人教版八年级数学全等三角形的常见模型总结(精选.)

合集下载

三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破

三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破

专题12.11三角形全等几何模型(一线三等角)第一部分【知识点归纳】【知识点一】一线三直角模型1.基本图形题型特征:如图1,在直线BC上出现三个直角,如图中∠B=∠ACE=∠D=90°图1图2图3解题方法:只要题目再出现一组等边(AB=CD或BC=DE或CA=CE),可证△ABE≌△ECD(AAS 或ASA)结论延伸1:如图2,两个直角三角形在直线两侧时,同样成立结论延伸2:图1中连接AE,得到如图3,可得以下结论:(1)四边形ABDE为直角梯形;AB+DE=BC(上底+下底=高)【知识点二】一线三等角模型图4图5题型特征:如图4,图形的某条线段上出现三个相等的角,如图中∠B=∠ACE=∠D解题方法:只要题目再出现一组等边(BA=CD或BC=DA或CA=DC),必证△ABC≌△CDE(AAS或ASA)结论延伸:如图5,两个三角形在直线两侧时,同样成立第二部分【题型展示与方法点拨】【题型1】直接用“一线三直角”模型求值或证明【例1】(23-24八年级上·安徽合肥·期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥,BE MN ⊥,垂足分别为D E 、.(1)求证:ADC CEB ≌;(2)若3cm =AD ,5cm BE =,求四边形ABED 的面积.【变式1】(23-24八年级上·湖北武汉·阶段练习)如图,小虎用10块高度都是3cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离DE 的长度为()A .30cmB .27cmC .21cmD .10cm【变式2】(23-24九年级下·重庆开州·阶段练习)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若5BE =,2CF =,则EF 的长度为.【题型2】直接用“一线三等角”模型求值或证明【例2】(23-24八年级上·新疆昌吉·期中)已知ABC 是直角三角形,90BAC AB AC ∠=︒=,,直线l 经过点A ,分别过点B 、C 向直线l 作垂线,垂足分别为D 、E(1)如图a ,当点B 、C 位于直线l 的同侧时,证明:ABD CAE≌(2)如图b ,锐角ABC 中,AB AC =,直线l 经过点A ,点D 、E 分别在直线l 上,点B ,C 位于l 的同一侧,如果CEA ADB BAC ∠=∠=∠,请找到图中的全等三角形,并写出线段ED EC 、和DB 之间的数量关系【变式1】(21-22八年级上·浙江温州·期中)如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于()A .3B .2C .94D .92【变式2】(23-24七年级下·吉林长春·期中)如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E 、F 在线段AD 上.CFD BED BAC ∠=∠=∠,ABC 的面积为18,则ABE 与CDF 的面积之和.【题型3】构造“一线三直角”模型求值或证明【例3】(23-24八年级上·山西吕梁·期末)数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片ABC 中,90ACB ∠=︒,AC BC =.将点C 放在直线l 上,点A ,B 位于直线l 的同侧,过点A 作AD l ⊥于点D初步探究:(1)在图1的直线l 上取点E ,使BE BC =,得到图2,猜想线段CE 与AD 的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片MPN 继续进行拼图操作,其中90MPN ∠=︒,MP NP =.小颖在图1的基础上,将三角形纸片MPN 的顶点P 放在直线l 上,点M 与点B 重合,过点N 作NH l ⊥于点H .如图3,探究线段CP ,AD ,NH 之间的数量关系,并说明理由【变式1】(23-24八年级上·新疆喀什·期中)如图,906AC AB BD ABD BC ==∠=︒=,,,则BCD △的面积为()A .9B .6C .10D .12【变式2】(20-21七年级下·黑龙江哈尔滨·期末)如图,在ABC 中,90ABC ∠=︒,过点C 作CD AC ⊥,且CD AC =,连接BD ,若92BCD S = ,则BC 的长为.【题型4】“一线三直(等)角”模型的延伸与拓展【例4】如图,A 点的坐标为(0,3),B 点的坐标为(-3.0),D 为x 轴上的一个动点,AE ⊥AD ,且AE=AD ,连接BE 交y 轴于点M(1)若D点的坐标为(-5.0),求E点的坐标:(2)求证:M为BE的中点(3)当D点在x轴上运动时,探索:OMBD为定值【变式1】(23-24八年级上·陕西西安·阶段练习)勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为()A.54B.60C.100D.110【变式2】已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2021·四川南充·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【例2】(2023·重庆·中考真题)如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为.2、拓展延伸【例1】(22-23八年级下·河南洛阳·期中)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在Rt ABC △中,90BAC ∠=︒,且AB AC =,直线l 经过点A .小华分别过B 、C 两点作直线l 的垂线,垂足分别为点D 、E .易证ABD CAE △△≌,此时,线段DE 、BD 、CE 的数量关系为:;(2)拓展应用:如图乙,ABC 为等腰直角三角形,90ACB ∠=︒,已知点C 的坐标为(2,0)-,点B 的坐标为(1,2).请利用小华的发现直接写出点A 的坐标:;(3)迁移探究:①如图丙,小华又作了一个等腰ABC ,AB AC =,且90BAC ∠≠︒,她在直线l 上取两点D 、E ,使得BAC BDA AEC ∠=∠=∠,请你帮助小华判断(1)中线段DE 、BD 、CE 的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,ABC 中,2AB AC =,90BAC ∠≠︒,点D 、E 在直线l 上,且BAC BDA AEC ∠=∠=∠,请直接写出线段DE 、BD 、CE 的数量关系.【例2】(22-23八年级上·广东惠州·期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.。

