2013浙江文科数学高考试题pdf
2013年高考真题文-浙江卷文科数学试题及答案

2013年普通高等学校招生全国统一考试文科数学(浙江卷)选择题部分一、选择题1.设集合S={x|x>-2|,T={x|-4≤x≤1},则S∩T等于()A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]答案 D解析S={x|x>-2},T={x|-4≤x≤1}.由数轴可知:S∩T={x|-2<x≤1}=(-2,1].故选D.2.已知i是虚数单位,则(2+i)(3+i)等于()A.5-5i B.7-5i C.5+5i D.7+5i答案 C解析(2+i)(3+i)=6+5i+i2=5+5i.故选C.3.若α∈R,则“α=0”是“sin α<cos α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析由α=0可以推出sin α<cos α,所以“α=0”是“sin α<cos α”的充分条件;由sin α<cos α推不出α=0,所以“α=0”不是“sin α<cos α”的必要条件.故选A.4.设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案 C解析两条平行线中,有一条直线垂直于一个平面,那么另一条直线也垂直这个平面.故选C.5.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 3 答案 B 解析将三视图还原成直观图,如图, 是去掉一个角的长方体.V =3×6×6-13×⎝⎛⎭⎫12×3×4×4=100. 故选B.6.函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1 D .2π,2 答案 A解析 f (x )=sin x cos x +32cos 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎫2x +π3. 所以最小正周期为π,振幅为1. 故选A.7.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0 答案 C解析 由f (0)=f (4)知,f (x )=ax 2+bx +c 的对称轴为-b a =2.∴2a +b =0.又0和1在同一个单调区间内,且f (0)>f (1), ∴y =f (x )在(-∞,2)内为减函数.∴a >0.故选C.8. 已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如右图所示,则该函数的图象是( )答案 B解析 由y =f ′(x )的图象知,y =f (x )的图象为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢.故选B. 9. 如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 |F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b 2=1.∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a , ∴|AF 2|=2+a ,|AF 1|=2-a . 在Rt △F 1AF 2中,∠F 1AF 2=90°, ∴|AF 1|2+|AF 2|2=|F 1F 2|2, 即(2-a )2+(2+a )2=(23)2, ∴a =2,∴e =c a =32=62.故选D.10.设a ,b ∈R +,定义运算“∧”和“∨”如下:a ∧b =⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b ,a ∨b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b . 若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ) A .a ∧b ≥2,c ∧d ≤2 B .a ∧b ≥2,c ∨d ≥2 C .a ∨b ≥2,c ∧d ≤2D .a ∨b ≥2,c ∨d ≥2答案 C解析 这个题目属于新定义型问题. 由a 、b ∈R +,且ab ≥4,所以a 、b 中一定有一个值大于或等于2. ∴a ∨b ≥2.同理c ∧d ≤2.故选C.非选择题部分二、填空题11.已知函数f (x )=x -1.若f (a )=3,则实数a =______. 答案 10解析 f (x )=x -1且f (a )=3,即a -1=3, ∴a =10.12.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________. 答案 15解析 基本事件总数为:15.构成事件的基本事件为:3. ∴P =315=15.13.直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 答案 4 5解析 圆x 2+y 2-6x -8y =0的标准方程为:(x -3)2+(y -4)2=25. 圆心坐标为(3,4),半径为5. 圆心(3,4)到直线y =2x +3的距离 d =|2×3-4+3|5= 5.∴弦长l =252-(5)2=4 5.14.若某程序框图如图所示,则该程序运行后输出的值等于________.答案 95解析 当k =5时,输出S .此时,S =1+11×2+12×3+13×4+14×5=1+1-12+12-13+13-14+14-15=2-15=95.15.设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x ≥2,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________. 答案 2 解析由⎩⎪⎨⎪⎧x ≥2x -2y +4≥02x -y -4≤0画出可行域如图,由z =kx +y 即y =-kx +z 的最大值为12,知 直线y =-kx +12必过点(4,4). ∴k =2.16.设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab =________. 答案 -1解析 当x =0时,得0≤b ≤1,当x =1时,得a +b =0,∴a =-b ∈[-1,0]. 当x ≥0时,x 4-x 3+ax +b =x 4-x 3+ax -a =x 3(x -1)+a (x -1)=(x -1)(x 3+a )≤(x 2-1)2 ①当x =1时,a ∈R .②当x >1时,a ≤x 2-x -1=⎝⎛⎭⎫x -122-54恒成立. 则a ≤-1.③当0≤x <1时,a ≥x 2-x -1=⎝⎛⎭⎫x -122-54恒成立.则a ≥-1. 综上知:a =-1.∴b =1.可以验证当x ≥0时,0≤x 4-x 3-x +1恒成立. ∴ab =-1.17.设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 答案 2解析 ①当x =0时,|x ||b |=0;②当x ≠0时, |b |2=(x e 1+y e 2)2 =x 2+y 2+2xy e 1·e 2 =x 2+y 2+3xy ∴|x ||b |=|x |x 2+y 2+3xy =1⎝⎛⎭⎫y x 2+3⎝⎛⎭⎫y x +1=1⎝⎛⎭⎫y x +322+14≤2.由①②知|x ||b |的最大值为2.三、解答题18.在锐角△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.解 (1)由2a sin B =3b 及正弦定理a sin A =bsin B ,得sin A =32. 因为A 是锐角,所以A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =36. 又b +c =8,所以bc =283.由三角形面积公式S =12bc sin A ,得△ABC 的面积为733.19.在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解 (1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0. 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n ,因为d <0, 由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧-12n 2+212n , n ≤11,12n 2-212n +110, n ≥12.20. 