2021年湖南省中考数学一轮复习课时训练(20) 全等三角形

合集下载

专题19 全等三角形-2021年中考数学一轮复习精讲+热考题型(解析版)

专题19 全等三角形-2021年中考数学一轮复习精讲+热考题型(解析版)

专题19 全等三角形【知识要点】知识点1 全等三角形及其性质全等图形概念:能完全重合的图形叫做全等图形.特征:①形状相同。

②大小相等。

③对应边相等、对应角相等。

全等三角形概念:两个能完全重合的三角形叫做全等三角形.小结:把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:全等用符号“≌”,读作“全等于”。

书写三角形全等时,要注意对应顶点字母要写在对应位置上。

全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。

变换方式(常见):平移、翻折、旋转。

全等三角形的性质:对应边相等,对应角相等。

知识点2:全等三角形的判定(重点)注:①判定两个三角形全等必须有一组边对应相等;②全等三角形周长、面积相等.证题的思路(重点):知识点3 角平分线角平分线的性质定理:角平分线上的点到角两边的距离相等;判定定理:到角两边距离相等的点在角的平分线上.三角形中角平分线的性质:三角形的三条角平分线相交于一点,并且这点到三条边距离相等。

【考查题型】考查题型一全等三角形的性质典例1.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED【答案】B【详解】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.变式1-1.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90B.120C.135D.180【答案】D【分析】根据全等三角形的性质和三角形的内角和定理和三角形的外角可得∠1+∠2+∠3+∠4+∠5+∠6=360〬,∠5+∠7+∠8=180°,即∠1+∠2+∠3=360°-180°.【详解】∵图中是三个全等三角形,∴∠4=∠8, ∠6=∠7,又∵三角形ABC的外角和=∠1+∠2+∠3+∠4+∠5+∠6=360〬,又∠5+∠7+∠8=180°,∴∠1+∠2+∠3=360°-180°=180°.故选D变式1-2.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【答案】C【分析】通过全等三角形的性质进行逐一判断即可.【详解】A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.考查题型二全等三角形的判定-SSS∆≅∆的依据是典例2.用直尺和圆规作一个角的角平分线的示意图如图所示,其中说明COE DOE()A.SSS B.SAS C.ASA D.AAS【答案】A【分析】根据角平分线的作法可知CO=DO,EO=EO,EC=ED,符合三角形全等的判定方法中的SSS,可∆≅∆.证COE DOE【详解】解:由作法知CO=DO,EO=EO,EC=ED,∆≅∆(SSS),∴COE DOE故选:A.变式2-1.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)【答案】D【分析】画出平面直角坐标系,利用全等三角形的性质以及坐标与图形的性质得出符合题意的答案.【详解】解:如图所示:△ABC 与△EFB 全等,点F 的坐标可以是:(4,﹣3).故选:D .变式2-2.如图,在四边形ABCD 中,90B D ∠=∠=︒,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =,求证:CB CD =.【答案】见解析【分析】连接AC ,证明△ACE ≌△ACF ,得到∠CAE=∠CAF ,再利用角平分线的性质定理得到CB=CD .【详解】解:连接AC ,∵AE=AF ,CE=CF ,AC=AC ,∴△ACE ≌△ACF (SSS ),∴∠CAE=∠CAF ,∵∠B=∠D=90°,∴CB=CD .变式2-3.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB∠求作:AOB∠的平分线做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在AOB∠的内部相交于点C(3)画射线OC,射线OC即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS②SAS③AAS④ASA(2)请你证明OC为AOB∠的平分线.【答案】(1)①;(2)证明见解析【分析】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由“SSS”可以证得△EOC≌△DOC;(2)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由全等三角形的判定定理SSS可以证得△EOC ≌△DOC,从而得到OC为AOB∠的平分线.【详解】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为AOB∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.考查题型三 全等三角形的判定-SAS典例3.如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是( )A .SASB .AASC .SSSD .ASA【答案】A 【分析】根据三角形全等的判定定理解答.【详解】在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴ABC DCB △≌△(SAS),故选:A.变式3-1.如图所示,将两根钢条AA’、BB’的中点O 连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB ,那么判定△OAB ≌△OA’B’的理由是( )A .边角边B .角边角C .边边边D .角角边【答案】A 【分析】根据线段中点的定义可得,AO A O BO B O ''==,进一步即可根据SAS 证明△OAB ≌△OA B '',于是可得答案.【详解】解:∵点O 是AA '和BB '的中点,∴,AO A O BO B O ''==,在△OAB 和△OA B ''中,∵,,AO A O AOB A OB BO B O ''''=∠=∠=,∴△OAB ≌△OA B ''(SAS ).故选:A .变式3-2.如图,已知//AB CD ,AB CD =,BE CF =.求证:(1)ABF DCE ∆≅∆;(2)//AF DE .【答案】(1)证明见详解;(2)证明见解析.【分析】(1)先由平行线的性质得∠B=∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB=∠DEC ,由等角的补角相等可得∠AFE=∠DEF ,再由平行线的判定可得结论.【详解】证明:(1)∵AB ∥CD ,∴∠B=∠C ,∵BE=CF ,∴BE-EF=CF-EF ,即BF=CE ,在△ABF 和△DCE 中,==AB CD B C BF CE =⎧⎪∠∠⎨⎪⎩∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB=∠DEC ,∴∠AFE=∠DEF ,∴AF ∥DE .变式3-3.已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:E F ∠=∠;(2)若40,80A D ∠=︒∠=︒,求E ∠的度数.【答案】(1)见解析;(2)60°【分析】(1)根据已知条件证明△ACE ≌△BDF ,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.【详解】解:(1)∵AE ∥BF ,∴∠A=∠DBF ,∵AB=CD ,∴AB+BC=CD+BC ,即AC=BD ,又∵AE=BF ,∴△ACE ≌△BDF (SAS ),∴∠E=∠F ;(2)∵△ACE ≌△BDF ,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.考查题型四 全等三角形的判定-AAS典例4.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D【解析】如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF ⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.变式4-1.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B 【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .变式4-2.△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【分析】由等边三角形的性质和三角形的内角和定理可得:FH=GH,∠ACB=∠A=60°,∠AHF=∠HGC,进而可根据AAS证明△AFH≌△CHG,可得AF=CH,然后根据等量代换和线段间的和差关系即可推出五边形DECHF的周长=AB+BC,从而可得结论.