人教版 八年级数学上册 第12章 全等三角形之垂直模型(含答案)

人教版 八年级数学上册 第12章 全等三角形之垂直模型(含答案)

人教版 八年级数学上册 第12章 全等三角形之垂直模型(含答案)1.三垂直模型(1)如图,已知矩形中,E 是AD 上的一点,F 是AB 上的一点,,且ABCD EF EC ⊥,,矩形的周长为32cm ,求AE 的长.EF EC =4DE cm =ABCD EF DCBA【答案】6cm .(2)已知:如图,在ABC 中,,CD ⊥AB 于点D ,点E 在AC 上,V 90ACB ∠=︒CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =FC.【答案】易证,所以.Rt CEF Rt BCA ∆∆≌AB CF =(3)如图,在中,,,CF 交AB 于点E ,,Rt ABC △AC BC =90ACB ∠=︒BD CF ⊥,若,,求CF 的长.AF CF ⊥5DF =3AF =【答案】易证:,∴,.Rt ACF Rt BCD ∆∆≌3CD AF ==8CF CD DF =+=2.在中,,,直线经过点,且于,ABC △90ACB ∠=︒AC BC =MN C AD MN ⊥D 于.BE MN ⊥E (1)当绕点旋转到图1的位置时,请你探究线段、、之间的数量关系;MN C DE AD BE (2)当绕点旋转到图2的位置时,你在(1)中得到的结论是否发生变化?请写出MN C 你的猜想,并加以证明;(3)当绕点旋转到图3的位置时,你在(1)中得到的结论是否发生变化?请写出MN C 你的猜想,并加以证明.图1NMABCDE图2MNABCDE图3NMAC D E 【答案】(1)三垂直模型,易得,所以有;ACD CBE ≅△△DE AD BE =+(2)猜想:(1)中得到的结论发生了变化,同理可证:.DE AD BE =-(3)猜想:(1)中得到的结论发生了变化,同理可证:.DE BE AD =-3.已知等腰中,为直角,为的中点,于点G .求证:Rt ABC △C ∠M BC CD AM ⊥.∠=∠AMC DMBB EB BC【答案】如图,过作,交延长线于.⊥CD E三垂直模型,易证:,≌∆∆Rt CBE Rt ACMM BC=∵为的中点,∴,.∠=∠=AMC ECM BM BE∠=∠∵,而,∴.∠=︒EBD MBDMBD∠+∠=︒4590MBD EBD≌E DMB AMC∆∆BD BED BMD又为公共边,∴,∴.∠=∠=∠4.已知CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且.∠=∠=∠BEC CFAα(1)如图1,若∠BCA=60°,时,线段BE和CF大小关系如何,猜想线段α∠=︒120BE、AF、和EF之间的数量关系,并证明.(2)如图2,若时,(1)中的结论是否仍然成立,请说明.∠=︒-180BCAα【答案】(1),;(2)成立.BE CF =EF BE AF =-5.(1)如图1,在中,,D 、A 、E 三点都在直线m 上,并且有ABC △AB AC =,其中α为任意锐角或钝角,请证明DE 、BD 、CE 三条线段的BDA AEC BAC α∠=∠=∠=数量关系.(2)在(1)的基础上,D 、E 是直线m 上两个动点(D 、A 、E 三点不重合),点F 是的平分线上一点,且、均为等边三角形,连接DF 、EF ,判断BAC ∠ABF △ACF △的形状,并证明.DEF △图1图2【答案】(1)∵,,易证,BDA AEC BAC α∠=∠=∠=AB AC =ADB CEA ≅△△∴,. BD AE AD CE ==,DE BD CE =+(2)是等边三角形.由(1)知:DEF △,∴,ADB CEA ≅△△ BD EA DBA CAE =∠=∠, 又∵、均为等边三角形,∴,ABF △ACF △60ABF CAF ∠=∠=︒,FBD FAE ∠=∠∴,,,∴,等边.DBF EAF ≅△△DF EF =BFD AFE ∠=∠60DFE ∠=︒DEF △6.如图,在中,是斜边上的高,是的平分线,交 于Rt ABC ∆AD BC BE ABC ∠AD BE ,于,求证:.O EF AD ⊥F AF OD =【答案】如图,过作.O OG AB ⊥∵,,∴.12∠=∠OD BC ⊥OG OD =∵,,∴.190AEO ∠+∠=︒290BOD ∠+∠=︒AEO BOD ∠=∠而,∴,∴.BOD AOE ∠=∠AEO AOE ∠=∠AE AO =∵,∴.EF DC ∥AEF C ∠=∠∵,,90C CAD ∠+∠=︒90GAO CAD ∠+∠=︒∴,故.C GAO ∠=∠AEF GAO ∠=∠∴,,∴.Rt AEF Rt OAG ∆∆≌OG AF =AF OD =(也可以过E 作BC 的垂线,按照模型来证明.)7.