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =BC =2,AD =CD =7,P A =3,∠ABC =120°.G 为线段PC 上的点.(1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成角的正切值; (3)若G 满足PC ⊥平面BGD ,求PGGC的值. (1)证明 设点O 为AC 、BD 的交点.由AB =BC ,AD =CD ,得BD 是线段AC 的中垂线. 所以O 为AC 的中点,BD ⊥AC .又因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD ,且AC ∩P A =A . 所以BD ⊥平面APC . (2)连结OG .由(1)可知OD ⊥平面APC , 则DG 在平面APC 内的射影为OG , 所以∠OGD 是DG 与平面APC 所成的角. 由题意得OG =12P A =32.在△ABC 中,AC =AB 2+BC 2-2AB ·BC ·cos ∠ABC =2 3. 所以OC =12AC = 3.在Rt △OCD 中,OD =CD 2-OC 2=2. 在Rt △OGD 中,tan ∠OGD =OD OG =433.所以DG 与平面APC 所成角的正切值为433.(3) 连结OG .因为PC ⊥平面BGD ,OG ⊂平面BGD , 所以PC ⊥OG .在Rt △P AC 中,得PC =15. 所以GC =AC ·OC PC =2155.从而PG =3155,所以PG GC =32.21. 已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax .(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值.解 (1)当a =1时,f ′(x )=6x 2-12x +6, 所以f ′(2)=6.又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得到x 1=1,x 2=a . 当a >1时,比较f (0)=0和f (a )=a 2(3-a )的大小可得g (a )=⎩⎪⎨⎪⎧0, 1<a ≤3,a 2(3-a ), a >3.当a <-1时,得g (a )=3a -1.综上所述,f (x )在闭区间[0,2|a |]上的最小值为 g (a )=⎩⎪⎨⎪⎧3a -1, a <-1,0, 1<a ≤3,a 2(3-a ), a >3.22.已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO 、BO 分别交直线l :y =x -2于M 、N 两点,求|MN |的最小值.解 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1. 由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N | =2⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16=82k 2+1|4k -3|. 令4k -3=t ,t ≠0,则k =t +34. 当t >0时,|MN |=2225t 2+6t +1>2 2. 当t <0时,|MN |=22⎝⎛⎭⎫5t +352+1625≥852. 综上所述,当t =-253,即k =-43时, |MN |的最小值是852.。
2013高考数学试卷(浙江文科)(全word,无误)

2013年普通高等学校招生全国统一考试(浙江)数学(文科)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T= A 、[-4,+∞) B 、(-2, +∞) C 、[-4,1] D 、(-2,1]2、已知i 是虚数单位,则(2+i)(3+i)=A 、5-5iB 、7-5iC 、5+5iD 、7+5i 3、若α∈R ,则“α=0”是“sinα<cosα”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件 4、设m 、n 是两条不同的直线,α、β是两个不同的平面, A 、若m ∥α,n ∥α,则m ∥n B 、若m ∥α,m ∥β,则α∥β C 、若m ∥n ,m ⊥α,则n ⊥α D 、若m ∥α,α⊥β,则m ⊥β5、已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是A 、108cm 3B 、100 cm 3C 、92cm 3D 、84cm3 (第5题图) 6、函数cos 2x 的最小正周期和振幅分别是A 、π,1B 、π,2C 、2π,1D 、2π,2 7、已知a 、b 、c ∈R ,函数f(x)=ax 2+bx+c.若f(0)=f(4)>f(1),则 A 、a>0,4a+b=0 B 、a<0,4a+b=0 C 、a>0,2a+b=0 D 、a<0,2a+b=08、已知函数y=f(x)的图像是下列四个图像之一,且其导函数y=f ′(x)的图像如右图所示,则该函数的图像是(第8题图)A 、B 、C 、D 、9、如图F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是 A 、2 B 、3 C 、32 D 、62(第9题图)10、设a ,b ∈R ,定义运算“∧”和“∨”如下:,,a a b a b b a b ≤⎧∧=⎨>⎩, ,,b a ba b a a b≤⎧∨=⎨>⎩ 若正数a 、b 、c 、d 满足ab≥4,c+d≤4,则A 、a ∧b≥2,c ∧d≤2B 、a ∧b≥2,c ∨d≥2C 、a ∨b≥2,c ∧d≤2D 、a ∨b≥2,c ∨d≥2非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.已知函数f若f (a)=3,则实数a= ____________. 12.从三男三女6名学生中任选2名(每名同学被选中的概率 均相等),则2名都是女同学的概率等于_________.13.直线y=2x+3被圆x 2+y 2-6x -8y=0所截得的弦长等于____ 14.某程序框图如图所示,则该程序运行后输出的值等于_____15.设z=kx+y ,其中实数x 、y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k=________ .16.设a,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax+b ≤(x 2-1)2, 则ab 等于________.17. 设e 1、e 2为单位向量,非零向量b =x e 1+y e 2,x,y ∈R . 若e 1、e 2的夹角为6π,则||||x b 的最大值等于_______.(第14题图)三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=3b . (Ⅰ)求角A 的大小; (Ⅱ) 若a=6,b+c=8,求△ABC 的面积.19.(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (Ⅰ)求d ,a n ; (Ⅱ) 若d<0,求|a 1|+|a 2|+|a 3|+…+|a n | .20.(本题满分15分)如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥平面BGD,求PGGC的值.21.(本题满分15分)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ) 若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.22.(本题满分14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ) 过F作直线交抛物线于A、B两点.若直线OA、OB 分别交直线l:y=x-2于M、N两点,求|MN|的最小值.2013年浙江高考文科数学参考答案一、选择题:本题考查基本知识和基本运算。
2013年高考文科数学浙江卷word解析版-推荐下载

C.[-4,1]
答案:D
B.(-2,+∞)
D.(-2,1]
解析:集合 S 与集合 T 都表示连续的实数集,此类集合的运算可通过数轴直观表示出来.