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.变式4-3.如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.【答案】见解析【分析】根据角平分线的性质证明△BAC≌△DAE,即可得到结果;【详解】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.变式4-4.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.【答案】(1)见解析;(2)见解析【分析】(1)首先根据平行线的性质得到∠AFE =∠DBE ,再根据线段中点的定义得到AE =DE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF =BD ,推出四边形ADCF 是平行四边形,根据等腰三角形的性质得到∠ADC =90°,于是得到结论.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是线段AD 的中点,∴AE =DE ,∵∠AEF =∠DEB ,∴BDE FAE ≅△△(AAS );(2)证明:∵BDE FAE ≅△△,∴AF =BD ,∵D 是线段BC 的中点,∴BD =CD ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵AB =AC ,∴AD BC ⊥,∴∠ADC =90°,∴四边形ADCF 为矩形.考查题型五 全等三角形的判定-ASA典例5.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .10【答案】C 【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD =BC ,AO =CO ,∴∠EAO =∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE =CF ,EO =FO =1.5,∵C 四边形ABCD =18,∴CD +AD =9,∴C 四边形CDEF =CD +DE +EF +FC =CD +DE +EF +AE =CD +AD +EF =9+3=12.故选C.变式5-1.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A.B .6 C.D .8【答案】A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD=故选:A .变式5-2.如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【答案】见解析.【分析】先求出∠CAE =∠BAD 再利用ASA 证明△ABD ≌△ACE ,即可解答【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA).∴BD =CE .变式5-2.如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC=DE ,求证:AB=CD .【答案】详见解析【分析】根据AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,可以得到90ABC CDE ACB ︒∠=∠=∠=,90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=,从而有ACB CED ∠=∠,可以验证ABC ∆和CDE ∆全等,从而得到AB =CD .【详解】证明:∵AB BD ⊥,DE BD ⊥,AC CE ⊥∴90ABC CDE ACB ︒∠=∠=∠=∴90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=∴ACB CED ∠=∠在ABC ∆和CDE ∆中ACB CED BC DEABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC ∆≌CDE ∆故AB CD =.考查题型六 全等三角形的判定-HL典例6.如图,∠B =∠E ,BF =EC ,AC ∥DF .求证:△ABC ≌△DEF .【答案】证明见解析【分析】首先利用平行线的性质得出∠ACB =∠DFE ,进而利用全等三角形的判定定理ASA ,进而得出答案.【详解】证明:∵AC ∥DF ,∴∠ACB =∠DFE ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).变式6-1.已知:如图,AB=CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,AE=CF .求证:△ABF ≌△CDE【答案】见解析.【分析】根据HL 即可判定Rt △ABF ≌Rt △CDE .【详解】证明:∵DE ⊥AC ,BF ⊥AC ,∴∠AFB =∠CED =90°,∵AE=CF ,∴AF=CE ,在Rt △ABF 和Rt △CDE 中,AB CD AF CE=⎧⎨=⎩ ∴Rt △ABF ≌Rt △CDE (HL ).考查题型七 判定三角形全等的的条件典例7.如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE ,DF ,对于下列条件:①BE CF =;②,CE AB DF BC ⊥⊥;③CE DF =;④BCE CDF ∠=∠,只选其中一个添加,不能确定BCE CDF ∆≅∆的是( )A .①B .②C .③D .④【答案】C 【分析】根据菱形的性质和全等三角形的判定定理即可得到结论. 【详解】解:四边形ABCD 是菱形,BC CD ∴=,//AB CD ,B DCF ∴∠=∠, ①添加BE CF =,()BCE CDF SAS ∴∆≅∆, ②添加CE AB ⊥,DF BC ⊥,90CEB F ∴∠=∠=︒,()BCE CDF AAS ∴∆≅∆, ③添加CE DF =,不能确定BCE CDF ∆≅∆; ④添加BCE CDF ∠=∠,()BCE CDF ASA ∴∆≅∆,故选:C .变式7-1.如图,等腰△ABC 中,点D ,E 分别在腰AB ,AC 上,添加下列条件,不能判定ABE △≌ACD △的是( )A .AD AE =B .BE CD =C .ADC AEB ∠=∠D .DCB EBC ∠=∠【答案】B【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解: A 、若添加AD AE =,由于AB =AC ,∠A 是公共角,则可根据SAS 判定ABE △≌ACD △,故本选项不符合题意;B 、若添加BE CD =,不能判定ABE △≌ACD △,故本选项符合题意;C 、若添加ADC AEB ∠=∠,由于AB =AC ,∠A 是公共角,则可根据AAS 判定ABE △≌ACD △,故本选项不符合题意;D 、若添加DCB EBC ∠=∠,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABE =∠ACD ,由于∠A 是公共角,则可根据ASA 判定ABE △≌ACD △,故本选项不符合题意.故选:B .变式7-2.如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证....ABE △和ADF 一定全等的条件是( )A .BAF DAE ∠=∠B .EC FC =C .AE AF =D .BE DF =【答案】C 【分析】根据菱形的性质结合全等三角形的判定方法,对各选项分别判断即可得解.【详解】∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,BAD C ∠=∠,B D ∠=∠,如果BAF DAE ∠=∠,∴BAF EAF DAE EAF ∠∠∠∠-=-,即BAE DAF ∠=∠,∵BAE DAF AB DA B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABE △≅ADF (ASA ),故A 正确;如果EC=FC ,∴BC-EC=CD-FC ,即BE=DF ,∵AB DA B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE △≅ADF (SAS ),故B 正确;如果AE=AF ,∵AB=DA ,B D ∠=∠,是SSA ,则不能判定ABE △和ADF 全等,故C 错误;如果BE DF =,则AB DA B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE △≅ADF (SAS ),故D 正确;故选:C.考查题型八全等三角形综合问题典例8.如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【答案】(1)证明见解析;(2)互相垂直,证明见解析【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.