中考数学专项复习之全等三角形的相关模型总结
中考数学总复习全等三角形的五种模型

全等三角形的五种模型一、手拉手模型已知:△ABE和△ACD为两个的等腰三角形,∠BAE=∠CAD=∠α,连接EC,BD交于点O结论:①△ABD ≌△AEC;②∠α+∠BOC=180°;③OA平分∠BOC已知:△ABD和△ACE均为等腰直角三角形,连接CD,BE交于点O结论:①△ACD ≌△ABE;②∠BOC=90°;③OA平分∠BOC已知:直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE,CD,二者交点为H结论:①△ABE≌△DBC;②AE=DC;③∠DHA=60°;④△AGB≌△DFB;⑤△EGB≌△CFB;⑥连接GF,GF∥AC;⑦连接HB,HB平分∠AHC模型应用1. (2010·深圳改编)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D 在AB上.(1)求证:△AOC≌△BOD;(2)判断△CAD是什么形状的三角形,说明理由.2.如图,△ABC与△ADE都是等腰直角三角形,连接CD,BE,CD,BE相交于点O,判断CD 与BE的位置关系,并说明理由半角模型已知:正方形ABCD中,E,F分别是BC,CD边上的点,且∠EAF=45°结论:将△ADF绕点A旋转90°到△ABG,则:①EF=DF+BE;②△CEF的周长为正方形ABCD周长的一半已知:正方形ABCD中,E,F分别是BC,CD边上的点,且∠EAF=45°结论:将△AEB绕点A为旋转90°到△ADE′,则:EF=DF-BE已知:在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF,AE,AF,过A 作AH⊥EF于点H,BE=EH结论:①△ABE≌△AHE;②△AHF≌△ADF;③∠EAF=45°;④EF=BE+DF模型应用3. (2015·深圳改编)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE.在以上4个结论中,正确的共有()A. 1个B. 2 个C. 3 个D. 4个4. 如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF,AE,AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF =45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为2.其中正确结论的个数是() A. 2 B. 3C. 4D. 5第三题第四题倍长中线模型已知:在△ABC 中,AD 是BC 边中线结论:延长AD 到E ,使DE =AD ,连接BE ,则:①△ADC ≌△EDB ;②AD< 21(AB +AC)已知:在△ABC 中,AD 是BC 边中线结论:作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E ,连接BE ,则:①△BDE ≌△CDF ;②BE ∥FC模型应用6. 已知:在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF.一直线三垂直模型已知:AE=DE,AE⊥DE,∠B=∠C=90结论:①△ABE≌△ECD;②BC=AB+CD已知:在正方形ABCD中,∠ABF=∠C=90°,AF⊥BE,交于点H结论:①△ABF≌△BCE;②EC=AB-FC模型应用7. (2016·深圳改编)如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF 为正方形,过点F作FG∠CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S∠FAB∠S四边形CBFG=1∠2;③∠ABC=∠ABF.其中正确的结论的个数是()A.1B. 2C. 3D. 08. 如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个9. 如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE∠AG于点E,BF∠DE,交AG 于点F.给出以下结论:①∠AED∠∠BFA;②DE-BF=EF;③∠BGF∠∠DAE;④DE-BG=FG.其中正确的有()A. 1个B. 2个C. 3个D. 4个10. (2018·深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是________.对角互补模型已知:已知∠AOB=∠DCE=90°,OC平分∠AOB结论模型应用11.(2012·深圳)如图,Rt∠ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形6,则另一直角边BC的长为________.对角线交于点O,连接OC,已知AC=5,OC=212. (2017·深圳)如图,在Rt∠ABC中,∠ABC=90°,AB=3,BC=4,Rt∠MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.。
