.09173.04187.1
编写幂法、反幂法程序:
function [m,u,index,k]=pow(A,u,ep,it_max)
% 求矩阵最大特征值的幂法,其中
% A为矩阵;
% ep为精度要求,缺省为1e-5;
% it_max为最大迭代次数,缺省为100;
% m为绝对值最大的特征值;
% u为对应最大特征值的特征向量;
% index,当index=1时,迭代成功,当index=0时,迭代失败if nargin<4
it_max=100;
end
if nargin<3
ep=1e-5;
end
n=length(A);
index=0;
k=0;
m1=0;
m0=0.01;
% 修改移位参数,原点移位法加速收敛,为0时,即为幂法
I=eye(n)
T=A-m0*I
while k<=it_max
v=T*u;
[vmax,i]=max(abs(v));
m=v(i);
u=v/m;
if abs(m-m1)<ep;
index=1;
break;
end
m=m+m0;
m1=m;
k=k+1;
end
function[m,u,index,k]=pow_inv(A,u,ep,it_max)
% 求矩阵最大特征值的反幂法,其中
% A为矩阵;
% ep为精度要求,缺省为1e-5;
% it_max为最大迭代次数,缺省为100;
% m为绝对值最大的特征值;
% u为对应最大特征值的特征向量;
% index,当index=1时,迭代成功,当index=0时,迭代失败if nargin<4
it_max=100;
end
if nargin<3
ep=1e-5;
end
n=length(A);
index=0;
k=0;
m1=0;
m0=0;
% 修改移位参数,原点移位法加速收敛,为0时,即为反幂法I=eye(n);
T=A-m0*I;
invT=inv(T);
while k<=it_max
v=invT*u;
[vmax,i]=max(abs(v));
m=v(i);
u=v/m;
if abs(m-m1)<ep
index=1;
break;
end
m1=m;
k=k+1;
end
m=1/m;
m=m+m0;
修改输入的m0的值,所得结果:
⎢⎣15
⎦。

相关文档
最新文档