,故 S∩T={x|-2<x≤1},故选 D.
2.(2013 浙江,文 2)已知 i 是虚数单位,则(2+i)(3+i)=( ).
A.5-5i
答案:C
B.7-5i
A. 2
答案:D
B. 3
3
C.
2
6
D.
2
解析:椭圆 C1 中,|AF1|+|AF2|=2a=4,|F1F2|=2c= 2 3 .又四边形 AF1BF2 为矩形,∴∠F1AF2=90°,
∴|AF1|2+|AF2|2=|F1F2|2,∴|AF1|= 2 2 ,|AF2|= 2 2 ,∴双曲线 C2 中,
x2 9.(2013 浙江,文 9)如图,F1,F2 是椭圆 C1: 4 +y2=1 与双曲线 C2 的公共焦点,A,B 分别是
C1,C2 在第二、四象限的公共点.若四边形 AF1BF2 为矩形,则 C2 的离心率是( ).
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术0艺料不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试22下卷,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并22工且22作尽22下可22都能2可地护1以缩关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编5试要写、卷求重电保技要气护术设设装交备备4置底高调、动。中试电作管资高气,线料中课并3敷试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2013年高考文科数学浙江卷word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,文1)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=().A.[-4,+∞)B.(-2,+∞)C.[-4,1] D.(-2,1]答案:D解析:集合S与集合T都表示连续的实数集,此类集合的运算可通过数轴直观表示出来.,故S∩T={x|-2<x≤1},故选D.2.(2013浙江,文2)已知i是虚数单位,则(2+i)(3+i)=().A.5-5i B.7-5i C.5+5i D.7+5i答案:C解析:(2+i)(3+i)=6+5i+i2,因为i2=-1,所以(2+i)(3+i)=5+5i,故选C.3.(2013浙江,文3)若α∈R,则“α=0”是sin α<cos α”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当α=0时,sin α<cos α成立;若sin α<cos α,α可取π6等值,所以“α=0”是“sin α<cos α”的充分不必要条件.故选A.4.(2013浙江,文4)设m,n是两条不同的直线,α,β是两个不同的平面().A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案:C解析:A选项中直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B选项中,α与β也可能相交,此时直线m平行于α,β的交线;D选项中,m也可能平行于β.故选C. 5.(2013浙江,文5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是().A.108 cm3B.100 cm3C.92 cm3D.84 cm3答案:B解析:由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm 3).故选B.6.(2013浙江,文6)函数f (x )=sin x cos x cos 2x 的最小正周期和振幅分别是( ). A .π,1 B .π,2 C .2π,1 D .2π,2 答案:A解析:由y =sin x cos x +2cos 2x =12sin 2x +2cos 2x =πsin 23x ⎛⎫+ ⎪⎝⎭,因为ω=2,所以T =2πω=π,又观察f (x )可知振幅为1,故选A.7.(2013浙江,文7)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ).A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 答案:A解析:由f (0)=f (4)知二次函数f (x )=ax 2+bx +c 对称轴为x =2,即22ba-=.所以4a +b =0,又f (0)>f (1)且f (0),f (1)在对称轴同侧,故函数f (x )在(-∞,2]上单调递减,则抛物线开口方向朝上,知a >0,故选A.8.(2013浙江,文8)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如右图所示,则该函数的图象是( ).答案:B解析:由导函数图象知,函数f (x )在[-1,1]上为增函数.当x ∈(-1,0)时f ′(x )由小到大,则f (x )图象的增长趋势由缓到快,当x ∈(0,1)时f ′(x )由大到小,则f (x )的图象增长趋势由快到缓,故选B.9.(2013浙江,文9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D .2答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=2a =4,|F 1F 2|=2c =又四边形AF 1BF 2为矩形,∴∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,∴|AF 1|=2|AF 2|=2C 2中,2c =2a =|AF 2|-|AF 1|=e ==,故选D. 10.(2013浙江,文10)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =,,,,a a b b a b ≤⎧⎨>⎩a ∨b =,,,.b a b a a b ≤⎧⎨>⎩若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ).A .a ∧b ≥2,c ∧d ≤2B .a ∧b ≥2,c ∨d ≥2C .a ∨b ≥2,c ∧d ≤2D .a ∨b ≥2,c ∨d ≥2 答案:C解析:由题意知,运算“∧”为两数中取小,运算“∨”为两数中取大,由ab ≥4知,正数a ,b 中至少有一个大于等于2.由c +d ≤4知,c ,d 中至少有一个小于等于2,故选C.非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,文11)已知函数f (x )若f (a )=3,则实数a =__________.答案:10解析:由f (a )3,得a -1=9,故a =10.12.(2013浙江,文12)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.答案:15解析:从3男,3女中任选两名,共有15种基本情况,而从3女中任选2名女同学,则有3种基本情况,故所求事件的概率为31155=. 13.(2013浙江,文13)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于__________.答案:解析:圆的圆心为(3,4),半径是5,圆心到直线的距离d ==,可知弦长l ==14.(2013浙江,文14)若某程序框图如图所示,则该程序运行后输出的值等于__________.答案:9 5解析:该程序框图为循环结构.当k=1时,S=1+112⨯=32;当k=2时,3152233 S=+=⨯;当k=3时,5173344S=+=⨯;当k=4时,7194455S=+=⨯,循环结束,输出95S=.15.(2013浙江,文15)设z=kx+y,其中实数x,y满足2,240,240.xx yx y≥⎧⎪-+≥⎨⎪--≤⎩若z的最大值为12,则实数k=__________.答案:2解析:满足条件2,240,240xx yx y≥⎧⎪-+≥⎨⎪--≤⎩的区域D如图阴影部分所示,且A(2,3),B(4,4),C(2,0).作直线l0:y=-kx,当k>0时,y=-kx为减函数,在B处z最大,此时k=2;当k<0时,y=-kx为增函数,当-k∈10,2⎛⎫⎪⎝⎭时,在B处z取最大值,此时k=2(舍去);当-k>12时,在A处取得最大值,92k=(舍去),故k=2.16.(2013浙江,文16)设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab=__________.答案:-1解析:令x=1,得0≤1-1+a+b≤0,整理,得a+b=0,①令x=-1,得0≤1-(-1)-a+b≤0,整理,得a-b=2,②解①②组成的方程组,得1,1. ab=⎧⎨=-⎩∴ab=-1.17.(2013浙江,文17)设e1,e2为单位向量,非零向量b=x e1+y e2,x,y∈R.若e1,e2的夹角为π6,则||||xb的最大值等于__________.答案:2解析:因为b≠0,所以b=x e1+y e2,x≠0,y≠0.又|b|2=(x e1+y e2)2=x2+y2+xy,22222||1||1xyx==++b,不妨设ytx=,则22||||x=b,当2t=-时,t2+1取得最小值14,此时22||||xb取得最大值,所以||||xb的最大值为2.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,文18)(本题满分14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2a sin B.