全等三角形的相关模型总结

全等的相关模型总结⼀一、⻆角平分线模型应⽤用1.⻆角平分性质模型:辅助线:过点G作GE射线AC(1).例例题应⽤用:①如图1,在,那么点D到直线AB的距离是cm.②如图2,已知,,..图1图2①2(提示:作DE AB交AB于点E)②,,,,.(2).模型巩固:练习⼀一:如图3,在四边形ABCD中,BC>AB,AD=CD,BD平分..求证:图3练习⼆二:已知如图4,四边形ABCD中,图4练习三:如图5,交CD于点E,交CB于点F.(1)求证:CE=CF.(2)将图5中的△ADE沿AB向右平移到的位置,使点落在BC边上,其他条件不不变,如图6所示,是猜想:于CF⼜又怎样的数量量关系?请证明你的结论.图5图6练习四:如图7,,P是AB的中点,PD平分∠ADC.求证:CP 平分∠DCB .AD ECBP 2143图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,⾃自D 作DE ⊥AB ,DF ⊥AC ,垂⾜足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外⻆角平分线AD 于点D ,F 为垂⾜足,DE ⊥AB 于E ,并且AB>AC 。
求证:BE -AC=AE 。
图9练习七:如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的⾯面积与△DBF 的⾯面积相等,求证:AD 平分∠BAC 。
2.⻆角平分线+垂线,等腰三⻆角形⽐比呈现辅助线:延⻓长ED交射线OB于F辅助线:过点E作EF∥射线OB (1).例例题应⽤用:①.如图1所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
求证:证明:延⻓长BE交AC于点F。
②.已知:如图2,在,分析:此题很多同学可能想到延⻓长线段CM,但很快发现与要证明的结论毫⽆无关系。
⽽而此题突破⼝口就在于AB=AD,由此我们可以猜想过C点作平⾏行行线来构造等腰三⻆角形.证明:过点C作CE∥AB交AM的延⻓长线于点E.例例题变形:如图,,,求证:①②(3).模型巩固:练习⼀一、如图3,ΔABC是等腰直⻆角三⻆角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延⻓长线于点E。
全等三角形的10个模型(一)2024

全等三角形的10个模型(一)引言概述:全等三角形是指两个或多个三角形的对应边和对应角完全相等的情况。
全等三角形在几何学中有广泛的应用,不仅在证明和推导定理时起到重要的作用,还在实际问题的解决中提供了有力的工具。
本文将介绍十个关于全等三角形的模型。
这些模型旨在帮助读者更好地理解和运用全等三角形的性质和应用。
正文:1. 模型一:完全相等的三边- 全等三角形的基本条件就是三边相等。
- 通过边的对应关系确定两个三角形是否全等。
- 证明时可利用边长相等的性质进行推导。
2. 模型二:完全相等的两边和夹角- 如果已知两个三角形的两边和夹角都相等,则这两个三角形全等。
- 通过边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。
3. 模型三:完全相等的两角和夹边- 如果已知两个三角形的两角和夹边都相等,则这两个三角形全等。
- 边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。
4. 模型四:等腰三角形和全等条件- 等腰三角形是指两边相等或两角相等的三角形。
- 如果两个三角形中有一个是等腰三角形,且两个等腰三角形的两边或两角都相等,则这两个三角形全等。
5. 模型五:直角三角形和全等条件- 直角三角形是指其中一个角为90度的三角形。
- 如果两个三角形中有一个是直角三角形,且两个直角三角形的两边或两个锐角均相等,则这两个三角形全等。
总结:通过十个模型的介绍,我们可以看到全等三角形是几何学中一个重要而广泛应用的概念。
理解全等三角形的性质和应用对于解决几何问题具有重要意义。
在实际问题中,我们常常可以利用全等三角形的模型来推导和证明定理,从而得出更深入的结论。
专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)

专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
初中全等三角形模型总结—全面完整版2018.5.23