如图1,在中,,,垂足为D .AF 平分,交Rt ABC △90ACB ∠=︒CD AB ⊥CAB ∠CD 于点E ,交CB 于点F .图1 图2(1)求证:.CE CF =(2)将图1中的沿AB 向右平移到的位置,使点落在BC 边上,其它ADE △'''A D E △'E 条件不变,如图2所示.试猜想:与CF 有怎样的数量关系?请证明你的结论.'BE 【答案】(1)在中,;在中,Rt AED △90EAD AED ∠+∠=︒Rt ACF △;90CAF AFC ∠+∠=︒又有,∴,则有.CAF EAD ∠=∠AFC AED CEF ∠=∠=∠CE CF =(2)如图,过点E 作于G ,易证:,∴,EG AC ⊥''CEG BE D ≅△△'CE BE =由(1)中的结论,可得:.'CF BE =E‘图2G A ′FE CBA8.如图1,已知ABC 是等边三角形,点D 是边BC 的中点,∠ADE =60°,且DE 与V ∠ACB 的外角平分线CE 相交于点E .过点作交于点,则有D DF AC ∥AB F ,易证:ADE 是等边三角形.那么请问:ADF EDC ≅△△V (1)若D 是线段BC 上(B 、C 点除外)的任意一点,其他条件不变(如图2),试判断ADE 的形状,并说明理由.V (2)若D 是BC 的延长线上(C 点除外)的任意一点,其他条件不变(如图3),那么(1)的结论是否仍然成立?请说明理由.图1 图2 图3【答案】(1)等边三角形;(2)成立,过点作交的延长线于点,则有,即证.D DF AC∥AB F AFD DCE≌∆∆9.如图,在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点VD,BE⊥MN于点E,AD=5,BE=2,求线段DE的长.【答案】;710.如图,已知中,AC=BC,D是BC的中点,,垂足为Rt ABCV90ACB∠=o CE AD⊥E.,交CE的延长线于点F.求证:AC=2BF.BF ACPABC DEF 【答案】∵,,∴,.90ACB ∠=oBF AC P 90ACD CBF ∠=∠=o90ADC CAD ∠+∠=o∵,∴,∴.CE AD ⊥90FCB ADC ∠+∠=oCAD FCB ∠=∠又∵AC =CB ,∴,∴DC =FB .ADC CFB ≅V V ∵D 是BC 的中点,∴BC =2BF ,即AC =2BF .11.如图,中,,,D 是AB 上任意一点, 交CDABC △AC BC =90ACB ∠=︒AE CD ⊥延长线于E ,于F .求证:.BF CD ⊥EF BF AE =-F E D CBA【答案】三垂直模型,易证:,则CE =BF ,AE =CF ,∴EF =CE -CF =BF -AE .ACE CBF ≅V V 12.(1)如图,在中,,点、、分别在边、、上,且ABC △AB AC =D E F AB BC AC ,.图中是否存在和全等的三角形?说明理由.BD CE =DEF B ∠=∠BDE △FEDCBA(2)如图,在等边ABC 的边BC 上任取一点D ,作∠ADE =60°,DE 交∠C 的外角平分线于V E ,则ADE 是____________三角形.V 【答案】(1);(2)等边.CEF 13.如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,∠ABC 的角平分线BE 交CD 于G ,交AC 于E ,M 是CG 上一点且满足CM =DG . 求证:EM //AB .【答案】提示:过点作的垂线.G BC 14.八年级数学兴趣小组展示了他们小组探究的过程和发现的结果,内容如下:(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,当M 、N 改变位置且保持BM =AN 时,∠NOC 保持不变,请猜测∠NOC 的度数:∠NOC =______度.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =DM ,且∠DON =_______度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =EM ,且∠EON =________度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:______________________________________.【答案】(1); (2) ;(3);(4)以上所求的角正好等于正边形的内角60︒90︒108︒n ()2180n n-︒。