【详解】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵ADC AEBCAD BAE AB AC∠∠⎧⎪∠∠⎨⎪⎩===∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.证明:连接OA、BC,∵CD ⊥AB ,BE ⊥AC ,∴∠ADC=∠AEB=90°.在Rt △ADO 和Rt △AEO 中,∵OA OA AD AE ⎧⎨⎩== ∴Rt △ADO ≌Rt △AEO (HL ).∴∠DAO=∠EAO ,又∵AB=AC ,∴OA ⊥BC .变式8-1.如图,AC BC ⊥,DC EC ⊥,AC BC =.DC EC =,AE 与BD 交于点F .(1)求证:AE BD =;(2)求AFD ∠的度数.【答案】(1)见解析(2)90°【分析】(1)根据题意证明△ACE ≌△BCD 即可求解;(2)根据三角形的内角和及全等三角形的性质即可得到AFD ∠的度数.【详解】(1)∵AC BC ⊥,DC EC ⊥,∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE即∠ACE=∠BCD又AC BC =.DC EC =∴△ACE ≌△BCD∴AE BD =(2)∵△ACE ≌△BCD∴∠A=∠B设AE 与BC 交于O 点,∴∠AOC=∠BOF∴∠A+∠AOC+∠ACO=∠B+∠BOF+∠BFO=180°∴∠BFO=∠ACO=90°故AFD ∠=180°-∠BFO=90°.变式8-2.如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90°,点A ,C ,D 依次在同一直线上,且AB ∥DE .(1)求证:△ABC ≌△DCE ;(2)连结AE ,当BC =5,AC =12时,求AE 的长.【答案】(1)见解析;(2)13【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS 以及勾股定理进行求解.【详解】解:(1)∵//AB DE∴BAC CDE ∠=∠在△ABC 和△DCE 中B DCE BAC CDE AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCE(2)由(1)可得BC =CE =5在直角三角形ACE 中13AE ===变式8-3.如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.【答案】(1)证明见解析;(2)78°.【分析】(1)由“SAS ”可证△BEF ≌△CDA ,可得∠D =∠2;(2)由(1)可得∠D =∠2=78°,由平行线的性质可得∠2=∠BAC =78°.【详解】证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,∵EF ∥AC ,∴∠2=∠BAC =78°.变式8-4.如图,在三角形ABC 中,点D 是BC 上的中点,连接AD 并延长到点E ,使DE AD =,连接CE .(1)求证:ABD ECD ∆≅∆(2)若ABD ∆的面积为5,求ACE ∆的面积.【答案】(1)详见解析;(2)10.【分析】(1)根据中点定义、对顶角相等以及已知条件运用SAS 即可证明;(2)先根据三角形中点的性质和全等三角形的性质得到ABD ACD S S =、ABD ECD S S =,再结合5ABD S =以及ACE ACD ECD S S S =+解答即可.【详解】证明:(1)∵D 是BC 的中点,∴BD=CD在△ABD 和△CED 中,BD CD ADB CED AD ED =⎧⎪∠=∠⎨⎪=⎩所以ABD ECD ∆≅∆;(2)∵在△ABC 中,D 是BC 的中点∴ABD ACD S S =ABD ECD ∆≅∆ABD ECD S S ∴=∵5ABD S =5510ACE ACD ECD S S S ∴=+=+=.答:三角形ACE 的面积为10.考查题型九 角平分线的性质定理典例9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .4【答案】C 【解析】试题分析:如图,过点E 作EF ⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .变式9-1.如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,则∠ACD 的度数为( )A .40°B .35°C .50°D .45°【答案】A 【解析】试题分析:已知AD 平分∠BAC ,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB ∥CD ,所以∠ACD=180°﹣∠BAC=40°,故选A .变式9-2.如图,在△ABC 中,∠C =90°,以点B 为圆心,以适当长为半径画弧交AB 、BC 于P 、Q 两点,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线BN 交AC 于点D .若AB =10,AC =8,则CD 的长是( )A .2B .2.4C .3D .4【答案】C 【分析】作DE ⊥AB 于E ,根据角平分线的性质得到DE DC =,设DE DC x == ,根据ABD ∆的面积公式列方程计算即可.【详解】解:如图所示,作DE ⊥AB 于E ,∵10890AB AC C ∠︒=,=,= ,∴6BC = ,由基本尺规作图可知,BD 是△ABC 的角平分线,∵∠C =90°,DE ⊥AB ,∴可设DE DC x == , ∴1122ABD SAB DE AD BC =⨯⨯=⨯⨯, 即11108622x x ⨯⨯=⨯⨯(﹣), 解得3x = ,即3CD = ,故选C .变式9-3.三条公路将A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个公园,要使公园到三条公路的距离相等,那么这个公园应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【答案】C【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】在这个区域内修建一个公园,要使公园到三条公路的距离相等,根据角平分线的性质,公园应建在∠A、∠B、∠C的角平分线的交点处.故选C.考查题型十角平分线的判定定理典例10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【答案】A【详解】作DE⊥AB于E,∵AB=10,S△ABD =15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.变式10-1.如图,PA 、PB 分别切⊙O 于A 、B ,60APB ∠=,⊙O 半径为2,则PA 的长为( )A .3B .4C .D .【答案】C 【分析】连接PO 、AO 、BO ,由角平分线的判定定理得,PO 平分∠APB ,则∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【详解】解:连接PO 、AO 、BO ,如图:∵PA 、PB 分别切⊙O 于A 、B ,∴PA AO ⊥,PB BO ⊥,AO=BO ,∴PO 平分∠APB ,∴∠APO=116022APB ∠=⨯︒=30°, ∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,则PA ==故选:C.变式10-2.如图,已知P 是∠AOB 的平分线上的一点,∠AOB =60°,PD ⊥OA ,M 是OP 的中点,点C 是OB 上的一个动点,若PC 的最小值为3 cm ,则MD 的长度为( )A .3cmB .C .2cmD .【答案】A 【分析】根据垂线段最短、角平分线的性质求出PD ,根据直角三角形的性质解答.【详解】作PC ⊥OB 于C ,则此时PC 最小,∵P 是∠AOB 的角平分线上的一点,PD ⊥OA ,PC ⊥OB ,∴PD=PC=3,∠AOP=30°,∴OP=2PD=6,∵PD ⊥OA ,M 是OP 的中点,∴DM=12OP=3, 故选A .变式10-3.如图,已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】C 【分析】①证明△BAD ≌△CAE,再利用全等三角形的性质即可判断;②由△BAD ≌△CAE 可得∠ABF=∠ACF ,再由∠ABF+∠BGA=90°、∠BGA=∠CGF 证得∠BFC=90°即可判定;③分别过A 作AM ⊥BD 、AN ⊥CE,根据全等三角形面积相等和BD=CE ,证得AM=AN,即AF 平分∠BFE,即可判定;④由AF 平分∠BFE结合BF CF⊥即可判定.【详解】解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE 在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴1122BD AM CE AN ⋅=⋅∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF 平分∠BFE ,BF CF ⊥ ∴45AFE ∠=︒故④正确.故答案为C .。