初中全等三角形模型总结——全面完整版(模型总结+精选例题+优选练习题)第一部分 模型总结一、公共边模型△ABD ≌△ABC , △EFD ≌△ABC △ABD ≌△ABC△ABE ≌△FDC △ABD ≌△ACD二、公共角模型△ABE ≌△ABD三、平行X 型△ABO ≌△OCD四、非平行X 型△ABE ≌△ABDA B EDOA BDCO A BD五、母子等腰三角形△ABD ≌△AEC ,△ABE ≌△ACD六、旋转模型图1△ ABC ≌△AB`C第二部分 精选例题例1.如图,已知AB ∥CD ,AD ∥BC ,F 在DC 的延长线上,AM =CF ,FM 交DA 的延长线上于E .交BC 于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中, 设法证这两个三角形全等即可.结合图形可发现 △AME ≌△FCN 可证.题设告知AM=CF,AD ∥BC,AB ∥CD.由两平行条件, 可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC 中,∠ACB =90°,AC =BC ,过C 的一条直线CE ⊥AE 于E ,BD ⊥CE 的延长线于D ,求证:AE =BD +DE .思路分析:从本例的结论知是求线段和的问题, 由此入手,很难找到突破口.此时可迅速调整思维角 度,可仔细观察图形,正确的图形是证题的“向导”,由 此可发现△ACE 与△CBD 好像(猜测)全等.那么AE =CD =CE +DE .又BD =CE .那么,此时已水落石出.B CAE D C 'B'AB C 'B 'BAAC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4,G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB =20 cm ,则△DBE 的周长等于多少?分析:对象:△DBE 的周长 角度:(1)BD ,DE ,BE 的长解: 因为DE ⊥AB ,所以AED ACD ∠=∠因为AD 是∠BAC 的平分线,所以EAD CAD ∠=∠又因为AD 为公共边 所以AED ACD ≅ 则AE=AC DE=DC 所以△DBE 的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F .求证:EF ⊥AD .分析:对象:△ABC 角度:(1)AD 是∠BAC 的平分线,(2)DE ⊥AB 于E ,DF ⊥AC 于F 证明:因为DE ⊥AB 于E ,DF ⊥AC 于F ,所以090AED AFD ∠=∠= 又因为AD 是∠BAC 的平分线,所以EAD FAD ∠=∠由于AD 是公共边 所以AED AFD ≅ 则AE=AF 因为AD 是∠BAC 的平分线 所以EF ⊥AD 。
中考万能解题模型四全等三角形的基本模型

【中考万能解题模型四】全等三角形的基
本模型
同学们,在学习了“全等三角形”后,我们知道:全等三角形是指能够完全重合的两个三角形。
而平移、对称和旋转又是初中阶段的三大图形变化,平移、对称和旋转前后的图形只是位置发生了改变,大小和形状都没有改变。
因此,三大变化后,两个三角形全等。
通过这三大变化,我们可以得到以下四种全等三角形的基本模型图,通过模型解题,有些题目会相对更加简单哟~
类型1平移模型
一般题干会有平行线、两条对应边线段相等之类的关键词,此时要注意可能会用到线段的和差。
【模型展示】
【针对训练】如图,EF=BC,DF=AC,DA=EB.试说明:∠F=∠C.。
全等三角形八大模型归纳

全等三角形八大模型归纳全等三角形是初中数学中重要的概念之一,它是指两个三角形的对应边相等且对应角相等。
全等三角形具有许多性质和特点,可以归纳为八大模型,分别是SSS、SAS、ASA、AAS、HL、LLL、LLA、LAL。
下面将分别介绍这八种模型的特点和应用。
第一种模型是SSS,即三边全等。
当两个三角形的三条边分别相等时,这两个三角形就是全等的。
这种模型在实际生活中的应用非常广泛,比如在建筑、工程设计中,需要测量房屋的各个边长是否相等,以确保建筑物的稳定性和均衡性。
第二种模型是SAS,即两边夹角边全等。
当两个三角形的两边和夹角分别相等时,这两个三角形就是全等的。
这种模型常常用于证明两个三角形全等的情况,可以通过辅助线的引入来简化证明过程。
第三种模型是ASA,即两角边角全等。
当两个三角形的两个角和夹边分别相等时,这两个三角形就是全等的。
这种模型在解题过程中也经常用到,特别是在证明题中,可以根据已知条件找到相等的角和边,从而得出结论。
第四种模型是AAS,即两角边角全等。
当两个三角形的两个角和一边分别相等时,这两个三角形也是全等的。
这种情况在证明过程中比较常见,可以通过找到两个角和一边相等来得出结论。
第五种模型是HL,即斜边和直角边全等。
当两个直角三角形的斜边和一个直角边分别相等时,这两个三角形就是全等的。
这种情况在解决直角三角形的问题时经常用到,可以利用勾股定理和全等三角形的性质来求解。
第六种模型是LLL,即三边全等。
这种模型和SSS模型类似,只不过LLL模型更加具体,强调了三个边全部相等的情况。
在实际问题中,可以通过测量三角形的三边长度来判断两个三角形是否全等。
第七种模型是LLA,即两边和一个角全等。
当两个三角形的两个边和一个非夹角的角相等时,这两个三角形是全等的。
这种情况在解题过程中也会经常遇到,可以通过找到两个边和一个非夹角的角相等来证明两个三角形全等。
第八种模型是LAL,即一边和两个角全等。
当两个三角形的一条边和两个角分别相等时,这两个三角形也是全等的。
初中考数学专题总复习《三角形》七大常考全等模型

辅助 线作 法2
将线段BD绕点D逆时针旋转90°得 到DE
将线段BD绕点D逆时针旋转60°得 到DE
辅助 线作 法2 结论 △DAB≌△DCE 模型应用 8. 如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°
25
,则四边形ABCD的面积为___2____.