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳单选题1、如图,OD平分∠AOB,DE⊥AO于点E,DE=5,点F是射线OB上的任意一点,则DF的长度不可能是()A.4B.5C.6D.7答案:A分析:根据角平分线的性质,可知点D到OB和OA的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.∵OD平分∠AOB,DE⊥AO于点E,DE=5,∴D到OB的距离等于5,∴DF≥5故DF的长度不可能为4,故选A.小提示:本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键.2、下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形答案:B分析:根据全等图形的定义进行判断即可.解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B:两个全等图形形状一定相同,故B正确,符合题意;C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D:两个正三角形不一定是全等图形,故D错误,不符合题意;故选:B.小提示:本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.3、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有()A.①②③B.①②④C.①③④D.①②③④答案:D分析:证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.小提示:本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.4、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A .35°B .40°C .45°D .50°答案:C分析:根据角平分线的定义和垂直的定义得到∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,推出AB =BE ,根据等腰三角形的性质得到AF =EF ,求得AD =ED ,得到∠DAF =∠DEF ,根据三角形的外角的性质即可得到结论. 解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF ,∴AB =BE ,AE ⊥BD ,∴BD 是AE 的垂直平分线,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .小提示:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5、如图,△ABC ≌△DEF ,若∠A =80°,∠F =30°,则∠B 的度数是( )A.80°B.70°C.65°D.60°答案:B分析:由△ABC≌△DEF根据全等三角形的性质可得∠C=∠F=30°,再利用三角形内角和进行求解即可.∵△ABC≌△DEF,∴∠C=∠F,∵∠F=30°,∴∠C=30°,∵∠A=80°,∠A+∠B+∠C=180°,∴∠B=180°−∠A−∠C=70°,故选:B.小提示:本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.6、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8、已知图中的两个三角形全等,则∠α等于()A.72∘B.60∘C.58∘D.50∘答案:D分析:根据全等三角形的性质:全等三角形对应角相等,即可得到结论.∵图中的两个三角形全等,∠α为a和c的夹角又∵第一个三角形中a和c的夹角为50°∴∠α=50°故选:D.小提示:本题考查了全等三角形的性质,准确找到对应角是解题的关键.9、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.AD,BD平分∠ABC,则点D到AB的距离等于( ) 10、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,∵AC=8,DC=1AD,3∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.填空题11、如图,四边形ABCD中,∠B+∠D=180°,AC平分∠DAB,CM⊥AB于点M,若AM=4cm,BC=2.5cm,则四边形ABCD的周长为_____cm.答案:13分析:过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC+∠B=180°,∠ADC+∠EDC=180°,∴∠EDC=∠MBC,在△EDC和△MBC中,{∠DEC=∠CMB∠EDC=∠MBCCE=CM,∴△EDC≌△MBC(AAS),∴ED=BM,BC=CD=2.5cm,∴四边形ABCD的周长为AB+AD+BC+CD=AM+BM+AE﹣DE+2BC=2AM+2BC=8+5=13(cm),所以答案是:13.小提示:本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.12、把两个全等的三角形重合到一起,重合的顶点叫做_________,重合的边叫做_________,重合的角叫做_________.记两个三角形全等时,通常把表示_________的字母写在对应位置上.答案:对应顶点对应边对应角对应顶点分析:根据能够完全重合的两个图形叫做全等形,以及对应顶点、对应边、对应角的概念填空.解:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.所以答案是:对应顶点;对应边;对应角;对应顶点.小提示:此题主要考查了全等形及相关概念,属于基本概念题,是需要识记的内容.13、如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=_____.答案:12cm或6cm##6cm或12cm分析:当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.解:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=6cm=BC时,在Rt△ACB和Rt△QAP中∵{AB=PQ,BC=AP∴Rt△ACB≌Rt△QAP(HL),②当AP=12cm=AC时,在Rt△ACB和Rt△PAQ中{AB=PQ,AC=AP∴Rt△ACB≌Rt△PAQ(HL),所以答案是:12cm或6cm.小提示:本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.14、如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点B的坐标为(1,5),则A点的坐标是_____.答案:(-7,3)分析:先作辅助线AD ⊥OC 、BE ⊥OC ,通过导角证明∠CAD =∠BCE ,再证明△ADC ≌△CEB , 得到AD 的长度(A 的纵坐标长度)、DC 长度(加上OC 得到A 横坐标长度),根据A 点所在象限的符号,确定A 点坐标. 如图,过点A 作AD ⊥OC 于点D ,过点B 作BE ⊥OC 于点E∵ 点C 的坐标为(-2,0),点B 的坐标为(1,5)∴ OC =2,OE =1,BE =5∵∠ACB =90°∴∠ACD +∠CAD =90°,∠ACD +∠BCE =90°∴∠CAD =∠BCE在△ADC 和△CEB 中,{∠ADC =∠BEC =90°∠CAD =∠BCE AC =BC∴△ADC ≌△CEB(AAS)∴DC =BE =5,AD =CE =1+2=3∴OD =2+5=7∴ A 点的坐标是(-7,3) .小提示:本题考查了全等三角形的证明(在两个三角形中,如果有两组对应角,和其中一组对应角的对边分别相等,那么这两个三角形全等) .15、如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.答案:225°分析:首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.解:如图所示:在△ABC和△AEF中,{AB=AE∠B=∠E=90°BC=EF∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,{AB=AEAD=AH∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.所以答案是:225°.小提示:此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解.解答题16、(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并∠EAF=12证明.答案:(1)EF=BE+DF,理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由见详解.分析:(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE−BG=BE−DF.所以(1)的结论在(3)的条件下是不成立的.(1)解:EF=BE+DF,理由如下:延长CD,使DM=BE,连接AM,∵在正方形ABCD中,AB=AD,∠B=∠ADM=90°,∴△ABE≌△ADM,∴∠BAE=∠DAM,AE=AM,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,∴∠EAF=∠MAF=45°,又∵AF=AF,AE=AM,∴△AEF≌△AMF,∴EF=MF=MD+DF=BE+DF;(2)在CD的延长线上截取DG=BE,连接AG,如图,∵∠ADF=90°,∠ADF+∠ADG=180°,∴∠ADG=90°,∵∠B=90°,∴∠B=∠ADG=90°,∵BE=DG,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,∵∠EAF=1∠BAD,2∴∠EAF=1∠EAG,2∴∠EAF=∠FAG,又∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG=DF+DG=EB+DF;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由如下:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,{AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD =12∠GAF . ∴∠GAE =12∠BAD =∠EAF .∵AE =AE ,AG =AF .∴△AEG ≌△AEF .∴EG =EF ,∵EG =BE −BG∴EF =BE −FD .小提示:本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.17、(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC,D,A,E 三点都在直线m 上,并且有∠BDA =∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.答案:(1)证明见解析;(2)DE=BD+CE,证明见解析分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,{∠ABD=∠CAE∠ADB=∠CEA=90°AB=AC,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,{∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;小提示:本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.18、如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°,时,∠AED =_________度(直接填空).答案:(1)见解析;(2)100分析:(1)根据∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,可得∠ABE =∠DCE ,∠CBE =∠BCE ,推出BE =CE ,由此利用SAS 证明△ABE ≌△DCE ;(2)根据三角形全等的性质求出∠D 的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,∴∠ABE =∠CBE =12∠ABC ,∠BCE =∠DCE =12∠BCD ,∴∠ABE =∠DCE ,∠CBE =∠BCE ,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为(5−2)×180°=540°,∴∠AED=540°−80°×2−140°×2=100°,所以答案是:100.小提示:此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.。