2021年中考数学专题复习:全等三角形(二)

2021年中考数学专题复习:全等三角形(二)

2021年中考数学专题复习:全等三角形(二)1.在△ABC中,AB=AC,点D是BC的中点,点E和点F是AC上的两点,AB=BF,连接ED 交BF于点H.(1)如图1,连接BE,若∠BEC=90°,BC=10,CE=6,求AB的长;(2)如图2,G为ED延长线上一点,且BD=BG,∠ABF=∠CBG,求证:AE=EF.2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.3.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P 和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.5.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).6.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.7.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD 相交于点F.求证:(1)BF=AC;(2)CE=BF.8.在平面直角坐标系中,A(7,0),B(0,7).(1)如图1,P是AB上一点且=,求P点坐标;(2)如图2,D为OA上一点,AC∥OB且∠CBO=∠DCB,求∠CBD的度数;(3)如图3,E为OA上一点,OF⊥BE于F,若∠EOF=∠ABE,求的值9.如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.10.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.11.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B 落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.12.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.13.请将下面的说理过程和理由补充完整.如图,点B,E,C,F在一条直线上,BE=CF,AB∥DE,AB=DE,说明AC=DF.解:∵BE=CF,(已知)∴BE+EC=CF+ .(等式的性质)即BC=.∵AB∥DE,(已知).∴∠B=.()又∵AB=DE,(已知)∴△ABC≌△DEF.()∴AC=DF.()14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:∠ABE=∠ACE;(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.15.已知,在△ABC中,AC=BC.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E.(1)如图1.若CD=CE.求∠ABE的大小;(2)如图2.∠ABC=∠DEB=60°.求证:AD+DC=BE.参考答案1.解:(1)如图1,连接AD,∵AB=AC,点D是BC的中点,∴AD⊥BC∵∠BEC=90°,BC=10,CE=6,∴BE===8设AB=x,则AE=x﹣6∵AE2+BE2=AB2,即(x﹣6)2+82=x2,解得:x=,∴AB=,(2)证明:如图2,连接BE,∵BD=BG∴∠BDG=∠BGD∵AB=BF,∴∠A=∠AFB∵∠ABF=∠CBG,∴∠BDG=∠A∴∠EDC=∠BDG=∠A∵∠A+∠ABC+∠C=∠EDC+∠CED+∠C=180°∴∠CED=∠ABC∵AB=AC∴∠C=∠ABC∴∠C=∠CED∴DE=DC∵点D是BC的中点,∴BD=DC∴DE=DC=BD∴∠BED=∠EBD∵∠BED+∠EBD+∠C+∠CED=180°,即2∠BED+2∠CED=180°∴∠BED+∠CED=90°∴BE⊥AF∵BA=BF∴AE=EF2.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.3.解:∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,,CP=12﹣2t,CQ=16﹣6t,∴12﹣2t=16﹣6t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=12﹣2t=6t﹣16,∴t=3.5;③P到BC上,Q在AC时,此时不存在;理由是:16÷6×2<12,Q到AC上时,P点也在AC上;④当Q到A点(和A重合),P在BC上时,∵CP=CQ=AC=12.CP=12﹣2t,∴2t﹣12=12,∴t=12符合题意;答:点P运动1或3.5或12时,△PEC与△QFC全等.4.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.5.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE =S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.6.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;7.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.8.解:(1)作PG⊥x轴于G,PN⊥y轴于N,∵A(7,0),B(0,7),∴OA=7,OB=7,∵PG⊥x轴,∴PG∥OB,∴△AGP∽△AOB,∴=,即=,解得,PG=3,同理,PN=4,∴P点坐标为(4,3);(2)作BG⊥AC交AC的延长线于G,作BH⊥CD于H,∴四边形BOAG为矩形,∴BO=BG,∵OA=OB,∴矩形BOAG为正方形,∵AC∥OB,∴∠CBO=∠BCG,∵∠CBO=∠DCB,∴∠BCG=∠DCB,在△BCH和△BCG中,,∴△BCH≌△BCG(AAS),∴∠CBH=∠CBG,BG=BH,∴BO=BH,在Rt△BOD和Rt△BHD中,,∴Rt△BOD≌Rt△BHD(HL),∴∠BOD=∠HOD,∴∠CBD=∠DBH+∠CBH=∠OBG=45°;(3)∵OA=OB,∴∠ABO=∠BAO=45°,∵∠BEO=∠BAE+∠ABE=45°+∠EOF,∵OF⊥BE,∴∠BEO+∠EOF=90°,∴∠BEO=67.5°,∠EOF=22.5°,则∠OBE=22.5°,作∠BOP=∠OBE=22.5°,则PB=PO,∠OPF=45°,设OF=a,则PF=OF=a,由勾股定理得,OP=a,∴PB=a,∴BF=a+a,∵∠BOP=∠OBE,∠OFB=∠EFO=90°,∴△OFB∽△EFO,∴EF==a﹣a,∴==2.9.证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(AAS),(2)∵△AED≌△BFC,∴∠ADE=∠BCF,又∵∠BCF=65°,∴∠ADE=65°,又∵∠ADE+∠BCF=∠DMF∴∠DMF=65°×2=130°.10.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.11.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.12.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.13.解:∵BE=CF,(已知)∴BE+EC=CF+EC(等式的性质)即BC=EF.∵AB∥DE,(已知)∴∠B=∠DEF.(两直线平行,同位角相等)又∵AB=DE,(已知)∴△ABC≌△DEF(SAS)∴AC=DF.(全等三角形对应边相等)故答案为:EC;EF;∠DEF;两直线平行,同位角相等;SAS;全等三角形对应边相等.14.解:(1)证明:∵点D是BC的中点,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴∠ABE=∠ACE;(2)如图,由(1)知,△ABE≌△ACE,∴BE=CE,∠ABE=∠ACE,在△BEG和△CEF中,,∴△BEG≌△CEF(ASA),∴EG=EF.15.(1)解:如图1,延长AC交BN于点F,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,∴∠DAC=∠BCH,在△DAC与△HCB中,,∴△DAC≌△HCB(AAS),∴AD=CH,DC=BH,又∵CH=CE=HE,∴BE=BH+HE=DC+AD,即AD+DC=BE.。

2021年中考数学一轮单元复习12全等三角形(含参考答案)

2021年中考数学一轮单元复习12全等三角形(含参考答案)

中考数学一轮单元复习:全等三角形一、选择题1.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°2.若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为().A.5B.8C.7D.5或83.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B.30°C.35°D.25°4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°5.边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则 DF的取值为()A.3B.4C.5D.3或4或56.△ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()A.1组B.2组C.3组D.4组7.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A.80°B.70°C.60°D.50°8.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。