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.解:(1)由2a sin B及正弦定理sin sina bA B=,得sin A=2.因为A是锐角,所以π3A=.(2)由余弦定理a2=b2+c2-2bc cos A,得b2+c2-bc=36.又b+c=8,所以283bc=.由三角形面积公式S=12bc sin A,得△ABC19.(2013浙江,文19)(本题满分14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0. 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *.(2)设数列{a n }的前n 项和为S n ,因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩20.(2013浙江,文20)(本题满分15分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =BC =2,AD =CDP AABC =120°,G 为线段PC 上的点.(1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值; (3)若G 满足PC ⊥平面BGD ,求PGGC的值. 解:(1)设点O 为AC ,BD 的交点.由AB =BC ,AD =CD ,得BD 是线段AC 的中垂线. 所以O 为AC 的中点,BD ⊥AC .又因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .所以BD ⊥平面APC .(2)连结OG .由(1)可知OD ⊥平面APC ,则DG 在平面APC 内的射影为OG ,所以∠OGD 是DG 与平面APC 所成的角.由题意得OG =12P A=2.在△ABC 中, AC= 所以OC =12AC在直角△OCD 中,OD=2.在直角△OGD 中,tan ∠OGD=OD OG =所以DG 与平面APC所成的角的正切值为3.(3)连结OG .因为PC ⊥平面BGD ,OG ⊂平面BGD ,所以PC ⊥OG . 在直角△P AC 中,得PC所以GC=AC OC PC ⋅=从而PG,所以32PG GC =.21.(2013浙江,文21)(本题满分15分)已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax .(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值. 解:(1)当a =1时,f ′(x )=6x 2-12x +6, 所以f ′(2)=6.又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得到x 1=1,x 2=a . 当a比较f (0)=0和f (a )=a 2(3-a )的大小可得g (a )=23, 3.a a a ⎧⎨(-)>⎩ 当a 得g (综上所述,f (x )在闭区间[0,2|a |]上的最小值为g (a )=231,1,0,13,3, 3.a a a a a a -<-⎧⎪<≤⎨⎪(-)>⎩22.(2013浙江,文22)(本题满分14分)已知抛物线C 的顶点为O (0,0),焦点为F (0,1).(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则12p=, 所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1. 由21,4y kx x y=+⎧⎨=⎩消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=由11,2,y y x x y x ⎧=⎪⎨⎪=-⎩解得点M 的横坐标1121111122844M x x x x x y x x ===---. 同理点N 的横坐标x N =284x -. 所以|MN ||x M -x N |284x --=令4k -3=t ,t ≠0,则34t k +=. 当t >0时,|MN |=当t <0时,|MN |=≥综上所述,当253t =-,即43k =-时,|MN |.。
2013年浙江高考数学试题及答案解析

2013年浙江高考数学试题及答案解析
目前,浙江地区的高考真题已公布,欢迎您收藏本网站,北京高考频道首发2013浙江高考数学真题,内容会在此列表页头条显示,希望为你解开你考试后的心结。一旦高考真题及答案发布,将在此表页的头条显示,如果您需要13浙江高考真题文科数学卷2013浙江高考理科数学答案
祝各位考生在高考中取的好的成绩,进到自己心中所属的大学。
2013年浙江省高考数学试卷(文科)及解析

2013年浙江省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A .[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A .5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A .若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A108cm3B100 cm3C92cm3D84cm3....6.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A .π,1B.π,2C.2π,1D.2π,27.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A .a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=08.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x )的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C 2的离心率是()A.B.C.D.10.(5分)(2013•浙江)设a,b ∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=_________.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于_________.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于_________.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于_________.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=_________.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于_________.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.2013年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A .[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]考点:交集及其运算.专题:计算题.分析:找出两集合解集的公共部分,即可求出交集.解答:解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选D点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A .5﹣5i B.7﹣5i C.5+5i D.7+5i考点:复数代数形式的乘除运算.专题:计算题.分直接利用多项式的乘法展开,求出复数的最简形式.析:解答:解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选C.点评:本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.解答:解:∵“α=0”可以得到“sinα<c osα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.点评:本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A .若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:计算题;空间位置关系与距离.分析:用直线与平面平行的性质定理判断A的正误;用直线与平面平行的性质定理判断B的正误;用线面垂直的判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.解答:解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选C.点评:本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个答:三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.点评:由三视图正确恢复原几何体是解题的关键.6.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A .π,1B.π,2C.2π,1D.2π,2考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.