全等三角形的基本模型复习(正式经典)PPT课件

全等三角形的基本模型复习(正式经典)PPT课件

2021
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
2021
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
2021
2021
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
2021
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
2021
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
2021
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
2021
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.

人教版八年级数学全等三角形的常见模型总结

人教版八年级数学全等三角形的常见模型总结

人教版八年级数学全等三角形的常见模型总结全等三角形的常见模型总结全等三角形是数学中的一个重要概念,它代表着两个三角形的所有对应部分完全相等。

在八年级数学教材中,全等三角形的学习是一个重要的内容。

本文将对人教版八年级数学中常见的全等三角形模型进行总结。

一、三个已知条件1. SAS(边角边)判定法SAS判定法是指如果两个三角形的两边和夹角分别相等,则这两个三角形全等。

这个模型通常用于根据已知条件构造全等三角形。

例如,已知△ABC和△DEF,已知AB=DE,BC=EF,∠B=∠E,要求证明△ABC≌△DEF。

2. ASA(角边角)判定法ASA判定法是指如果两个三角形的两角和一边分别相等,则这两个三角形全等。

这个模型常用于证明两个三角形全等。

例如,已知△ABC和△DEF,已知∠A=∠D,∠B=∠E,AB=DE,要求证明△ABC≌△DEF。

3. SSS(边边边)判定法SSS判定法是指如果两个三角形的三边分别相等,则这两个三角形全等。

这个模型常用于证明两个三角形全等。

例如,已知△ABC和△PQR,已知AB=PQ,BC=QR,AC=PR,要求证明△ABC≌△PQR。

二、全等三角形的性质1. 对应部分相等对应的顶点、边和夹角都相等。

2. 全等三角形的性质相等全等三角形的各个角、边的性质都相等,比如角平分线和中线相等、高和中线相等等。

三、应用实例1. 建筑几何模型全等三角形在建筑几何中有着广泛的应用。

例如,在建造房屋的过程中,根据所给定的尺寸,可以通过构造全等三角形来确定某些未知尺寸,确保建筑物的稳定性和均衡性。

2. 测量和导航全等三角形在测量和导航中也有着重要的应用。

例如,在测量高楼大厦时,可以通过测量一些已知长度和角度,利用全等三角形模型来计算难以测量的高度。

在导航中,利用全等三角形的性质可以确定船只或飞机的位置和方向。

3. 几何证明全等三角形的模型在几何证明中也是常见的。

许多几何定理的证明需要利用全等三角形构造相等的边或角来推导。

第十二章全等三角形常见全等三角形模型复习讲义人教版数学八年级上册

第十二章全等三角形常见全等三角形模型复习讲义人教版数学八年级上册

常见全等三角形模型(压轴)三角形全等的判定方法:三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”).两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”).两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”).斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).证明三角形全等的基本思路:全等三角形中常见的基本模型:1手拉手模型①△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC;(2)∠BOE =60°;(3)OA平分∠EOF .拓展图形:结论:(1)AD=BE ;(2)∠ACB=∠AOB ;(3)△PCQ为等边三角形;(4)PQ∥AE ;(5)AP=BQ ;(6)CO平分∠AOE ;(7)OA=OB+OC;(8)OE=OC+OD.②△ABD和△ACE均为等腰直角三角形结论:(1)BE=CD;(2)BE⊥CD .③ABEF和ACHD均为正方形结论:(1)BD⊥CF;(2)BD=CF.2三垂直模型由△AEB≌△BDC导出由△ABE≌△BCD导出由△ABE≌△ECD导出AE=CD+DE AB=EC+CD BC=AB+CD3等腰直角三角形型定点是斜边中点,BF=AE(AF=CE),动点在两直角边上滚动的旋转全等:结论:(1)△BDF≌△ADE,△ADF≌△CDE;(2)DE⊥DF;(3)S四边形AFDE=1/2S△ABC.例1.在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)BH平分∠AHC;(5)△ABG≌△DBF;(6)等边△GBF;(7)GF∥AC.1.