A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定9.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA二、填空题10.已知△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=_________,A′B′=__________.11.如果△ABC≌△DEF,且△ABC的周长是100cm,A、B分别与D、E对应,并且AB=30cm,DF=25cm,则BC的长等于_____cm.12.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F= 度,DE= cm.13.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.14.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.16.如图所示,BD是∠ABC的平分线,DE⊥AB于点E,AB=36cm,BC=24cm,S△ABC=144cm,则DE的长是.三、解答题17.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.18.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.19.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.已知△ABN和△ACM位置如图所示,AB=AC,∠1=∠2,∠M=∠N.求证:AD=AE.21.如图所示,已知AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.参考答案1.B2.C3.C4.C.5.B6.D7.A8.C9.D10.答案为:700,15㎝11.答案为:45;12.答案为:52,13.13.答案为:4.14.答案为:①②③.15.答案为:15.16.答案为:4.8cm.17.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.18.证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.19.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.20.证明:∵∠M=∠N,∴∠MDO=∠NEO,∴∠BDA=∠CEA,∴在△ABD和△ACE中,∵,∴△ABD≌△ACE(AAS),∴AD=AE.21.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.22. (1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.。

2021年九年级数学中考一轮复习——几何专题:全等三角形性质与判定(三)

2021年九年级数学中考一轮复习——几何专题:全等三角形性质与判定(三)

2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)1.如图,在△ABC中,AB=AC,∠A=108°,BE平分∠ABC交AC于点E,求证:BC=AB+CE.2.如图2,△ABC中,∠B=∠C,若∠A=70°,求∠B的度数.3.如图,在△ABC中,AD⊥BC于点D,AD=BD,点E是线段AD上一点,且ED=CD,连接BE交AC于点F.(1)求证:∠CBF=∠DAC;(2)若BD=3,BF=,求△BAF的周长.4.如图,△ABC中,AD既是中线,又是角平分线,DE⊥AB于点E,DF⊥AC于点F.(1)求证:△BDE≌△CDF;(2)你认为AD还是△ABC的高吗?如果是,请给出证明;如果不是,请说明理由.5.已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.6.已知:如图,点A、B、C、D在一条直线上,AE∥DF,AE=DF,AB=CD.(1)求证:∠E=∠F;(2)若∠D=28°,∠ECA=100°,求∠F的度数.7.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由.8.已知,在△ABC中,D是AC上一点,BF交AC于点E,连接DF.(1)如图1,BE=EF,AB∥DF.求证:AE=DE;(2)如图2,点D与点C重合,∠A=90°,∠ACB=∠ECF,∠F=∠AEB.若CE=3,BC=5,求AC的长.9.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,AE=DF.求证:(1)CE=BF;(2)AB∥CD.10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,求∠ACB的度数.参考答案1.证明:如图,在BC上取BA′=BA,连接EA′,∵∠A=108°,AB=AC,∴∠ABC=∠ACB=36°,∵BE平分∠ABC,∴∠ABE=∠CBA=18°,在△ABE与△A′BE中,,∴△ABE≌△A′BE(SAS),∴∠BA′E=∠A=108°,∴∠EA′C=72°,∴∠A′EC=72°,∴∠A′EC=∠CA′E,∴CE=CA′,∴BC=BA′+EC=AB+EC=AC+EC.2.(1)证明:∵C是线段AB的中点,∴AC=CB,在△ACD和△CBE中,∵,∴△ACD≌△CBE(SSS);(2)解:△ABC中,∠A+∠B+∠C=180°,∵∠B=∠C,∴70°+∠B+∠B=180°,∴∠B=55°.3.解:(1)证明:∵AD⊥BC,∴∠ADC=∠ADB=90°,在△ACD和△BED中,,∴△ACD≌△BED(SAS),∴∠DAC=∠CBF;(2)∵AD⊥BC,AD=BD=3,∴AB==3,∵∠DAC=∠CBF,∴∠DAC+∠C=∠CBF+∠C=90°,∴∠AFB=90°,∴AF==2,∴△BAF的周长为:AB+BF+AF=3++2.4.(1)证明:∵AD既是中线,又是角平分线,DE⊥AB,DF⊥AC,∴BD=CD,DE=DF,∠DEB=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL);(2)AD还是△ABC的高,证明:由(1)△BDE≌△CDF,∴∠B=∠C,∵AD既是中线,又是角平分线,∴BD=CD,∠BAD=∠CAD,在△BAD和△CAD中,,∴△BAD≌△CAD(AAS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD还是△ABC的高.5.解:(1)证明:如图①,∵D,A,E三点都在直线m上,∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)DE=BD+CE.理由是:如图②,∵∠BDA=∠AEC=∠BAC,∴由三角形内角和及平角性质,得:∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,∴∠ABD=∠CAE,∠BAD=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.6.(1)证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F;(2)解:由(1)得:△EAC≌△FDB,∴∠ECA=∠FBD=100°,∴∠F=180°﹣∠D﹣∠FBD=180°﹣28°﹣100°=52°.7.解:(1)BD=AC,BD⊥AC,理由:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)结论不发生变化,理由是:设AC与DE相交于点O,∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC.8.(1)证明:∵AB∥DF,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS),∴AE=DE;(2)解:过B作BH∥DF交CA的延长线于点H,∴∠HBE=∠F=∠AEB,∠H=∠ACF=ACB,∴BH=EH=BC=5,∵CE=3,∴CH=HE+CE=8,又∠BAD=90°,∴CA=HA=CH=4.9.(1)证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴BE=CF,∴BE﹣EF=CF﹣EF,∴CE=BF;(2)∵Rt△ABE≌Rt△CDF,∴∠B=∠C,∴AB∥CD.10.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE,∴∠ACD﹣∠ACE=∠BCE﹣∠ACE,即∠DCE=∠ACB,∴∠ACB=(∠BCD﹣∠ACE)=(155°﹣55°)=50°.。