分析:f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.解答:解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选A点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0考点:二次函数的性质.专题:函数的性质及应用.分析:由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a的不等式可得a>0.解答:解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选A.点评:本题考查二次函数的性质及不等式,属基础题.8.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.解答:解:由导数的图象可得,函数f(x)在[﹣1,0]上增长速度逐渐变大,图象是下凹型的;在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.点评:本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)(2013•浙江)如图F1、F 2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a,焦距为2c,则2a=,|AF2|﹣|AF1|=y﹣x=2,2c=2=2,∴双曲线C 2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A .a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2考点:函数的值.专题:计算题;新定义.分析:依题意,对a,b赋值,对四个选项逐个排除即可.解答:解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,4,则a∧b≥2错误,故可排除A,B;再令c=1,d=1,满足条件c+d≤4,但不满足c∨d≥2,故可排除D;故选C.点评:本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a )=3,则实数a=10.考点:函数的值.专题:计算题.分析:利用函数的解析式以及f(a)=3求解a即可.解答:解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.点评:本题考查函数解析式与函数值的应用,考查计算能力.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.解答:解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=故答案为:点评:本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.解答:解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.故答案为:4.点评:本题考查直线与圆的位置关系,弦长的求法,考查转化思想与计算能力.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于.考点:程序框图.专题:图表型.分析:由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.解答:解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=2.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,z max=F(4,4)=4k+4=12,解得k=2,得到本题答案.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,z max=F(2,3)=2k+3或z max=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时z max=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2点评:本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.考点:函数恒成立问题.专题:转化思想;函数的性质及应用.分析:由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=±1时,其值都为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,从而解出它们的值,即可求出积解答:解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0;当x=﹣1时,将﹣1代入不等式有0≤2﹣a+b≤0,所以b﹣a=﹣2 联立以上二式得:a=1,b=﹣1所以ab=﹣1故答案为﹣1点评:本题考查函数恒成立的最值问题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,将问题灵活转化是解题的关键17.(4分)(2013•浙江)设、为单位向量,非零向量=x +y,x、y∈R.若、的夹角为30°,则的最大值等于2.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.点评:本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.考点:正弦定理;余弦定理.专解三角形.题:分析:(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a ,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.点评:此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.考点:直线与平面垂直的判定;直线与平面所成的角;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD 的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证PC⊥OG,且PC==.由△COG∽△PCA,可得,解得GC的值,可得PG=PC﹣GC 的值,从而求得的值.解答:解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD 的交点为O ,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC 的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos ∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且PC==.由△COG∽△PCA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.点评:本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.解答:解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x0(0,1)1(1,a)a(a,2a)2af′(x)+0﹣0+f(x)0单调递增极大值3a﹣1单调递减极小值e2(3﹣a)单调递增4a3比较f(0)和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X0(0,1)1(1,﹣2a)﹣2af′x)﹣0+f(x)0单调递减极小值3a﹣1单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.考点:直线与圆锥曲线的关系;抛物线的标准方程.专题:综合题;数形结合;转化思想;圆锥曲线的定义、性质与方程.分析:(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.解答:解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y (II)设A(x1,y 1),B(x2,y2),直线AB的方程为y=kx+1由消去y,整理得x2﹣4kx﹣4=0所以x1+x2=4k,x1x 2=﹣4,从而有|x1﹣x2|==4由解得点M的横坐标为x M ===,同理可得点N的横坐标为x N=所以|MN|=|x M ﹣x N|=|﹣|=8||=令4k﹣3=t,t 不为0,则k=当t>0时,|MN|=2>2当t<0时,|MN|=2=2≥综上所述,当t=﹣时,|MN|的最小值是点评:本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用。
2013年浙江省高考数学试卷(文科)及解析