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面(1),(2)中的结论还成立吗?请简单说明理由.2.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.3.如图,在平面直角坐标系中,点A的坐标是(a,0)(a>0),点C是y轴上的一个动点,点C在y轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边△AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;(2)若点P在第三象限,BP交x轴于点E,且∠ACO=20°,求∠P AE的度数和E 点的坐标;(3)点C 在y 轴移动的过程中,若∠APB =30°,则点P 的横坐标为 . 例2.如图1,OA =1,OB =3,以A 为直角顶点,AB 为腰在第三象限作等腰Rt △ABC . (1)求点C 的坐标; (2)如图2,P 为y 轴负半轴上的一个动点,当点P 向下运动时,以P 点为直角顶点,P A 为腰作等腰Rt △APQ ,过Q 作QE ⊥x 轴于E 点,求PO ﹣QE 的值.1.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( ).A .50B .62C .65D .682.直线CD 经过的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且.(1)若直线CD 经过的内部,且E 、F 在射线CD 上,请解决下面两个问题: ①如图1,若90,90BCA α∠=∠=,则 (填“”,“”或“”号);②如图2,若,若使①中的结论仍然成立,则 与 应满足的关系是 ;(2)如图3,若直线CD 经过的外部,,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.3.(1)如图1,OA =3,OB =6,以点A 为顶点,AB 为腰在第三象限作等腰直角△ABC ,则C 点的坐标为 ;(2)如图2,OA =3,P 为y 轴负半轴上的一个动点,若以P 为直角顶点,P A 为腰作等腰直角△APD ,过D 作DE ⊥x 轴于E 点,求OP ﹣DE 的值;(3)如图3,点F 坐标为(﹣3,﹣3),点G (0,m )在y 轴负半轴上,点H (n ,0)在x 轴的正半轴上,且FH ⊥FG ,求m +n 的值.4.如图,在平面直角坐标系中,△ABC 的顶点A 在y 轴上,顶点C 在x 轴上,∠BAC=90°,AB=AC ,点E 为边AC 上一点,连接BE 交y 轴于点F ,交x 轴于点G ,作CD ⊥BE 交BCA ∠BEC CFA α∠=∠=∠BCA ∠EF BE AF -><=0180BCA <∠<α∠BCA ∠BCA ∠BCA α∠=∠A B CEF D D A BC E F AD F CE B 图1 图2 图3BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.5.已知:如图所示,在△ABC中,AB=AC,∠BAC=90°,D为AC中点,AF⊥BD 于E,交BC于F,连接DF.求证:∠ADB=∠CDF.例3.如图1,点P、Q分别是边长为4cm的等边ABC∆边AB、BC上的动点,点P从顶点A向点B运动,点Q从顶点B同时出发向点C运动,且它们的速度都为1/cm s,∠变化吗?若变化,则(1)连接AQ、CP交于点M,则在P、Q运动的过程中,CMQ说明理由,若不变,则求出它的度数;∆是直角三角形?(2)何时PBQ(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP ∠变化吗?若变化,则说明理由,若不变,则求出它的度数.交点为M,则CMQ1.如图,点G、H分别是正六边形ABCDEF的边BC、CD上的点,且BG=CH,AG 交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.例4.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N 分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.(1)求证:△ANO≌△BMO;(2)求证:OM⊥ON.(3)当M、N分别在线段AB、AC上移动时,四边形AMON的面积如何变化?1.如图所示,△ABC是等腰直角三角形,∠BAC=90°,AB=AC.(1)若D为BC的中点,过D作DM⊥DN分别交AB.AC于M.N,求证:DM=DN;(2)若DM⊥DN分别和BA.AC延长线交于M.N,问DM和DN有何数量关系,并证明.2.将一副三角板按如图所示的方式摆放,AD是等腰直角三角板ABC斜边BC上的高,另一块三角板DMN的直角顶点与点D重合,DM、DN分别交AB、AC于点E、F.(1)请判别△DEF的形状.并证明你的结论;(2)若BC=4,求四边形AEDF的面积.。