第8题图
∴∠BFA=90°=∠AED. ∴△ABF≌△DAE(AAS).∴AE=BF.
第4题图
∴AF-BF=AF-AE=EF;
(2)四边形BFDE是否可能是平行四边形,如果可能请指出此时点G的位置,如不可
能请说明理由. 解:不可能,理由如下:
如解图,若要四边形BFDE是平行四边形,
已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,
模型 特点
锐角一线三等角
直角一线三等角(一 线三垂直)
钝角一线三等角
一线:经过三个等角顶点的直线(AB);三等角:∠1=∠2=∠3
解题思路 通过三角形外角的性质得∠ACP=∠BPD或∠APC=∠BDP 结论 △ACP≌△BPD;AB=AC+BD
拓展 模型 (一线三 垂直型)
模型应用 3. 如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且BP=CD, ∠APD=∠B,若∠APB=120°,则∠CDP的度数为( C ) A. 30° B. 60° C. 120° D. 150°
证明三角形全等的关键:(1)共顶点:加(减)共顶点的角的共角 部分得一组对应角相等; (2)不共顶点:①由BF=CE⇒BF+CF=CE+CF⇒BC=EF或 BF=CE⇒BF-CF=CE-CF⇒BC=EF;②利用平行线性质找 对应角相等
模型应用
5. (2020孝感)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等的相关模型总结一、角平分线模型应用1.角平分性质模型: 辅助线:过点G 作GE ⊥射线AC(1)例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.(2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,..,1800BAD AC CD BC D B ∠==∠+∠平分求证:图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F. (1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC . 求证:CP 平分∠DCB .图7 练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外角平分线AD 于点D ,F 为垂足,DE ⊥AB 于E ,并且AB>AC 。
求证:BE -AC=AE 。
AD E CBP 2 14 3练习七:如图10,D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等,求证:AD平分∠BAC。
BCADEF2.角平分线+垂线,等腰三角形比呈现辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB(1).例题应用:①.如图1所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
求证:1()2BE AC AB=-FEDCBA图9证明:延长BE 交AC 于点F 。
②.已知:如图2,在中ABC ∆, ,,AD AB D BC AD BAC =∠且于交的角平分线)(21.AC AB AM M AD AD CM +=⊥求证:的延长线于交作分析:此题很多同学可能想到延长线段CM ,但很快发现与要证明的结论毫无关系。
而此题突破口就在于AB=AD ,由此我们可以猜想过C 点作平行线来构造等腰三角形. 证明:过点C 作CE ∥AB 交AM 的延长线于点E.例题变形:如图,21∠=∠,的中点为AC B ,.,N FB AN M FB CM 于于⊥⊥求证:①;2BM EF = ②).(21FN FM FB +=(3).模型巩固:练习一、 如图3,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC 于点D ,CE 垂直于BD ,交BD 的延长线于点E 。
求证:BD=2CE 。
图3练习一变形:如图4,在△ODC 中,,90=∠D CE OE DCO EC ⊥∠的角平分线,且是, 过点E 作..之间的关系,并证明与猜想:线段于点交OD EF F OC OC EF ⊥图4练习二、如图5,已知△ABC 中,CE 平分∠ACB ,且AE ⊥CE ,∠AED +∠CAE =180度,求证:DE ∥BC图5练习三、如图6,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB ,BE 平分∠ABC ,求证:点E 是DC 中点。
图6练习四、①、如图7(a ),A ABC CE BD 的外角平分线,过点分别是、∆、作BD AD ⊥DE DE E D CE AE :.求证,连接、,垂足分别是⊥∥,BC )(21AC BC AB DE ++=.ACDEBABCDE图7(a ) 图7(b ) 图7(c )②、如图7(b ),件不变;的内角平分线,其他条分别是、ABC CE BD ∆③、如图7(c ),的外角平分线,为的内角平分线,为ABC CE ABC BD ∆∆其他条件不变. 则在图7(b )、图6(c )两种情况下,DE 与BC 还平行吗?它与ABC ∆三边又有怎样的数量关系?请写出你的猜测,并证明你的结论.(提示:利用三角形中位线的知识证明线平行)练习五、如图8,在直角三角形ABC 中,90C ∠=︒,A ∠的平分线交BC 于D .自C 作CG AB ⊥交AD 于E ,交AB 于G .