2013年浙江省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm36.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,27.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=08.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=_________.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于_________.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于_________.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于_________.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=_________.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于_________.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小2013年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]考点:交集及其运算.专题:计算题.分析:找出两集合解集的公共部分,即可求出交集.解答:解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选D点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i考点:复数代数形式的乘除运算.专题:计算题.分析:直接利用多项式的乘法展开,求出复数的最简形式.解答:解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选C.点评:本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.解答:解:∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.点评:本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.解答:解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选C.点评:本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解答:解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.点评:由三视图正确恢复原几何体是解题的关键.6.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,2考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.即可.解答:解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选A点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0考点:二次函数的性质.专题:函数的性质及应用.分析:由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a的不等式可得a>0.解答:解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选A.点评:本题考查二次函数的性质及不等式,属基础题.8.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x )的图象如图所示,则该函数的图象是()A.B .C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.解答:解:由导数的图象可得,函数f(x)在[﹣1,0]上增长速度逐渐变大,图象是下凹型的;在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.点评:本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a,焦距为2c,则2a=,|AF2|﹣|AF1|=y﹣x=2,2c=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2考点:函数的值.专题:计算题;新定义.分析:依题意,对a,b赋值,对四个选项逐个排除即可.解答:解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,4,则a∧b≥2错误,故可排除A,B;点评:本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=10.考点:函数的值.专题:计算题.分析:利用函数的解析式以及f(a)=3求解a即可.解答:解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.点评:本题考查函数解析式与函数值的应用,考查计算能力.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.解答:解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=故答案为:点评:本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.解答:解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于.考点:程序框图.专题:图表型.分析:由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.解答:解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=2.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,z max=F(4,4)=4k+4=12,解得k=2,得到本题答案.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,z max=F(2,3)=2k+3或z max=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时z max=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2点评:本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.考点:函数恒成立问题.专题:转化思想;函数的性质及应用.分析:由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=±1时,其值都为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,从而解出它们的值,即可求出积解答:解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0;当x=﹣1时,将﹣1代入不等式有0≤2﹣a+b≤0,所以b﹣a=﹣2联立以上二式得:a=1,b=﹣1所以ab=﹣1故答案为﹣1点评:本题考查函数恒成立的最值问题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,将问题灵活转化是解题的关键17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.点评:本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.点评:此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d <0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.考点:直线与平面垂直的判定;直线与平面所成的角;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证PC⊥OG,且PC==.由△COG∽△PCA,可得,解得GC的值,可得PG=PC﹣GC 的值,从而求得的值.解答:解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且PC==.由△COG∽△PCA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.点评:本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.解答:解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x 0 (0,1) 1 (1,a) a (a,2a)2af′(x)+ 0 ﹣0 +f(x)0 单调递增极大值3a﹣1 单调递减极小值单调递增4a3e2(3﹣a)比较f(0)和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X 0 (0,1) 1 (1,﹣2a)﹣2af′x)﹣0 +f(x)0 单调递减极小值3a﹣1 单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.考点:直线与圆锥曲线的关系;抛物线的标准方程.专题:综合题;数形结合;转化思想;圆锥曲线的定义、性质与方程.分析:(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.解答:解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y (II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1由消去y,整理得x2﹣4kx﹣4=0所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x2|==4由解得点M的横坐标为x M===,同理可得点N的横坐标为x N=所以|MN|=|x M﹣x N|=|﹣|=8||=令4k﹣3=t,t不为0,则k=当t>0时,|MN|=2>2当t<0时,|MN|=2=2≥综上所述,当t=﹣时,|MN|的最小值是点评:本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用。