人教版八年级数学上册 第十二章 全等三角形知识归纳与题型突破(12类题型清单)

人教版八年级数学上册  第十二章 全等三角形知识归纳与题型突破(12类题型清单)

第十二章全等三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定五、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

8年级上册数学模型

8年级上册数学模型

8年级上册数学模型由于您没有给出具体的8年级上册数学题目内容,我将以人教版八年级上册数学中的一些常见模型为基础为您整理学习资料:一、三角形模型。

1. 全等三角形模型。

- 平移型。

- 特征:两个三角形通过平移得到全等关系。

例如,在三角形ABC和三角形DEF 中,如果AB平行且等于DE,BC平行且等于EF,AC平行且等于DF,那么三角形ABC≌三角形DEF(SSS全等判定)。

- 解题要点:找到对应边相等的关系,通常可以通过平行四边形的性质(对边相等)来辅助证明。

- 旋转型。

- 特征:一个三角形绕着某个点旋转一定角度后与另一个三角形全等。

三角形ABC绕点O旋转一定角度后得到三角形A'B'C',如果OA = OA',OB = OB',OC = OC',且∠AOA'=∠BOB' = ∠COC',可以通过SAS(边角边)等全等判定定理来证明全等。

- 解题要点:确定旋转中心和旋转角度,找出对应边和对应角相等的关系。

- 翻折型。

- 特征:将一个三角形沿着某条直线翻折得到与另一个三角形全等。

例如,三角形ABC沿直线l翻折得到三角形A'B'C',则对应边AB = A'B',BC = B'C',AC =A'C',对应角∠A=∠A',∠B = ∠B',∠C = ∠C'。

- 解题要点:找出对称轴,利用对称轴两侧的图形对称性质,即对应点到对称轴的距离相等,对应线段相等,对应角相等。

2. 等腰三角形模型。

- 三线合一模型。

- 定义:等腰三角形底边上的高、底边上的中线、顶角平分线互相重合。

- 应用:已知等腰三角形的某条线段是底边上的高、中线或者顶角平分线中的一条,就可以得出它同时具备另外两条线段的性质。

例如,在等腰三角形ABC中,AB = AC,AD是BC边上的高,那么AD也是BC边上的中线和∠BAC的平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学全等三角形常见模型总结
要点梳理
全等三角形的判定与性质
类型一:角平分线
模型应用
1.角平分性质模型:(利用角平分线的性质) 辅助线:过点G 作GE ⊥射线AC
例题解析 例:(1)如图1,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是 cm.
(2)如图2,已知,∠1=∠2,∠3=∠4,求证:AP 平分∠
BAC.
图1
图2
【答案】①2 (提示:作DE ⊥AB 交AB 于点E )
②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.
类型二:角平分线模型应用
2.角平分线,分两边,对称全等(截长补短构造全等)
两个图形的辅助线都是在射线OA上取点B,使OB=OA,从而使△OAC≌△OBC.
例题解析
例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。

证明:如图(1),
过O作OD∥BC交AB于D,
∴∠ADO=∠ABC=180°-60°-40°=80°,
又∵∠AQO=∠C+∠QBC=80°,
∴∠ADO=∠AQO,
又∵∠DAO=∠QAO,OA=AO,
∴△ADO≌△AQO,
∴OD=OQ,AD=AQ,
又∵OD∥BP,
∴∠PBO=∠DOB,
又∵∠PBO=∠DBO,
∴∠DBO=∠DOB,
∴BD=OD,
又∵∠BPA=∠C+∠PAC=70°,
∠BOP=∠OBA+∠BAO=70°,
∴∠BOP=∠BPO,
∴BP=OB,
∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