中考数学 一轮训练:全等三角形 附答案

中考数学 一轮训练:全等三角形   附答案

2020-2021 中考数学一轮训练:全等三角形一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°3. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对4. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°5. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°6. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c7. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°8. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.11. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.12. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.13. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.16. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.三、解答题17. 如图2-Z-20,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.18. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.19. 如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE-AC.20. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.22. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD <60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2020-2021 中考数学 一轮训练:全等三角形-答案一、选择题 1. 【答案】D2. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC =30°,∴∠AOB =60°.3. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中,⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).4. 【答案】C[解析] 对于选项A 来说,AB +BC<AC ,不能画出△ABC ;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.5. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.6. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.7. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.8. 【答案】A[解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.二、填空题9. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.10. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.11. 【答案】70[解析] ∵△ABC≌△ADE,∴∠B=∠D.∵∠GFD=∠AFB,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.12. 【答案】(4,0)或(4,4)或(0,4)13. 【答案】4[解析] ∵△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.14. 【答案】①②③[解析] 由△ABO≌△ADO,得AB=AD,∠AOB=∠AOD=90°,∠BAC=∠DAC.又因为AC=AC,所以△ABC≌△ADC,则CB=CD.所以①②③正确.15. 【答案】8[解析]∵DC⊥BC,∴∠BCD=90°.∵∠ACB=120°,∴∠ACD=30°.延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD.在△ADH与△BDC中,∴△ADH≌△BDC(SAS),∴AH=BC=4,∠H=∠BCD=90°.∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.三、解答题17. 【答案】证明:∵C是AB的中点,∴AC=CB.在△ACD 和△CBE 中,∴△ACD ≌△CBE (SSS). ∴∠A=∠ECB.∴AD ∥CE.∴∠A+∠ECA=180°.18. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10, ∴AB=CD=(AD-BC )=3.19. 【答案】证明:∵AC ∥BE ,∴∠C =∠DBE ,∠A +∠ABE =180°. ∵∠BDE +∠CDE =180°,∠ABE =∠CDE , ∴∠A =∠BDE.在△ABC 和△DEB 中,⎩⎨⎧∠C =∠DBE ,∠A =∠BDE ,AB =DE ,∴△ABC ≌△DEB(AAS). ∴AC =DB ,BC =EB. 又∵DC =BC -BD , ∴DC =BE -AC.20. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高, ∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°. ∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD. ∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .21. 【答案】(1)证明:∵四边形ABCD 是矩形, ∴∠EAM =∠FDM =90°, ∵M 是AD 的中点, ∴AM =DM ,在△AME 和△DMF 中,⎩⎨⎧∠A =∠FDBAM =DM∠AME =∠DMF, ∴△AEM ≌△DFM (ASA);(2)证明:如解图①,过点G 作GH ⊥AD 于H ,解图①∵∠A =∠B =∠AHG =90°, ∴四边形ABGH 是矩形, ∴GH =AB =2, ∵M 是AD 的中点,∴AM =12AD =2,∴AM =GH , ∵MG ⊥EF ,∴∠GME =90° ∴∠AME +∠GMH =90°. ∵∠AME +∠AEM =90°, ∴∠AEM =∠GMH , 在△AEM 和△HMG 中,⎩⎨⎧AM =GH∠AEM =∠GMH ∠A =∠AHG, ∴△AEM ≌△HMG ,∴ME =MG ,∴∠EGM =45°,由(1)得△AEM ≌△DFM ,∴ME =MF ,∵MG ⊥EF ,FMG EMG ≌△△∴,∴GE =GF ,∴∠EGF =2∠EGM =90°,∴△GEF 是等腰直角三角形.(3)解:如解图②,过点G 作GH ⊥AD 交AD 延长线于点H ,解图②∵∠A =∠B =∠AHG =90°,∴四边形ABGH 是矩形,∴GH =AB =23,∵MG ⊥EF ,∴∠GME =90°,∴∠AME +∠GMH =90°,∵∠AME +∠AEM =90°,∴∠AEM =∠GMH ,又∵∠A =∠GHM =90°,∴△AEM ∽△HMG ,∴EM MG =AM GH ,在Rt △GME 中,tan ∠MEG =MG EM = 3.∴n =322. 【答案】 (1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD,∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MGCG ,即382=MG4-MG ,∴MG =127,BG =267,EG =407,∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GBGE , ∴BP =261315.。

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法2 全等三角形的常见模型

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法2 全等三角形的常见模型
∠B=∠DEF,BE=CF.下面给出四个条件:①AC=DF;②AB=DE;③AC∥DF;④
∠A=∠D.请你从中任选一个条件,使△ABC≌△DEF,并写出证明过程.
解:答案不唯一,如选择条件②.证明如下:
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF.
= ,
在△ABC和△DEF中,ቐ∠ = ∠,
证:△BDC≌△CEB.
证明:∵AB=AC,∴∠DBC=∠ECB.
∵AD=AE,∴AB-AD=AC-AE,即DB=EC.
= ,
在△DBC和△ECB中,ቐ∠ = ∠,∴△BDC≌△CEB(SAS).
= ,
证明
3.如图,AD⊥AE,AB⊥AC,∠B=∠C,AB=AC.求证:△ABD≌△ACE.
= ,
∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN.
∵ ∠ MDP + ∠ DMP + ∠ MPD= ∠ CAM + ∠ AMC +
∠ACM=180°,∠MDP=∠CAM,∠DMP=∠AMC,
∴∠APD=∠ACM=模型类别
一线三等
已知条件
图示
相关结论
腰三角形
已知条件
CA=CB,CD=CE,
∠ACB=∠DCE
图示
相关结论
△BCD≌△ACE
4.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,DE分别交BC,AC
于点F,G.
(1)求证:∠C=∠E.
(2)若∠CAE=24°,求∠EFC的度数.
(1)证明:∵∠BAD=∠CAE,
2025年湖南中考数学一轮复习考点研析
第一部分 考点研析
第四章 三角形
技法2 全等三角形的常见模型

2021年中考数学真题 三角形及全等三角形(共40题)-(原卷版)

2021年中考数学真题 三角形及全等三角形(共40题)-(原卷版)