2013年全国高考文科数学试题及答案-浙江

侧视图(第8题图)2013年全国高考文科数学试题及答案-浙江选择题部分(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2},{|41},S x x T x x S T =>-=-≤≤=则2.已知i 是虚数单位,则(2)(3)i i ++=3.若a R ∈,则“0a = ”是“sin cos αα< ”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 4.设m,n 是两条不同的直线,,αβ是两个不同的平面5.已知某几何体的三视图(单位:mm )如图所示,则该几何体的体积是 6.函数()sin cos 2f x x x x =+的最小正周期和振幅分别是 7.,,a b c R ∈函数2(),(0)(4)(1),f x ax bx c f f f =++=>若则8.已知函数()y f x =的图象是下列四个图象之一,且其导函数()y f x '=的如 右图所示,则该函数的图象是9.如图,12,F F是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是 10.设,a b R ∈,定义运算“∧”和“∨”如下: 若正数,,,4,4,a b c d ab c d ≥+≤满足则二.填空题:本大题共7小题,每小题4分,共28分.11.已知函数()()3,f x f a ==若则实数a = .12.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这两名同学都是女生的概率等于 .13.直线23y x =+被圆22680x y x y +--=所截得的弦长等于 . 14.若某程序框图如图所示,则该程序运行后输出的值等于 .15.设,z kx y =+其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k = .16.设,a b R ∈,若0x ≥时恒有43220(1)x x ax b x ≤-++≤-,则ab = .(第20题图)17.设12,e e 为单位向量,非零向量1212,,.,b xe ye x y R e e =+∈若的夹角为6π,则||||x b 的最大值等于 .三.解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2sin .a B = (Ⅰ)求角A 的大小;ⅠⅠ()若6,8,a b c ABC =+=∆求的面积.19.(本题满分14分)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列. (Ⅰ)求d ,n a ;20.(本题满分15分)如图,在四棱锥P ABCD -中,,2,PA ABCD AB BC ⊥==平面,3,120,A D C A B C G =∠=为线段PC 上的点.(Ⅰ)证明:BD APC ⊥平面;ⅠⅠ()若G 为PC 的中点,求DG 与平面APC 所成角的正切值; (ⅠⅠⅠ)若G 满足,PC BGD ⊥平面求PGGC的值. 21.(本题满分15分)已知a R ∈,函数32()23(1)6f x x a x ax =-++ (Ⅰ)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程; ⅠⅠ()若||1a >,求()f x 在闭区间[0,2||]a 上的最小值.22.(本题满分14分)已知抛物线C 的顶点为(0,0)O ,焦点为(0,1)F . (Ⅰ)求抛物线C 的方程;ⅠⅠ()过点F 作直线交抛物线C 于,A B 两点,若直线,AO BO 分别交直线:2l y x =-于,M N 两点,求||MN 的最小值.参考答案三.解答题:本大题共5小题,共72分18.(本题满分14分)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2sin .a B = (Ⅰ)求角A 的大小;ⅠⅠ()若6,8,a b c ABC =+=∆求的面积.(第20题图)因为A 为锐角,所以 3A π=ⅠⅠ()由余弦定理222222cos 36ab c bc A b c bc =+-+-=得,又8b c+=所以 283bc =由三角形面积化工得1128sin 223ABC S bc A ∆==⋅=19.(本题满分14分)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列.(Ⅰ)求d ,n a ; (Ⅰ) 解;:由题意得所以 11,*46,*.n n a n n N a n n N =-∈=+∈或ⅠⅠ()设数列{}n a 的前n 项和为n S ,因为0,d <由(Ⅰ)得1,11,n d a n =-=-则当11n ≤时,212121||||||.22n n a a a S n n +++==-+当12n ≥时,21211121||||||2110.22n n a a a S S n n +++=-+=-+综上即得212212111,22||||||12111012.22n n n n a a a n n n ⎧-+≤⎪⎪+++=⎨⎪-+≥⎪⎩20.(本题满分15分)如图,在四棱锥P ABCD -中,,2,PA ABCD AB BC ⊥==平面,3,120,A D C A B C G =∠=为线段PC 上的点.(Ⅰ)证明:BD APC ⊥平面;ⅠⅠ()若G 为PC 的中点,求DG 与平面APC 所成角的正切值;(ⅠⅠⅠ)若G 满足,PC BGD ⊥平面求PGGC的值. (Ⅰ)设点O 为,AC BD 的交点,由,,AB BC AD CD BD ==得是线段AC 的中垂线. 所以O 为AC 的中点,BD AC ⊥ ①又因为,,PA ABCD BD ABCD PA BD ⊥⊂⊥平面平面所以 ② 由①②即得 BD APC ⊥平面.ⅠⅠ()连结OG 由(Ⅰ)可知OD APC ⊥平面,则DG 在平面APC 内的射影为OG ,所以OGD ∠是DG 与平面APC 所成的角,由题意得122OG PA ==所以 12OC PA == 在Rt OCD ∆中,2OD== 在Rt OGD ∆中,tan 3OD OGDOG ∠== 所以与DG 平面APC 所成角的正切值3. (ⅠⅠⅠ)连结OG ,因为,,PCBGD OG BGD PC OG ⊥⊂⊥平面平面所以在Rt PAC ∆中,得PC =AC OC GC PC ⋅==PG = 所以3.2PG GC = 21.(本题满分15分)已知a R ∈,函数32()23(1)6f x x a x ax =-++ (Ⅰ)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程; ⅠⅠ()若||1a >,求()f x 在闭区间[0,2||]a 上的最小值. (Ⅰ) 当1a =时,2()6126f x x x '=-+,所以(2) 6.f '=又因为(2)4f =,所以切线方程为 68y x =- ⅠⅠ() 记()g a 为()f x 在闭区间[0,2||]a 上的最小值,令12()0,1,f x x x a '===得 当1a >时,比较(0)f 和2()(3)fa a a =-的大小可得2()(3)3g a a a a ⎧=⎨->⎩当1a <-时 综上所述,()f x 在闭区间[0,2||]a 上的最小值为2311()013(3)3a a g a a a a a ⎧-<-⎪=<≤⎨⎪->⎩.22.(本题满分14分)已知抛物线C 的顶点为(0,0)O ,焦点为(0,1)F . (Ⅰ)求抛物线C 的方程;ⅠⅠ()过点F 作直线交抛物线C 于,A B 两点,若直线,AO BO 分别交直线:2l y x =-于,M N 两点,求||MN 的最小值. (Ⅰ) 设抛物线C 方程为22(0)x py p =>,则1.2p= 所以抛物线C 的方程为 24x y = ⅠⅠ()设1122(,),(,),A x y B x y 直线AB 的方程为1y kx =+由2214404y kx x kx x y=+⎧⇒--=⎨=⎩得12124,4x x k x x +=⋅= 从而12||x x -=由112y y x x y x ⎧=⎪⎨⎪=-⎩ 得点M 的横坐标 1121111122844M x x x x x y x x ===--- 同理得点N 的横坐标 284N x x =-所以1212121288|||||444()16|43|M N x x MN x x x x x x x x k -=-=-==---++- 令343,0,.4t k t t k +-=≠=则 当0t <时,||MN =>当0t <时,||5MN =≥ 综上所述,当253t =-,即43k =-时,||MN的最小值是5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19. 在公差为 d 的等差数列{an}中,已知 a1=10,且 a1,2a2+2,5a3 成等比数列. (Ⅰ)求 d,an; (Ⅱ) 若 d<0,求|a1|+|a2|+|a3|+…+|an| .