解题后的思考:
(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。

(2)本题利用“平行法”的解法也较多,举例如下:
①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

④如图(5),过P 作PD ∥BQ 交AC 于D ,则△ABP ≌△ADP 从而得以解决。

小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。

而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。

从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。

例2:如图所示,在ABC ∆中,AD 是BAC ∠的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB PC +与AB AC +的大小,并说明理由.
D
P
C B A
E
D
P
C B A
PB PC AB AC +>+,理由如下.
如图所示,在AB 的延长线上截取AE AC =,连接PE . 因为AD 是BAC ∠的外角平分线, 故CAP EAP ∠=∠.
在ACP ∆和AEP ∆中,AC AE =,CAP EAP ∠=∠,AP 公用, 因此ACP AEP ∆∆≌, 从而PC PE =.
在BPE ∆中,PB PE BE +>, 而BE BA AE AB AC =+=+, 故PB PC AB AC +>+.
例3:在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.
求证:AB AC PB PC ->-.
C
D B P
A
E
C
D B P
A
在AB 上截取AE AC =,连结EP ,根据SAS 证得AEP ∆≌ACP ∆,∴PE PC =,AE AC =又BEP ∆中,BE PB PE >-,BE AB AC =-,∴AB AC PB PC ->-
类型三:等腰直角三角形模型
1、在斜边上任取一点的旋转全等:
操作过程:(1)将△ABD 逆时针旋转90°,使△ACM ≌△ABD ,从而推出△ADM 为等腰直角三角形.(但是写辅助线时不能这样写)(2)过点C 作MC ⊥BC ,连AM 导出上述结论. 2、定点是斜边中点,动点在两直角边上滚动的旋转全等:
操作过程:连AD.
(1). 使BF=AE (AF=CE ),导出△BDF ≌△ADE. (2). 使∠EDF+∠BAC=180°,导出△BDF ≌△ADE. 例题解析
例1:两个全等的含30°,60°的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连接BD ,取BD 得中点M ,连接ME ,MC ,试判断△EMC 的形状,并证明。

证明:连接AM ,证明△MDE ≌△MAC.特别注意证明∠MDE=∠MAC.
例2:已知:如图所示,Rt △ABC 中,AB=AC ,
90=∠BAC ,O 为BC 中点,若M 、N 分别在线段AC 、AB 上移动,且在移动中保持AN=CM. (1)是判断△OMN 的形状,并证明你的结论.
(2)当M 、N 分别在线段AC 、AB 上移动时,四边形AMON 的面积如何变化?
思路:两种方法:
类型四:三垂直模型(弦图模型)
由△ABE ≌△BCD 导出 由△ABE ≌△BCD 导 由△ABE ≌△BCD 导出 ED=AE-CD 出EC=AB-CD BC=BE+ED=AB+CD 例题解析
例1:已知:如图所示,在△ABC 中,AB=AC ,
90=∠BAC ,D 为AC 中点,AF ⊥BD 于E ,交BC 于F ,连接DF 。

求证:∠ADB=∠CDF.
思路:
方法一: 过点C 作MC ⊥AC 交AF 的延长线于点M.先证△ABD ≌△CAM ,再证 △CDF ≌△CMF 即可.
(一) (二) (三)
方法二:过点A 作AM ⊥BC 分别交BD 、BC 于H 、M .先证△ABH ≌△CAF , 再证 △CDF ≌△ADH 即可. 方法三:过点A 作AM ⊥BC 分别交BD 、BC 于H 、M .先证Rt △AMF ≌Rt △BMH ,得出 HF ∥AC. 由M 、D 分别为线段AC 、BC 的中点,可得MD 为△ABC 的中位线从而推出MD ∥AB ,又由于
90=∠BAC ,故而MD ⊥AC ,MD ⊥HF ,所以MD 为线段HF 的中垂线. 所以∠1=∠2.再由∠ADB +∠1=∠CDF +∠2 ,则∠ADB =∠CDF . 类型五:手拉手模型
1.△ABE 和△ACF 均为等边三角形
结论:(1). △ABF ≌△AEC (2).∠BOE=BAE=60°(“八字模型证明”)(3).OA 平分∠EOF
拓展:
条件:△ABC和△CDE均为等边三角形
结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三角形
(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC
(8)、OE=OC+OD((7),(8)需构造等边三角形证明)
2.△ABD和△ACE均为等腰直角三角形
结论:(1)、BE=CD (2)BE⊥CD
3.ABEF和ACHD均为正方形
结论:(1)、BD⊥CF(2)、BD=CF
四、半角模型
条件:α=1 β,且β+θ=180︒,β两边相等.
2
思路:1、补短(旋转)
辅助线:①延长CD 到 E,使E D=B M,连AE 或延长CB 到 F,使F B=D N,连A F
②将△A D N绕点A 顺时针旋转90°得△A B F,注意:旋转需证F、B、M 三点共线
结论:(1)M N=B M+D N;
(2)C
=2A B ;
CMN
(3)A M、A N分别平分∠B M N、∠M N D.
2、翻折(对称)
辅助线:①作A P⊥M N交MN 于点P
②将△A D N、△A B M分别沿A N、A M翻折,但一定要证明M、P、N三点共线.
例1、在正方形ABCD 中,若M、N分别在边B C、C D上移动,且满足M N=B M+D N,求证:(1)∠M A N=45°;
(2)C
=2A B ;
CMN
(3)A M、A N分别平分∠B M N和∠D N M.
变式:在正方形ABCD 中,已知∠M A N=45°,若M、N分别在边C B、D C的延长线上移动,
A H⊥M N,垂足为H,
(1)试探究线段M N、B M、D N之间的数量关系;
(2)求证:A B=A H
最新文件仅供参考已改成word文本。

方便更改。

相关文档
最新文档