16三角形及全等三角形(共40题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点2.(2021·山东临沂市·中考真题)如图,在//AB CD中,40∠,∠=︒,CB平分DCEAEC则ABC∠的度数为()A.10︒B.20︒C.30D.40︒3.(2021·陕西中考真题)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠=︒,50∠=︒,则1∠的大小为()BC35A∠=︒,25A.60°B.70°C.75°D.85°4.(2021·四川乐山市·中考真题)如图,已知直线1l、2l、3l两两相交,且13l l⊥.若α=︒,则β的度数为()50A .120︒B .130︒C .140︒D .150︒5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理8.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π9.(2021·重庆中考真题)如图,在ABC和DCB中,ACB DBC∠=∠,添加一个条件,不能..证明ABC和DCB全等的是()A.ABC DCB∠=∠B.AB DC=C.AC DB=D.A D∠=∠10.(2021·重庆中考真题)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不等判断∠ABC∠∠DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∠FD 11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形12.(2021·四川遂宁市·中考真题)下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a ,2x,xπ,985,42ba+,13y+中,1a,xπ,42ba+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4 13.(2021·湖南娄底市·中考真题)2,5,m是某三角形三边的长,则22(3)(7)m m-+-等于()A.210m-B.102m-C.10D.414.(2021·山东泰安市·中考真题)如图,直线//m n,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m平分,若160∠=︒,则下列结论错误的是()A.275∠=︒B.345∠=︒C.4105∠=︒D.5130∠=︒15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n∠=︒∠=︒,则3∠的度数为()A.80︒B.70︒C.60︒D.50︒16.(2021·海南中考真题)如图,已知//a b,直线l与直线a b、分别交于点A B、,分别以点A B、为圆心,大于12AB的长为半径画弧,两弧相交于点M N、,作直线MN,交直线b于点C,连接AC,若140∠=︒,则ACB∠的度数是()A .90︒B .95︒C .100︒D .105︒17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD 为ABC 的角平分线的是( )A .B .C .D .二、填空题18.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.20.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.21.(2021·江苏连云港市·中考真题)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______.22.(2021·四川遂宁市·中考真题)如图,在∠ABC中,AB=5,AC=7,直线DE 垂直平分BC,垂足为E,交AC于点D,则∠ABD的周长是_____ .23.(2021·云南中考真题)已知ABC的三个顶点都是同一个正方形的顶点,ABC∠的平分线与线段AC交于点D.若ABC的一条边长为6,则点D到直线AB的距离为__________.24.(2021·广西柳州市·中考真题)若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是________.(写出一个即可)25.(2021·四川成都市·中考真题)如图,在Rt ABC中,90,C AC BC∠=︒=,按以下步骤作图:∠以点A为圆心,以任意长为半径作弧,分别交,AC AB于点M,N;∠分别以M,N为圆心,以大于12MN的长为半径作弧,两弧在BAC∠内交于点O;∠作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为_______.三、解答题26.(2021·陕西中考真题)如图,//=,点E在BC上,且BE AC=.求BD AC,BD BC证:D ABC∠=∠.27.(2021·湖南衡阳市·中考真题)如图,点A、B、D、E在同一条直线上,=.求证:ABC DEFAB DE AC DF BC EF,//,//△≌△.28.(2021·四川乐山市·中考真题)如图,已知AB DC=,A D∠=∠,AC与DB相交于点O,求证:OBC OCB∠=∠.29.(2021·四川泸州市·中考真题)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE30.(2021·云南中考真题)如图,在四边形ABCD中,,,==与BD相AD BC AC BD AC交于点E.求证:DAC CBD∠=∠.31.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.32.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC是边长为3的等边三角形,E是边AC上的一点,且1AE=,小亮以BE为边作等边三角形BEF,如图1,求CF的长;(2)ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B 的运动过程中,小亮以B为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.33.(2021·四川乐山市·中考真题)在等腰ABC中,AB AC=,点D是BC边上一点(不与点B、C重合),连结AD.(1)如图1,若60C∠=°,点D关于直线AB的对称点为点E,结AE,DE,则BDE∠= ________;(2)若60C∠=°,将线段AD绕点A顺时针旋转60︒得到线段AE,连结BE.∠在图2中补全图形;∠探究CD与BE的数量关系,并证明;(3)如图3,若AB ADkBC DE==,且ADE C∠=∠,试探究BE、BD、AC之间满足的数量关系,并证明.34.(2021·安徽中考真题)如图1,在四边形ABCD中,ABC BCD∠=∠,点E在边BC上,且//AE CD,//DE AB,作CF//AD交线段AE于点F,连接BF.(1)求证:ABF EAD△≌△;(2)如图2,若9AB=,5CD=,ECF AED∠=∠,求BE的长;(3)如图3,若BF的延长线经过AD的中点M,求BEEC的值.35.(2021·重庆中考真题)如图,四边形ABCD为平行四边形,连接AC,且=.请用尺规完成基本作图:作出BAC2AC AB∠的角平分线与BC交于点E.连接BD交AE于点F,交AC于点O,猜想线段BF和线段DF的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)36.(2021·浙江温州市·中考真题)如图,BE是ABC的角平分线,在AB上取点D,使DB DE=.(1)求证://DE BC.(2)若65∠=︒,求EBC∠的度数.∠=︒,45AEDA37.(2021·江苏无锡市·中考真题)已知:如图,AC,DB相交于点O,AB DC=,ABO DCO ∠=∠.求证:(1)ABO DCO △≌△;(2)OBC OCB ∠=∠.38.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.39.(2021·四川南充市·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===,求BC 的长. (2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.。

2021中考数学 全等三角形 专题训练(含答案)

2021中考数学 全等三角形 专题训练(含答案)