20. 如图,在在四棱锥 P-ABCD 中,PA⊥面 ABCD,AB=BC=2,
AD=CD= ,PA= ,∠ABC=120°,G 为线段 PC 上的点. (Ⅰ)证明:BD⊥面 PAC ; (Ⅱ)若 G 是 PC 的中点,求 DG 与 PAC 所成的角的正切值; (Ⅲ)若 G 满足 PC⊥面 BGD,求 的值.
图像如右图所示,则该函数的图像是
(第 8 题图)
A
B
C
D
9、如图 F1、F2 是椭圆 C1: +y2=1 与双曲线 C2 的公共焦点 A、B
分别是 C1、C2 在第二、四象限的公共点,若四边形 AF1BF2 为 矩形,则 C2 的离心率是
A、
B、
C、
D、
10、设 a,bR,定义运算“∧”和“∨”如下:
B、若 m∥α,m∥β,则α∥β
C、若 m∥n,m⊥α,则 n⊥α
D、若 m∥α,α⊥β,则 m⊥β
5、已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是
A、108cm3
B、100 cm3
C、92cm3
D、84cm3
6、函数 f(x)=sin xcos x+ cos 2x 的最小正周期和振幅分别是
若 z 的最大值为 12,
16.设 a,b∈R,若 x≥0 时恒有 0≤x4-x3+ax+b≤(x2-1)2,则 ab 等于______________.
17. 设e1、e2为单位向量,非零向量b=xe1+ye2,x、y∈R.
若e1、e2的夹角为30°,则 的最大值等于_______.
三、解答题:本大题共 5 小题,共 72 分.解答应写出文字说明、证明过程或演算步骤. 18.在锐角△ABC 中,内角 A,B,C 的对边分别为 a,b,c,
2 名都是女同学的概率等于_________.
13.直线 y=2x+3 被圆 x2+y2-6x-8y=0 所截得的弦长等于__________.
14.某程序框图如图所示,则该程序运行后输出的值等于_________.
15.设 z=kx+y,其中实数 x、y 满足 则实数 k=________ .
X≥2, x-2y+4≥0, 2x-y-4≤0
a∧b=
a, a≤b, b, a>b,
b, a≤b, a∨b= a, a>b.
若正数 a、b、c、d 满足 ab≥4,c+d≤4,则
A、a∧b≥2,c∧d≤2
B、a∧b≥2,c∨d≥2
(第 9 题图)
C、a∨b≥2,c∧d≤2
D、a∨b≥2,c∨d≥2
注意事项:
非选择题部分(共 100 分)
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2、已知 i 是虚数单位,则(2+i)(3+i)=
A、5-5i B、7-5i C、5+5i D、7+5i
3、若αR,则“α=0”是“sinα<cosα”的
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件
4、设 m、n 是两条不同的直线,α、β是两个不同的平面,
A、若 m∥α,n∥α,则 m∥n
A、π,1 B、π,2 C、2π,1
D、2π,2
7、已知 a、b、cR,函数 f(x)=ax2+bx+c.若 f(0)=f(4)>f(1),则
A、a>0,4a+b=0
B、a<0,4a+b=0
C、a>0,2a+b=0
D、a<0,2a+b=0
8、已知函数 y=f(x)的图像是下列四个图像之一,且其导函数 y=f’(x)的
2013 年普通高等学校招生全国统一考试
数学(文科)1
选择题部分(共 50 分)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有
ቤተ መጻሕፍቲ ባይዱ
一项是符合题目要求的.
1、设集合 S={x|x>-2},T={x|-4≤x≤1},则 S∩T=
A、[-4,+∞) B、(-2, +∞) C、[-4,1] D、(-2,1]
点, 求|MN|的最小值.
2.在答题纸上作图,可先使用 2B 铅笔,确定后必须使用黑色自拟的签字笔或钢笔描黑。
二、填空题:本大题共 7 小题,每小题 4 分,共 28 分.
11.已知函数 f(x)=
若 f(a)=3,则实数 a= ____________.
12.从三男三女 6 名学生中任选 2 名(每名同学被选中的概率均相等),则
21.已知 a∈R,函数 f(x)=2x3-3(a+1)x2+6ax (Ⅰ)若 a=1,求曲线 y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若|a|>1,求 f(x)在闭区间[0,|2a|]上的最小值.
22. 已知抛物线 C 的顶点为 O(0,0),焦点 F(0,1) (Ⅰ)求抛物线 C 的方程; (Ⅱ) 过 F 作直线交抛物线于 A、B 两点.若直线 OA、OB 分别交直线 l:y=x-2 于 M、N 两