自D 作DF AB ⊥于F ,求证:CF DE ⊥.GABC D EF12图8练习六、如图9所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD 的延长线于F ,求证()12MF AC AB =-. MFD CB A图9练习六变形一:如图10所示,AD 是ABC ∆中BAC ∠的外角平分线,CD AD ⊥于D ,E 是BC 的中点,求证DE AB ∥ 且1()2DE AB AC =+.E DCB A图10练习六变形二:如图11所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA图11练习七、如图12,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .则有AB BD AC +=.那么如图13,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.D C BA21ECB A图12 图13练习八、在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.C EDB A练习九、AD 是ABC ∆的角平分线,BE AD ⊥交AD 的延长线于E ,EF AC ∥交AB 于F . 求证:AF FB =.DECFBA3.角分线,分两边,对称全等要记全两个图形的辅助线都是在射线OA上取点B,使OB=OA,从而使OAC≌△OBC.(1).例题应用:①、在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:本题要证明的是AB+BP=BQ+AQ。
形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。
可过O作BC的平行线。
得△ADO≌△AQO。
得到OD=OQ,AD=AQ,只要再证出BD=OD 就可以了。
④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。
小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。
而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。
从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。
②、如图所示,在ABC ∆中,AD 是BAC ∠的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB PC +与AB AC +的大小,并说明理由.DPC B AEDPC A【解析】 PB PC AB AC +>+,理由如下.CD B PAECD B PA【解析】 在AB 上截取AE AC =,连结EP ,根据SAS 证得AEP ∆≌ACP ∆,∴PE PC =,AE AC =又BEP ∆中,BE PB PE >-,BE AB AC =-,∴AB AC PB PC ->-(2)、模型巩固:练习一、.如图,在△ABC 中,AD ⊥BC 于D ,CD =AB +BD ,∠B 的平分线交AC 于点E ,求证:点E 恰好在BC 的垂直平分线上。
练习二、如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D , 求证:AD +BD =BC练习三、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D , 求证:AC +CD =AB练习四、已知:在△ABC 中,B ∠的平分线和外角ACM ∠的平分线相交于,,D DF BC 交AC 于,,E AB F 交于求证:EF BF CE -=EAD BCACBDACBD练习五、在△ABC 中,,2AB AC AD =平分BAC ∠,E 是AD 中点,连结CE ,求证:2BD CE =变式:已知:在△ABC 中,,2B C BD ∠∠=平分ABC ∠,,AD BQ D ⊥于 求证:12BD AC =练习六、 已知:如图,在四边形ABCD 中,AD ∥BC,BC=DC,CF 平分∠BCD,DF ∥AB,BF 的延长线交DC 于点E.求证:(1) BF=DF ; (2) AD=DE.A B CDFE练习七、已知如图,在四边形ABCD中,AB+BC=CD+DA,∠ABC的外角平分线与∠CDA的外角平分线交于点P.求证:∠APB=∠CPD练习八、如图,在平行四边形ABCD(两组对边分别平行的四边形)中,E,F分别是AD,AB边上的点,且BE、DF交于G点,BE=DF,求证:GC是∠BGD的平分线。
DFGB练习九、如图,在△ABC中,∠ACB为直角,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.AMDB练习十、如图所示,已知ABC∠,E、F分别在BD、AD上.DE CD∆中,AD平分BAC=,=.求证:EF∥ABEF ACFA CD E B【补充】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为BAC ∠的角平分线.F GEDCBA4.中考巡礼:(1).如图1,OP 是∠AOB 的平分线,请你利用图形画一对以OP 为所在直线为对称轴的全等三角形,请你参考这个全等三角形的方法,解答下列问题。
①、如图2,在△ABC 中,∠ACB 是直角,∠B=600,AD 、CE 是∠BAC 、∠BCA 的角平分线, 相交于点F ,请你判断并写出EF 与DF 之间的数量的关系。