2021中考数学全等三角形专题训练一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 下列三角形中全等的是()A.①②B.②③C.③④D.①④4. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS5. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD6. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角∠ABC=35°,则右边的滑梯与地面的夹角∠DFE等于()A.60°B.55°C.65°D.35°7. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个8. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题9. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.10. 如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).11. 要测量河岸相对两点A,B之间的距离,已知AB垂直于河岸BF,先在BF 上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是________米.12. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.13. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D 处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.14. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.15. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题16. 已知:如图,点C,F在AD上,AF=DC,∠B=∠E,∠A=∠D.求证:AB =DE.17. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2CD 2=AD 2+DB 2.18. 如图,A ,B两点分别在射线OM ,ON 上,点C 在∠MON 的内部且CA =CB ,CD ⊥OM ,CE ⊥ON ,垂足分别为D ,E ,且AD =BE . (1)求证:OC 平分∠MON ;(2)如果AO =10,BO =4,求OD 的长.2021中考数学 全等三角形 专题训练-答案一、选择题1. 【答案】C[解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】A3. 【答案】A[解析] ①②符合证明三角形全等的判定方法“SAS”.③④中相等的角所对的边不相等,所以不可能全等.故选A.4. 【答案】A5. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.6. 【答案】B [解析] 在Rt △ABC 和Rt △DEF 中,⎩⎨⎧BC =EF ,AC =DF ,∴Rt △ABC ≌Rt △DEF(HL). ∴∠DEF =∠ABC =35°. ∴∠DFE =90°-35°=55°.7. 【答案】A[解析] 如图,到三条直线a ,b ,c 的距离相等的点一共有4个.8. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.二、填空题9. 【答案】70 [解析] ∵△ABC ≌△ADE ,∴∠B=∠D.∵∠GFD=∠AFB ,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.10. 【答案】答案不唯一,如CE =CB [解析] 由∠1=∠2,可得∠DCE =∠ACB ,又∵CD =CA ,∴添加CE =CB ,可根据“SAS”判定两个三角形全等.11. 【答案】2012. 【答案】12[解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°. 在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .13. 【答案】17[解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA). ∴AB =ED =17米.14. 【答案】8[解析]∵DC ⊥BC ,∴∠BCD=90°. ∵∠ACB=120°, ∴∠ACD=30°.延长CD 到H 使DH=CD , ∵D 为AB 的中点, ∴AD=BD.在△ADH与△BDC中,∴△ADH ≌△BDC (SAS), ∴AH=BC=4,∠H=∠BCD=90°. ∵∠ACH=30°, ∴CH=AH=4,∴CD=2,∴△ABC 的面积=2S △BCD =2××4×2=8.15. 【答案】16 [解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题16. 【答案】证明:∵AF =DC ,∴AC =DF.在△ABC 和△DEF 中,⎩⎨⎧∠A =∠D ,∠B =∠E ,AC =DF ,∴△ABC ≌△DEF(AAS).∴AB =DE.17. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎨⎧EC =DC∠ACE =∠BCD AC =BC,(3分) ∴△ACE ≌△BCD(SAS ).(4分) (2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分) ∴∠EAD =∠EAC +∠CAD =90°, 在Rt △EAD 中,ED 2=AD 2+AE 2, ∴ED 2=AD 2+BD 2,(8分) 又ED 2=EC 2+CD 2=2CD 2, ∴2CD 2=AD 2+DB 2.(10分)18. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON , ∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL). ∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时训练(二十)全等三角形
夯实基础
1.[2020·岳阳平江模拟]如图K20-1,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A'B'的长等于内槽宽AB的长,那么判定△OAB≌△OA'B'的理由是()
图K20-1
A.边角边
B.角边角
C.边边边
D.角角边
2.[2018·南京]如图K20-2,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD 的长为()
图K20-2
A.a+c
B.b+c
C.a-b+c
D.a+b-c
3.[2019·三明]如图K20-3,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,交AC于点D,DE⊥AB于点E,下列四个结论:①DE=DC;②BE=BC;③AD=DC;④△BDE≌△BDC.其中正确的有()
图K20-3
A.1个
B.2个
C.3个
D.4个
4.[2020·北京]如图K20-4,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是.(写出一个即可)
图K20-4
5.[2020·伊春]如图K20-5,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件(答案不唯一),使Rt△ABC和Rt△EDF全等.
图K20-5
6.[2018·荆州]已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点
MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC,射线OC即M,N;②分别以点M,N为圆心,大于1
2
为所求.上述作图用到了全等三角形的判定方法,这个方法是.
图K20-6
7.[2020·齐齐哈尔]如图K20-7,已知在△ABD和△ABC中,∠DAB=∠CAB,点A,B,E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)
图K20-7
8.[2019·广州]如图K20-8,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.
图K20-8
9.[2020·吉林]如图K20-9,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.
图K20-9
10.[2019·桂林]如图K20-10,AB=AD,BC=DC,点E在AC上.
(1)求证:AC平分∠BAD;
(2)求证:BE=DE.
图K20-10
11.[2019·莱芜]如图K20-11,已知等边三角形ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.
(1)求证:BE=BF;
(2)试说明DG与AF的位置关系和数量关系.
图K20-11
拓展提升
12.[2020·凉山州]如图K20-12,点P,Q分别是等边三角形ABC边AB,BC上的动点(端点除外),点P,点Q以相同的速度,同时从点A,点B出发.
(1)如图①,连接AQ,CP.求证:△ABQ≌△CAP.
(2)如图①,当点P,Q分别在AB,BC边上运动时,AQ,CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
(3)如图②,当点P,Q在AB,BC的延长线上运动时,直线AQ,CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
图K20-12
【参考答案】
1.A
2.D [解析]∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED=∠AFB=90°,∠A=∠C ,又AB=CD ,∴△CED ≌△AFB ,∴AF=CE=a ,DE=BF=b ,∴DF=DE -EF=b -c ,∴AD=AF+DF=a+b -c ,故选D .
3.C [解析]∵∠ACB=90°,BD 是∠ABC 的平分线,DE ⊥AB ,∴DE=DC ,故①正确; 又∵∠C=∠BED=90°,BD=BD ,∴Rt △BCD ≌Rt △BED (HL),故④正确;∴BE=BC ,故②正确; ∵Rt △ADE 中,AD>DE=CD ,∴AD=DC 不成立,故③错误.
4.答案不唯一,如∠BAD=∠CAD 或BD=CD 或AD ⊥BC [解析]根据等腰三角形三线合一的性质,要使△ABD ≌△ACD ,则可以填∠BAD=∠CAD 或BD=CD 或AD ⊥BC.
5.AB=ED
6.SSS
7.AD=AC (或∠D=∠C 或∠ABD=∠ABC 等) 8.证明:∵FC ∥AB ,∴∠A=∠FCE ,∠ADE=∠F .
在△ADE 与△CFE 中,{∠A =∠FCE ,
∠ADE =∠F ,DE =EF ,∴△ADE ≌△CFE (AAS).
9.证明:∵DE ∥AC ,∴∠EDB=∠A. 在△DEB 与△ABC 中,{DE =AB ,
∠EDB =∠A ,BD =CA ,
∴△DEB ≌△ABC (SAS).
10.证明:(1)在△ABC 与△ADC 中,{AB =AD ,
AC =AC ,BC =DC ,∴△ABC ≌△ADC (SSS),∴∠BAC=∠DAC ,
即AC 平分∠BAD. (2)由(1)得∠BAE=∠DAE ,
在△BAE与△DAE中,{BA=DA,
∠BAE=∠DAE, AE=AE,
∴△BAE≌△DAE(SAS),∴BE=DE.
11.解:(1)证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,∵CD⊥AB,∴BD=AD,∠BCD=30°,
∵AF⊥AC,∴∠F AC=90°,
∴∠F AB=∠F AC-∠BAC=30°,
∴∠F AB=∠ECB,又∵AB=BC,AF=CE,
∴△ABF≌△CBE(SAS),∴BF=BE.
(2)AF=2GD,AF∥DG.
理由如下:连接EF,
∵△ABF≌△CBE,
∴∠ABF=∠CBE,BE=BF,
∵∠ABE+∠EBC=60°,
∴∠ABE+∠ABF=60°,
∴△BEF是等边三角形,
∵GE⊥BF,
∴BG=FG,∵BD=AD,∴AF=2GD,AF∥DG.
12.解:(1)证明:∵△ABC是等边三角形,
∴∠ABQ=∠CAP=60°,AB=CA,
又∵点P,Q运动速度相同,
∴AP=BQ,∴△ABQ≌△CAP(SAS).
(2)点P,Q在AB,BC边上运动的过程中,∠QMC的大小不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,
∵∠QMC是△ACM的外角,
∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC.
∵∠BAC=60°,∴∠QMC=60°.
(3)点P,Q在AB,BC的延长线上运动时,∠QMC的大小不变.理由:易得△ABQ≌△CAP,∴∠BAQ=∠ACP,
∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°-∠P AC=180°-60°=120°.。

相关文档
最新文档